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Matjaž Omladič c, Susanne Saminger-Platz a, Nik Stopar c,d

a Johannes Kepler University Linz, Institute for Mathematical Methods in Medicine and Data Based Modeling, Linz, Austria
b University of Ljubljana, School of Economics and Business, Ljubljana, Slovenia
c Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
d University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia

A R T I C L E I N F O A B S T R A C T

Keywords:

Copula and quasi-copula
Semicopula and standardized function
Coherence and avoidance of sure loss
𝑘-increasing function

We discuss avoidance of sure loss and coherence results for semicopulas and standardized 
functions, i.e., for grounded, 1-increasing functions with value 1 at (1, 1, … , 1). We characterize 
the existence of a 𝑘-increasing 𝑛-variate function 𝐶 fulfilling 𝐴 ⩽ 𝐶 ⩽𝐵 for standardized 𝑛-variate 
functions 𝐴, 𝐵 and discuss methods for constructing such functions. Our proofs also include 
procedures for extending functions on some countably infinite mesh to functions on the unit 
box. We provide a characterization when 𝐴 respectively 𝐵 coincides with the pointwise infimum 
respectively supremum of the set of all 𝑘-increasing 𝑛-variate functions 𝐶 fulfilling 𝐴 ⩽ 𝐶 ⩽ 𝐵.

1. Introduction and motivation

In recent literature on statistical reasoning, imprecise probabilities have become one of the main tools for modeling uncertainty, 
especially in situations when the use of a precise probability model may be questionable or the exact assessment of probability of 
events impossible. This is often the case in decision making with vague, incomplete, or even conflicting information [24], and in risk 
management [5]. The general theory of imprecise probability [6,43] offers a variety of different models for dealing with imprecision 
such as lower and upper previsions, lower and upper probabilities, probability boxes, distortion probabilities, capacities, and several 
others, [23,25,36,37].

An imprecise model is typically required to satisfy some reasonable consistency conditions. Two such conditions are avoidance of 
sure loss and coherence that were first introduced for lower and upper probabilities [42] and for lower and upper previsions [44]. In 
the behavioral interpretation, avoidance of sure loss means that a gambler’s assessments of events should not lead to acceptance of 
bets that would produce net loss, regardless of the outcome. Coherence, on the other hand, suggests that, given a set of acceptable 
bets, a gambler should also accept any positive linear combination of these bets. A major difference between the precise and imprecise 
setting is that lower and upper probabilities are not additive functions. Instead, they are generally at least monotone with respect 
to set inclusion, i.e., they are capacities. Capacities as a generalization of additive measures were introduced by Choquet in [8] (see 
also [17] and note that the original definition given there is less general than the one used nowadays). Together with semicopulas 
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they give rise to the framework of universal integrals [19] providing a common frame for many non-additive integrals [9], including 
the well-known Choquet integral [8,16] and Sugeno integral [27,40,41].

Avoidance of sure loss and coherence were recently translated to the setting of cumulative distribution functions [33], where 
imprecision is typically modeled with a probability box, i.e., a set of cumulative distribution functions bounded pointwise from 
above and from below. The two notions can also be considered for copulas, which motivated the introduction of imprecise copulas 
[32] as boxes of copulas bounded by two quasi-copulas 𝐶 and 𝐶 . In this setting, avoidance of sure loss is equivalent to the existence of 
a copula 𝐶 satisfying 𝐶 ⩽ 𝐶 ⩽ 𝐶 , where ⩽ denotes the pointwise order, while coherence is equivalent to the following two equalities:

𝐶 = inf{𝐶 ∣ 𝐶 ⩽ 𝐶 ⩽ 𝐶 and 𝐶 is a copula}, 𝐶 = sup{𝐶 ∣ 𝐶 ⩽ 𝐶 ⩽ 𝐶 and 𝐶 is a copula}.

Favorable topological properties of copulas facilitated the application of discretization techniques that eventually led to a charac-
terization of the two notions [28,31], given solely in terms of the bounding functions 𝐶 and 𝐶 . The newly developed method, now 
called the ALGEN method [30], was later extended to distribution functions and applied to give a description of probability boxes in 
terms of coherent imprecise copulas [29,31].

It is natural to ask whether this new characterization can now be translated back to the theory of lower and upper probabilities 
and previsions. This is one of the motivations for the present paper. We generalize the ALGEN method to the case where the bounds 
need not be quasi-copulas. Instead, they are only assumed to be grounded, 1-increasing, and have value 1 at (1, 1, … , 1). We will 
call such functions standardized functions by analogy with [33], where standardized functions were introduced in the setting of 
distributions. This will allow for our results to be used in the theory of multivariate probability boxes and thus provide a stepping 
stone towards applications in lower and upper previsions. In particular, our results can be applied to semicopulas (which include 
distribution functions of capacities with uniform margins [36], and the representing functions of the envelopes of compatible families 
of continuous distribution functions [38]), in which case we can omit one of the technical assumptions and also obtain an additional 
characterization for coherence. The term semicopula was used for the first time by Bassan and Spizzichino [7] in a statistical context. 
Semicopulas have been known, in a different context, as conjunctors (monotone extensions of the Boolean conjunction with neutral 
element 1) [11] or as t-seminorms [39]. For (structural) properties of the class of semicopulas see [12–14].

Furthermore, we also adapt the method to work for classes of functions other than copulas. In particular, we focus on the classes 
of 𝑘-increasing 𝑛-quasi-copulas. With 𝑘 = 2 this includes the class of supermodular 𝑛-quasi-copulas. The role of 𝑘-increasing 𝑛-quasi-
copulas (especially for 𝑘 = 𝑛 − 1) has been investigated in [3] (see also [4]), while the importance of supermodular, sometimes 
also-called 𝐿-superadditive, functions has long been recognized, see e.g. [2,18,20–22,26,34,35] and the references therein.

The structure of the paper is as follows. In Section 2 we give the necessary definitions and basic properties that will be used 
throughout the paper. We state our main results on avoidance of sure loss for standardized functions and semicopulas in Section 3
and give their proofs in Sections 4–7. Given two specific functions 𝐴 ⩽ 𝐵 we construct a 𝑘-increasing function 𝐶 between them on 
a dense countably infinite mesh by modifying the lower bound 𝐴 in Section 4 and by modifying the upper bound 𝐵 in Section 5. 
We extend the function 𝐶 to the full unit cube in Section 6 and collect our findings to conclude the proofs of the main results in 
Section 7. Section 8 is dedicated to results on coherence.

2. Notions and basic properties

2.1. On 𝑘-boxes, multiplicities, and related properties

Throughout the paper we shall denote the unit interval by 𝕀 = [0,1] and we will abbreviate the set {1, 2, … , 𝑛} by [𝑛], where 𝑛 is an 
arbitrary positive integer which will be fixed for the whole paper. We also denote the points (0, 0, … , 0) ∈ 𝕀𝑛 by 𝟎 and (1, 1, … , 1) ∈ 𝕀𝑛
by 𝟏. We will use the terms increasing to mean non-decreasing and decreasing to mean non-increasing.

Definition 2.1. Choose 𝑘 ∈ ℕ such that 𝑘 ∈ [𝑛]. Let 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝕀𝑛 and 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝕀𝑛 be two points.
A Cartesian product of 𝑛 closed intervals, i.e., a set of the form 

[
𝐱,𝐲

]
=
[
𝑥1, 𝑦1

]
×
[
𝑥2, 𝑦2

]
×⋯ ×

[
𝑥𝑛, 𝑦𝑛

]
will be called a 𝑘-box if

|{𝑖 ∈ [𝑛] ∣ 𝑥𝑖 < 𝑦𝑖}| = 𝑘 and |{𝑖 ∈ [𝑛] ∣ 𝑥𝑖 = 𝑦𝑖}| = 𝑛− 𝑘.

The vertices of a 𝑘-box 𝑅 =
[
𝐱,𝐲

]
will be denoted by ver𝑅 = ver

[
𝐱,𝐲

]
= {𝑥1, 𝑦1} × {𝑥2, 𝑦2} ×⋯ × {𝑥𝑛, 𝑦𝑛}.

Putting 𝑚 = |{𝑖 ∈ [𝑛] ∣ 𝑣𝑖 = 𝑥𝑖}|, the sign of a vertex 𝐯 of a 𝑘-box 𝑅 =
[
𝐱,𝐲

]
is defined by

sign𝑅(𝐯) = (−1)𝑚−(𝑛−𝑘).

The multiplicity of an arbitrary point 𝐮 ∈ 𝕀𝑛 with respect to a 𝑘-box 𝑅 is given by

𝑚𝑅(𝐮) =
{

sign𝑅(𝐮) if 𝐮 ∈ ver𝑅,
0 otherwise.

Note that, given a 𝑘-box 𝑅 =
[
𝐱,𝐲

]
, for each vertex 𝐯 we have 𝑛 − 𝑘 ⩽ 𝑚 ⩽ 𝑛. In particular, sign𝑅(𝐲) = 1, since 𝑚 = 𝑛 − 𝑘 in this 

case, and sign𝑅(𝐱) = (−1)𝑘, since 𝑚 = 𝑛.
We denote by R𝑘(𝕀𝑛) the set of all finite disjoint unions of 𝑘-boxes with vertices in 𝕀𝑛. This means that a typical element 𝐑 ∈ R𝑘(𝕀𝑛)
2

is of the form 𝐑 =
⨆𝑠

𝑗=1𝑅𝑗 , where {𝑅𝑗}𝑠𝑗=1 is an arbitrary finite family (multi-set) of 𝑘-boxes with vertices in 𝕀𝑛 and 
⨆

denotes 
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Fig. 1. Two examples of a disjoint union of 2-boxes in 𝕀3 (see Example 2.2).

the formal disjoint union. We extend the definition of the multiplicity of points from a 𝑘-box to a finite disjoint union of 𝑘-boxes 
𝐑 =

⨆𝑠
𝑗=1𝑅𝑗 by putting for each 𝐮 ∈ 𝕀𝑛

𝑚𝐑(𝐮) =
𝑠∑

𝑗=1
𝑚𝑅𝑗

(𝐮).

Observe that the disjoint unions here are formal disjoint unions, i.e., a priori the 𝑘-boxes 𝑅𝑗 need not be disjoint, we just treat them as 
such when calculating the multiplicities.

Example 2.2. Fig. 1 depicts two examples of disjoint unions of 2-boxes in 𝕀3. On the left we have a disjoint union of four 2-boxes, 
namely, 𝐴𝐵𝐿𝐾 , 𝐶𝐹𝐽𝐺, 𝑀𝑁𝑇𝑆 , and 𝑂𝑄𝑇𝑅. So this union is comprised of two overlapping pairs of boxes that are disconnected 
from each other. The multiplicity of the point 𝑇 is 2 since it is a vertex of two boxes with corresponding multiplicity 1. The points 𝐷, 
𝐸, 𝐼 , 𝐻 , and 𝑃 have multiplicity 0 because they are not vertices of any of the boxes. All other points have multiplicity −1 or 1. Note 
that this union can also be interpreted as a union of ten 2-boxes, namely, 𝐴𝐵𝐸𝐷, 𝐶𝐷𝐻𝐺, two copies of 𝐷𝐸𝐼𝐻 , 𝐸𝐹𝐽𝐼 , 𝐻𝐼𝐿𝐾 , 
𝑀𝑁𝑄𝑃 , 𝑂𝑃𝑆𝑅, and two copies of 𝑃𝑄𝑇𝑆 . The multiplicities of the points remain the same in this interpretation. This is always 
the case, because cutting a box into two has no affect on the multiplicities of its points (the multiplicities cancel where the cut is
made).

On the right we have a disjoint union of five 2-boxes, namely, 𝐴𝐵𝑀𝐾 , 𝐶𝐷𝐻𝐹 , 𝐷𝐻𝑁𝐼 , 𝐽𝐾𝑀𝐿, and 𝑀𝑁𝑃𝑂, two of them 
are crossing. Note that at some points the multiplicities are added, while at others they cancel. In particular, the point 𝑀 has 
multiplicity 3 and the point 𝐾 has multiplicity −2, while the points 𝐷, 𝐻 , and 𝑁 have multiplicity 0 due to cancellation. Furthermore, 
the points 𝐸 and 𝐺 have multiplicity 0 since they are no vertices. All other points have multiplicity −1 or 1.

For a 𝑘-box 𝑅 =
[
𝐱,𝐲

]
we have 𝑚𝑅(𝐮) ∈ {−1, 0, 1} for each 𝐮 ∈ 𝕀𝑛. Notice that this can also hold for a disjoint union of several 

𝑘-boxes; however, this is a very special case. In fact, the multiplicity of a point with respect to a finite disjoint union of 𝑘-boxes can 
be any integer, as the following lemma shows.

Lemma 2.3. Let 𝐱 ∈ 𝕀𝑛 be any point which is not a vertex of 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Then for every 𝑧 ∈ℤ there exists a finite disjoint 
union of 𝑘-boxes 𝐑 ∈ R𝑘(𝕀𝑛) such that 𝑚𝐑(𝐱) = 𝑧.

Proof. For 𝑧 = 0 the conclusion is obvious, so suppose that 𝑧 ≠ 0. Since 𝐱 is not a vertex of the unit cube 𝕀𝑛, there exists at least one 
coordinate of 𝐱 which equals neither 0 or 1, and without loss of generality we may assume 𝑥1 ∈ ]0,1[. For every 𝑗 ∈ [𝑘] ⧵ {1} put

𝑎𝑗 =

{
1 if 𝑥𝑗 = 0,
𝑥𝑗 if 𝑥𝑗 > 0,

and define the two 𝑘-boxes

𝑅′ =
[
(0,0,… ,0, 𝑥𝑘+1,… , 𝑥𝑛), (𝑥1, 𝑎2,… , 𝑎𝑘, 𝑥𝑘+1,… , 𝑥𝑛)

]
,

𝑅′′ =
[
(𝑥1,0,… ,0, 𝑥𝑘+1,… , 𝑥𝑛), (1, 𝑎2,… , 𝑎𝑘, 𝑥𝑘+1,… , 𝑥𝑛)

]
.

The point 𝐱 is a vertex of both 𝑅′ and 𝑅′′, so 𝑚𝑅′ (𝐱) ∈ {−1, 1} and, since they differ only in the first coordinate, 𝑚𝑅′′ (𝐱) = −𝑚𝑅′ (𝐱). 
If 𝑧 ⋅𝑚𝑅′ (𝐱) > 0 put 𝐑 =

⨆|𝑧|
𝑠=1𝑅

′, and 𝐑 =
⨆|𝑧|

𝑠=1𝑅
′′ otherwise. In both cases we have 𝑚𝐑(𝐱) = 𝑧. □
3

Definition 2.4. Let 𝑘 ∈ ℕ be such that 𝑘 ∈ [𝑛], and let 𝐴∶ 𝕀𝑛 → 𝕀 be an 𝑛-variate function. Then
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(i) 𝐴 is grounded if 𝐴(𝐱) = 0 whenever 𝑥𝑖 = 0 for some 𝑖 ∈ [𝑛];
(ii) 𝐴 has uniform marginals if 𝐴(1, … , 1, 𝑥𝑖, 1, … , 1) = 𝑥𝑖 for all 𝑥𝑖 ∈ 𝕀 and all 𝑖 ∈ [𝑛];

(iii) 𝐴 is 𝑘-increasing if for every 𝑘-box 𝑅 =
[
𝐱,𝐲

]
𝑉𝐴,𝑘(𝑅) ∶=

∑
𝐯∈ver𝑅

sign𝑅(𝐯)𝐴(𝐯) ⩾ 0.

Since the multiplicities of the vertices are additive, for a 𝑘-increasing function 𝐴∶ 𝕀𝑛 → 𝕀 we also have for any disjoint union of 
𝑘-boxes 𝐑 ∈ R𝑘(𝕀𝑛)

𝑉𝐴,𝑘(𝐑) =
∑

𝐯∈ver𝐑
𝑚𝐑(𝐯)𝐴(𝐯) ⩾ 0.

Note that a function 𝐴 is 1-increasing if and only if it is increasing in each variable. The following types of 1-increasing functions will 
be of special interest in our paper: standardized functions, semicopulas [13,14] and quasi-copulas [1–4,15] (for some category-related 
aspects see, e.g., [10]).

Definition 2.5. An 𝑛-variate function 𝐴∶ 𝕀𝑛 → 𝕀 is called

(i) standardized if it is grounded, 1-increasing, and satisfies 𝐴(𝟏) = 1,
(ii) a semicopula if it is grounded, 1-increasing, and has uniform marginals,

(iii) a quasi-copula if it is a 1-Lipschitz semicopula.

We remark that any nonzero, grounded, 1-increasing function 𝐴∶ 𝕀𝑛 → ℝ can be standardized by dividing it by 𝐴(𝟏). Next, we 
recall the definitions of avoidance of sure loss and coherence for pairs of bivariate standardized functions adjusted to the case of 
functions defined on 𝕀2.

Definition 2.6. ([33]) Let 𝐴, 𝐵∶ 𝕀2 → 𝕀 be standardized functions with 𝐴 ⩽𝐵.

(i) Given the pair (𝐴, 𝐵), we speak about avoidance of sure loss if there exists a 2-increasing function 𝐶 ∶ 𝕀2 → 𝕀 such that 𝐴 ⩽ 𝐶 ⩽𝐵.
(ii) The pair (𝐴, 𝐵) is coherent if

𝐴 = inf{𝐶 ∶ 𝕀2 → 𝕀 ∣ 𝐶 is 2-increasing, 𝐴 ⩽ 𝐶 ⩽𝐵} and 𝐵 = sup{𝐶 ∶ 𝕀2 → 𝕀 ∣ 𝐶 is 2-increasing, 𝐴 ⩽ 𝐶 ⩽𝐵}.

We remark that any 2-increasing function 𝐶 that satisfies 𝐴 ⩽ 𝐶 ⩽ 𝐵 is in fact a cumulative distribution function, since it 
is automatically grounded and satisfies 𝐶(1, 1) = 1. Pairs of standardized functions (𝐴, 𝐵) satisfying 𝐴 ⩽ 𝐵 are called bivariate 
probability boxes, see [32]. Bivariate probability boxes can be constructed using so-called imprecise copulas and marginal univariate 
probability boxes [32]. An imprecise copula is a pair of bivariate quasi-copulas (𝐴, 𝐵) satisfying 𝐴 ⩽ 𝐵. An imprecise copula avoids 
sure loss if and only if the interval between 𝐴 and 𝐵 contains a true copula, and it is coherent if and only if 𝐴 equals the infimum 
(and 𝐵 the supremum) of all copulas between 𝐴 and 𝐵.

Now we extend these definitions to 𝑛-variate standardized functions and 𝑘-increasing 𝑛-variate functions (coherence of pairs of 
𝑛-quasi-copulas in the case 𝑘 = 𝑛 was already considered in [31]).

Definition 2.7. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be standardized functions with 𝐴 ⩽𝐵 and 𝑘 ∈ [𝑛] ⧵ {1}.

(i) Given the pair (𝐴, 𝐵), we speak about 𝑘-avoidance of sure loss if there is a 𝑘-increasing function 𝐶 ∶ 𝕀𝑛 → 𝕀 such that 𝐴 ⩽ 𝐶 ⩽𝐵.
(ii) The pair (𝐴, 𝐵) is 𝑘-coherent if

𝐴 = inf{𝐶 ∶ 𝕀𝑛 → 𝕀 ∣ 𝐶 is 𝑘-increasing, 𝐴 ⩽ 𝐶 ⩽ 𝐵} and 𝐵 = sup{𝐶 ∶ 𝕀𝑛 → 𝕀 ∣ 𝐶 is 𝑘-increasing, 𝐴 ⩽ 𝐶 ⩽𝐵}.

The following lemma, though summarizing a very basic mathematical fact, will facilitate our arguments and improve the read-
ability of the proofs to come.

Lemma 2.8. Consider two 𝑛-variate functions 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 with 𝐴 ⩽ 𝐵 and fix some integer 𝑘 ∈ [𝑛]. For an arbitrary finite disjoint union 
of 𝑘-boxes 𝐑 ∈ R𝑘(𝕀𝑛) and an arbitrary 𝐲 ∈ 𝕀𝑛 the following holds:

max{𝑚𝐑(𝐲)𝐴(𝐲),𝑚𝐑(𝐲)𝐵(𝐲)} =𝑚𝐑(𝐲) ⋅
⎧⎪⎨𝐴(𝐲) if 𝑚𝐑(𝐲) < 0,
0 if 𝑚𝐑(𝐲) = 0,
4

⎪⎩𝐵(𝐲) if 𝑚𝐑(𝐲) > 0.
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Definition 2.9. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be two functions with 𝐴 ⩽𝐵 and define the function 𝐿(𝐴,𝐵)
𝑘

∶ R𝑘(𝕀𝑛) →ℝ by

𝐿(𝐴,𝐵)
𝑘

(𝐑) =
∑
𝐲∈𝕀𝑛

𝑚𝐑(𝐲)>0

𝑚𝐑(𝐲)𝐵(𝐲) +
∑
𝐲∈𝕀𝑛

𝑚𝐑(𝐲)<0

𝑚𝐑(𝐲)𝐴(𝐲).

Because of Lemma 2.8 we have for all 𝐑 ∈ R𝑘(𝕀𝑛)

𝐿(𝐴,𝐵)
𝑘

(𝐑) =
∑
𝐲∈𝕀𝑛

max{𝑚𝐑(𝐲)𝐴(𝐲),𝑚𝐑(𝐲)𝐵(𝐲)}. (2.1)

This is actually a finite sum since 𝑚𝐑(𝐲) ≠ 0 only for finitely many 𝐲 ∈ 𝕀𝑛. Note that for a disjoint union of 𝑘-boxes 𝐑 we have 
𝐿(𝐴,𝐴)
𝑘

(𝐑) = 𝑉𝐴,𝑘(𝐑), and thus the function 𝐴 is 𝑘-increasing if and only if 𝐿(𝐴,𝐴)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(𝕀𝑛).
Furthermore, define the functions 𝑃 (𝐴,𝐵)

M,𝑘
∶ 𝕀𝑛 →ℝ and 𝑃 (𝐴,𝐵)

O,𝑘 ∶ 𝕀𝑛 →ℝ by

𝑃 (𝐴,𝐵)
M,𝑘

(𝐱) = inf
𝐑∈R𝑘(𝕀𝑛)
𝑚𝐑(𝐱)>0

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐱)| and 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) = inf

𝐑∈R𝑘(𝕀𝑛)
𝑚𝐑(𝐱)<0

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐱)| .

Here we use the convention that the infimum of an empty set equals 0. We also define the functions 𝛾 (𝐴,𝐵)
𝑘

∶ 𝕀𝑛 →ℝ and 𝛿(𝐴,𝐵)
𝑘

∶ 𝕀𝑛 →ℝ
by, respectively,

𝛾 (𝐴,𝐵)
𝑘

(𝐱) = min{𝑃 (𝐴,𝐵)
O,𝑘 (𝐱),𝐵(𝐱) −𝐴(𝐱)} and 𝛿(𝐴,𝐵)

𝑘
(𝐱) = min{𝑃 (𝐴,𝐵)

M,𝑘
(𝐱),𝐵(𝐱) −𝐴(𝐱)}.

The intuition behind the functions defined above is as follows. The 𝑘-avoidance of sure loss for a pair (𝐴, 𝐵) of semicopulas will 
be equivalent to the function 𝐿(𝐴,𝐵)

𝑘
being non-negative on any disjoint union of 𝑘-boxes, see Theorem 3.2. Now suppose that the 

function 𝐿(𝐴,𝐵)
𝑘

is non-negative. The value 𝛾 (𝐴,𝐵)
𝑘

(𝐱) tells us at most how much we can increase the value of the function 𝐴 at a single 
point 𝐱 so that after the change the function 𝐿(𝐴,𝐵)

𝑘
remains non-negative, see Proposition 4.1. Similarly, the value 𝛿(𝐴,𝐵)

𝑘
(𝐱) tells us 

at most how much we can decrease the value of the function 𝐵 at a point 𝐱 so that after the change the function 𝐿(𝐴,𝐵)
𝑘

remains 
non-negative, see Proposition 5.1.

Definition 2.10. Let 𝛿1, 𝛿2, … , 𝛿𝑛 be subsets of 𝕀 containing both 0 and 1, and put D =
∏𝑛

𝑖=1 𝛿𝑖 ⊆ 𝕀𝑛. If each set 𝛿𝑖 is countably infinite 
and dense in 𝕀 then also D is countably infinite and dense in 𝕀𝑛. We call such a D a dense countably infinite mesh in 𝕀𝑛.

Note that a dense countably infinite mesh D contains the points 𝟎 and 𝟏. We define a version of the functions 𝑃 (𝐴,𝐵)
M,𝑘

, 𝑃 (𝐴,𝐵)
O,𝑘 , 

𝛾 (𝐴,𝐵)
𝑘

, and 𝛿(𝐴,𝐵)
𝑘

for functions 𝐴, 𝐵 defined on a mesh D as follows. Let R𝑘(D) be the set of all finite disjoint unions of 𝑘-boxes 
with vertices in D and let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽𝐵. Then the functions 𝑃 (𝐴,𝐵)

M,𝑘,D
, 𝑃 (𝐴,𝐵)

O,𝑘,D , 𝛾 (𝐴,𝐵)
𝑘,D

and 𝛿(𝐴,𝐵)
𝑘,D

all map from D
into ℝ and are defined by, respectively,

𝑃 (𝐴,𝐵)
M,𝑘,D

(𝐝) = inf
𝐑∈R𝑘(D)
𝑚𝐑(𝐝)>0

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐝)| , 𝑃 (𝐴,𝐵)
O,𝑘,D (𝐝) = inf

𝐑∈R𝑘(D)
𝑚𝐑(𝐝)<0

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐝)| ,

𝛾 (𝐴,𝐵)
𝑘,D

(𝐝) = min{𝑃 (𝐴,𝐵)
O,𝑘,D (𝐝),𝐵(𝐝) −𝐴(𝐝)}, 𝛿(𝐴,𝐵)

𝑘,D
(𝐝) = min{𝑃 (𝐴,𝐵)

M,𝑘,D
(𝐝),𝐵(𝐝) −𝐴(𝐝)}.

If the point 𝐱 from Lemma 2.3 belongs to D , then the disjoint union of 𝑘-boxes 𝐑 can be chosen from R𝑘(D). Furthermore, Lemma 2.8
is valid also if the functions 𝐴, 𝐵 are defined on D only and 𝐲 ∈ D , in which case we have for all 𝐑 ∈ R𝑘(D)

𝐿(𝐴,𝐵)
𝑘

(𝐑) =
∑
𝐝∈D

max{𝑚𝐑(𝐝)𝐴(𝐝),𝑚𝐑(𝐝)𝐵(𝐝)}.

2.2. Bounds for 𝑃 (𝐴,𝐵)
O,𝑘 and 𝑃 (𝐴,𝐵)

M,𝑘

Proposition 2.11. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐵
and 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Furthermore, assume that 𝐴(𝐯) =𝐵(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛. Then for each 𝐱 ∈ D

𝑃 (𝐴,𝐵)
O,𝑘,D (𝐱) + 𝑃 (𝐴,𝐵)

M,𝑘,D
(𝐱) ⩾ 𝐵(𝐱) −𝐴(𝐱).

Proof. If 𝐱 is a vertex of the unit cube 𝕀𝑛 then the claim holds, since the right-hand side of the inequality equals 0. So fix 𝐱 ∈ D

which is not a vertex of the unit cube 𝕀𝑛. By Lemma 2.3 there exist some 𝐑1, 𝐑2 ∈ R𝑘(D) with 𝑚𝐑1
(𝐱) < 0 and 𝑚𝐑2

(𝐱) > 0 which can 
5

be used to define a new disjoint union of 𝑘-boxes 𝐑3 by
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𝐑3 =
⎛⎜⎜⎝
|𝑚𝐑2 (𝐱)|⨆

𝑡=1
𝐑1

⎞⎟⎟⎠
⨆⎛⎜⎜⎝

|𝑚𝐑1 (𝐱)|⨆
𝑡=1

𝐑2

⎞⎟⎟⎠ ,
i.e., 𝐑3 consists of |𝑚𝐑2

(𝐱)| copies of 𝐑1 and |𝑚𝐑1
(𝐱)| copies of 𝐑2. We want to show that

𝐿(𝐴,𝐵)
𝑘

(𝐑1)|𝑚𝐑1
(𝐱)| +

𝐿(𝐴,𝐵)
𝑘

(𝐑2)|𝑚𝐑2
(𝐱)| ⩾𝐵(𝐱) −𝐴(𝐱) +

𝐿(𝐴,𝐵)
𝑘

(𝐑3)|𝑚𝐑1
(𝐱)| ⋅ |𝑚𝐑2

(𝐱)| . (2.2)

Inequality (2.2) is equivalent to

|𝑚𝐑2
(𝐱)| ⋅𝐿(𝐴,𝐵)

𝑘
(𝐑1) + |𝑚𝐑1

(𝐱)| ⋅𝐿(𝐴,𝐵)
𝑘

(𝐑2) ⩾ |𝑚𝐑1
(𝐱)| ⋅ |𝑚𝐑2

(𝐱)| ⋅ (𝐵(𝐱) −𝐴(𝐱)) +𝐿(𝐴,𝐵)
𝑘

(𝐑3), (2.3)

which in turn can be rewritten into

|𝑚𝐑2
(𝐱)| ⋅ ∑

𝐝∈D

max
{
𝑚𝐑1

(𝐝)𝐴(𝐝),𝑚𝐑1
(𝐝)𝐵(𝐝)

}
+ |𝑚𝐑1

(𝐱)| ⋅ ∑
𝐝∈D

max
{
𝑚𝐑2

(𝐝)𝐴(𝐝),𝑚𝐑2
(𝐝)𝐵(𝐝)

}
⩾ |𝑚𝐑1

(𝐱)| ⋅ |𝑚𝐑2
(𝐱)| ⋅ (𝐵(𝐱) −𝐴(𝐱)) +

∑
𝐝∈D

max
{
𝑚𝐑3

(𝐝)𝐴(𝐝),𝑚𝐑3
(𝐝)𝐵(𝐝)

}
.

We shall investigate the contribution of each 𝐝 ∈ D to both sides of the inequality (2.3) by distinguishing the two cases (1) 𝐝 = 𝐱, 
and (2) 𝐝 ≠ 𝐱. Note that the term |𝑚𝐑1

(𝐱)| ⋅ |𝑚𝐑2
(𝐱)| ⋅ (𝐵(𝐱) −𝐴(𝐱)) contains the point 𝐱, so it needs to be considered only in case (1).

Case 1: 𝐝 = 𝐱. Since 𝑚𝐑1
(𝐱) < 0 and 𝑚𝐑2

(𝐱) > 0, its contribution to the left-hand side of (2.3) is

|𝑚𝐑2
(𝐱)| ⋅𝑚𝐑1

(𝐱) ⋅𝐴(𝐱) + |𝑚𝐑1
(𝐱)| ⋅𝑚𝐑2

(𝐱) ⋅𝐵(𝐱) = |𝑚𝐑1
(𝐱)| ⋅ |𝑚𝐑2

(𝐱)| ⋅ (𝐵(𝐱) −𝐴(𝐱)).

Since 𝑚𝐑3
(𝐱) = |𝑚𝐑2

(𝐱)| ⋅𝑚𝐑1
(𝐱) + |𝑚𝐑1

(𝐱)| ⋅𝑚𝐑2
(𝐱) = 0, the term |𝑚𝐑1

(𝐱)| ⋅ |𝑚𝐑2
(𝐱)| ⋅ (𝐵(𝐱) −𝐴(𝐱)) also equals its contribution to the 

right-hand side of (2.3), implying that the inequality holds.
Case 2: 𝐝 ≠ 𝐱. Since |𝑚𝐑2

(𝐱)| ⋅ 𝑚𝐑1
(𝐝) + |𝑚𝐑1

(𝐱)| ⋅ 𝑚𝐑2
(𝐝) = 𝑚𝐑3

(𝐝), for the contribution of 𝐝 to the left-hand side of (2.3) we 
obtain the following lower bound

|𝑚𝐑2
(𝐱)| ⋅max

{
𝑚𝐑1

(𝐝)𝐴(𝐝),𝑚𝐑1
(𝐝)𝐵(𝐝)

}
+ |𝑚𝐑1

(𝐱)| ⋅max
{
𝑚𝐑2

(𝐝)𝐴(𝐝),𝑚𝐑2
(𝐝)𝐵(𝐝)

}
⩾max

{|𝑚𝐑2
(𝐱)| ⋅𝑚𝐑1

(𝐝) ⋅𝐴(𝐝) + |𝑚𝐑1
(𝐱)| ⋅𝑚𝐑2

(𝐝) ⋅𝐴(𝐝), |𝑚𝐑2
(𝐱)| ⋅𝑚𝐑1

(𝐝) ⋅𝐵(𝐝) + |𝑚𝐑1
(𝐱)| ⋅𝑚𝐑2

(𝐝) ⋅𝐵(𝐝)
}

=max
{
𝑚𝐑3

(𝐝)𝐴(𝐝),𝑚𝐑3
(𝐝)𝐵(𝐝)

}
,

equaling the contribution of 𝐝 to the right-hand side of (2.3). Thus, inequality (2.2) is verified. The last term of inequality (2.2) is 
non-negative by assumption, so it follows that

𝐿(𝐴,𝐵)
𝑘

(𝐑1)|𝑚𝐑1
(𝐱)| +

𝐿(𝐴,𝐵)
𝑘

(𝐑2)|𝑚𝐑2
(𝐱)| ⩾𝐵(𝐱) −𝐴(𝐱).

In order to obtain the desired result it suffices to take the infimum over all 𝐑1 ∈ R𝑘(D) with 𝑚𝐑1
(𝐱) < 0, on the one hand, and the 

infimum over all 𝐑2 ∈ R𝑘(D) with 𝑚𝐑2
(𝐱) > 0, on the other hand. □

Lemma 2.12. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be semicopulas with 𝐴 ⩽𝐵 and fix some integer 𝑘 ∈ [𝑛].

(i) If 𝐵 is continuous then for all 𝐱 ∈ 𝕀𝑛 ∶ 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) ⩽ 𝐵(𝐱) −𝐴(𝐱).

(ii) If 𝐴 is continuous then for all 𝐱 ∈ 𝕀𝑛 ∶ 𝑃 (𝐴,𝐵)
M,𝑘

(𝐱) ⩽ 𝐵(𝐱) −𝐴(𝐱).

Proof. First assume that 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ ]0,1]𝑛 and that 𝐵 is continuous. If 𝐱 = 𝟏, then the set {𝐑 ∈ R𝑘(𝕀𝑛) ∣ 𝑚𝐑(𝐱) < 0} is empty, 
𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) = 0 by definition, and the first inequality holds. If 𝐱 ≠ 𝟏, there exists 𝑥𝑖 < 1. By permuting the coordinates, we may 

assume without loss of generality that 𝑥1 < 1. Choose an 𝜀 such that 0 < 𝜀 ⩽ 1 − 𝑥1 and denote 𝐱′ = (𝑥1, 0, … , 0, 𝑥𝑘+1, … , 𝑥𝑛) and 
𝐱′′ = (𝑥1 + 𝜀, 𝑥2, … , 𝑥𝑘, 𝑥𝑘+1, … , 𝑥𝑛). Then 𝑅1 =

[
𝐱′,𝐱′′

]
is a 𝑘-box with 𝑚𝑅′ (𝐱) = −1 and

𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) ⩽𝐿(𝐴,𝐵)

𝑘
(𝑅1) = 𝐵(𝐱′′) −𝐴(𝐱),

since all other vertices of 𝑅1 have at least one coordinate which equals 0. Sending 𝜀 to 0 and using the continuity of 𝐵 gives the first 
inequality for the point 𝐱.

Next assume that 𝐱 ∈ ]0,1]𝑛 and that 𝐴 is continuous. Choose an 𝜀 such that 0 < 𝜀 ⩽ 𝑥1 and put 𝐱′ = (𝑥1 − 𝜀, 0, … , 0, 𝑥𝑘+1, … , 𝑥𝑛)
and 𝐱′′ = (𝑥1 − 𝜀, 𝑥2, … , 𝑥𝑘, 𝑥𝑘+1, … , 𝑥𝑛). Then 𝑅2 =

[
𝐱′,𝐱

]
is a 𝑘-box with 𝑚𝑅2

(𝐱) = 1, 𝑚𝑅2
(𝐱′′) = −1, and

𝑃 (𝐴,𝐵)
M,𝑘

(𝐱) ⩽𝐿(𝐴,𝐵)
𝑘

(𝑅2) = 𝐵(𝐱) −𝐴(𝐱′′).
6

Again, by sending 𝜀 to 0 and using the continuity of 𝐴 we obtain the second inequality for the point 𝐱.
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Fig. 2. Graph of a function which does not satisfy Condition S (left) and a function which satisfies Condition S with 𝑆 = { 1
3
, 2
3
} (right).

Now assume that 𝐱 ∈ 𝕀𝑛 ⧵ ]0,1]𝑛, so at least one coordinate 𝑥𝑖 of 𝐱 equals 0, implying that 𝐵(𝐱) −𝐴(𝐱) = 0. We need to prove that 
𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) = 𝑃 (𝐴,𝐵)

M,𝑘
(𝐱) = 0. We will do this without using any continuity of 𝐴 or 𝐵, so the same reasoning will work for both cases. 

Choose an 𝜀 > 0. If the set {𝐑 ∈ R𝑘(𝕀𝑛) ∣ 𝑚𝐑(𝐱) < 0} is empty then 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) = 0 by definition. If it is non-empty then there exists a 

𝑘-box 𝑅3 =
[
𝐱′,𝐱′′

]
with 𝑚𝑅3

(𝐱) = −1 such that 𝐱′ = (𝑥′1, … , 𝑥′𝑛), 𝐱
′′ = (𝑥′′1 , … , 𝑥′′𝑛 ) and 𝑥′′𝑗 − 𝑥′𝑗 ⩽ 𝜀 for all 𝑗 ∈ [𝑛]. We have

𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) ⩽𝐿(𝐴,𝐵)

𝑘
(𝑅3) =

∑
𝐲∈𝕀𝑛

𝑚𝑅3 (𝐲)=1

𝐵(𝐲) −
∑
𝐲∈𝕀𝑛

𝑚𝑅3 (𝐲)=−1

𝐴(𝐲) ⩽
∑
𝐲∈𝕀𝑛

𝑚𝑅3 (𝐲)=1

𝐵(𝐲) ⩽
∑

𝐲∈ver𝑅3

𝐵(𝐲).

Since 𝑥𝑖 = 0 we have 𝑥′′𝑖 ⩽ 𝜀, so 𝑦𝑖 ⩽ 𝜀 for every 𝐲 = (𝑦1, … , 𝑦𝑛) ∈ ver𝑅3. This means that 𝐵(𝐲) ⩽ 𝐵(1, … , 1, 𝑦𝑖, 1, … , 1) = 𝑦𝑖 ⩽ 𝜀

since 𝐵 is a semicopula. It follows that 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) ⩽ 2𝑘𝜀, and sending 𝜀 to 0 gives 𝑃 (𝐴,𝐵)

O,𝑘 (𝐱) = 0. The equality 𝑃 (𝐴,𝐵)
M,𝑘

(𝐱) = 0 is shown 
similarly. □

3. Main theorems

In this section we formulate our main results, the proofs of which will be given in Section 7. These results give characterizations 
of pairs (𝐴, 𝐵) of standardized functions and semicopulas such that we have 𝑘-avoidance of sure loss (see Definition 2.7). Our results 
extend the ALGEN method to the setting of standardized functions and semicopulas for any 𝑘 ∈ [𝑛]. The acronym ALGEN stands 
for Algebraic Obstacles in the Geometry of Negative Volumes. It is a method for constructing a copula lying between two given 
quasi-copulas 𝐴 and 𝐵 with 𝐴 ⩽ 𝐵, if it exists. For more details on the method see [30, Appendix A]. In order to state our main 
results we first introduce the following notion.

Condition S. A function 𝐴∶ 𝕀𝑛 → 𝕀 satisfies Condition S if there exists a countable set 𝑆 ⊆ 𝕀 such that for every 𝐮 ∈ 𝕀𝑛 and every 
𝑖 ∈ [𝑛] the set of discontinuities of the section 𝑡 ⟼𝐴(𝑢1, … , 𝑢𝑖−1, 𝑡, 𝑢𝑖+1, … , 𝑢𝑛) is contained in 𝑆 .

Note that each section 𝑡 ⟼𝐴(𝑢1, … , 𝑢𝑖−1, 𝑡, 𝑢𝑖+1, … , 𝑢𝑛) of a 1-increasing function 𝐴∶ 𝕀𝑛 → 𝕀 has countably many discontinuities. 
Condition S requires that for each section its set of discontinuities is contained in a common countable set 𝑆 . Examples of functions 
that do respectively do not satisfy Condition S are depicted in Fig. 2. Here is our first main result.

Theorem 3.1. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be standardized functions with 𝐴 ⩽ 𝐵 and fix some integer 𝑘 ∈ [𝑛]. Suppose that at least one of the functions 
𝐴 and 𝐵 satisfies Condition S for a set 𝑆 ⊆ 𝕀. Then the following statements are equivalent:

(i) There exists a 𝑘-increasing 𝑛-variate function 𝐶 ∶ 𝕀𝑛 → 𝕀 such that 𝐴 ⩽ 𝐶 ⩽𝐵.

(ii) For all 𝐑 ∈ R𝑘(𝕀𝑛) ∶ 𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0.

Note that whenever D ⊆ 𝕀𝑛 is a countably infinite mesh then the assertion (ii) of Theorem 3.1 implies that 𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0 for all 
𝐑 ∈ R𝑘(D). In the framework of semicopulas, Theorem 3.1 can be strengthened by omitting Condition S.

Theorem 3.2. Consider two 𝑛-variate semicopulas 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 with 𝐴 ⩽𝐵 and fix some integer 𝑘 ∈ [𝑛]. Then the following statements are 
equivalent:

(i) There exists a 𝑘-increasing 𝑛-variate semicopula 𝐶 ∶ 𝕀𝑛 → 𝕀 such that 𝐴 ⩽ 𝐶 ⩽𝐵.
7

(ii) For all 𝐑 ∈ R𝑘(𝕀𝑛) ∶ 𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0.
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4. Construction of 𝑪 from below and discussion of its properties

4.1. Constructing 𝐶 from below

We will construct the function 𝐶 first on a dense countably infinite mesh D . This will be done by raising the values of the function 
𝐴 point by point. The first proposition describes how this is done at a single point.

Proposition 4.1. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐵
and 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Fix a point 𝐱 ∈ D and define the function 𝐴′ ∶ D → 𝕀 by

𝐴′(𝐮) =
{

𝐴(𝐮) if 𝐮 ≠ 𝐱,
𝐴(𝐱) + 𝛾 (𝐴,𝐵)

𝑘,D
(𝐱) if 𝐮 = 𝐱.

Then it follows that 𝐴 ⩽𝐴′ ⩽𝐵, that the pair (𝐴′, 𝐵) satisfies the condition 𝐿(𝐴′ ,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D), and that 𝛾 (𝐴
′ ,𝐵)

𝑘,D
(𝐱) = 0.

Proof. If 𝐮 ≠ 𝐱 then 𝐴′(𝐮) =𝐴(𝐮) ⩽𝐵(𝐮) and, by definition of 𝛾 (𝐴,𝐵)
𝑘,D

,

𝐴′(𝐱) =𝐴(𝐱) + 𝛾 (𝐴,𝐵)
𝑘,D

(𝐱) ⩽𝐴(𝐱) +𝐵(𝐱) −𝐴(𝐱) = 𝐵(𝐱).

If 𝐑 ∈ R𝑘(D) with 𝑚𝐑(𝐱) ⩾ 0 then 𝐿(𝐴′ ,𝐵)
𝑘

(𝐑) =𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0. If 𝐑 ∈ R𝑘(D) with 𝑚𝐑(𝐱) < 0 then

𝐿(𝐴′ ,𝐵)
𝑘

(𝐑) =𝐿(𝐴,𝐵)
𝑘

(𝐑) −𝑚𝐑(𝐱)𝐴(𝐱) +𝑚𝐑(𝐱)𝐴′(𝐱) =𝐿(𝐴,𝐵)
𝑘

(𝐑) +𝑚𝐑(𝐱)𝛾
(𝐴,𝐵)
𝑘,D

(𝐱), (4.1)

implying

𝛾 (𝐴,𝐵)
𝑘,D

(𝐱) ⩽ 𝑃 (𝐴,𝐵)
O,𝑘,D (𝐱) ⩽

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐱)| = −
𝐿(𝐴,𝐵)
𝑘

(𝐑)
𝑚𝐑(𝐱)

.

Since 𝑚𝐑(𝐱) < 0 it follows that 𝑚𝐑(𝐱)𝛾
(𝐴,𝐵)
𝑘,D

(𝐱) ⩾ −𝐿(𝐴,𝐵)
𝑘

(𝐑), and thus again 𝐿(𝐴′ ,𝐵)
𝑘

(𝐑) ⩾ 0. To verify 𝛾 (𝐴
′ ,𝐵)

𝑘,D
(𝐱) = 0 we

compute

𝑃 (𝐴′ ,𝐵)
O,𝑘,D (𝐱) = inf

𝐑∈R𝑘(D)
𝑚𝐑(𝐱)<0

𝐿(𝐴′ ,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐱)| = inf
𝐑∈R𝑘(D)
𝑚𝐑(𝐱)<0

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐱)| − 𝛾 (𝐴,𝐵)
𝑘,D

(𝐱) = 𝑃 (𝐴,𝐵)
O,𝑘,D (𝐱) − 𝛾 (𝐴,𝐵)

𝑘,D
(𝐱)

by (4.1). Note that we may use (4.1) since the infimum is taken over disjoint unions of 𝑘-boxes 𝐑 with 𝑚𝐑(𝐱) < 0 only. Finally,

𝛾 (𝐴
′ ,𝐵)

𝑘,D
(𝐱) = min{𝑃 (𝐴′ ,𝐵)

O,𝑘,D (𝐱),𝐵(𝐱) −𝐴′(𝐱)} = min{𝑃 (𝐴,𝐵)
O,𝑘,D (𝐱) − 𝛾 (𝐴,𝐵)

𝑘,D
(𝐱),𝐵(𝐱) −𝐴(𝐱) − 𝛾 (𝐴,𝐵)

𝑘,D
(𝐱)} = 𝛾 (𝐴,𝐵)

𝑘,D
(𝐱) − 𝛾 (𝐴,𝐵)

𝑘,D
(𝐱) = 0. □

In the following proposition we construct 𝐶 as a pointwise limit of an increasing sequence of functions 𝐴(𝑖) obtained
from 𝐴.

Proposition 4.2. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐵
and 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Then there exists a function 𝐶 ∶ D → 𝕀 such that

(i) 𝐴 ⩽ 𝐶 ⩽𝐵 on D ,

(ii) 𝛾 (𝐶,𝐵)
𝑘,D

(𝐝) = 0 for all 𝐝 ∈ D ,

(iii) 𝐿(𝐶,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D).

Proof. Since D is countable we can arrange the elements of D into a sequence (𝐝𝑖)𝑖∈ℕ. We recursively define a sequence of functions 
𝐴(𝑖) ∶ D → 𝕀 putting 𝐴(0) =𝐴 and, for 𝑖 ⩾ 1,

𝐴(𝑖)(𝐝) =
{

𝐴(𝑖−1)(𝐝) if 𝐝 ≠ 𝐝𝑖,
𝐴(𝑖−1)(𝐝𝑖) + 𝛾 (𝐴

(𝑖−1) ,𝐵)
𝑘,D

(𝐝𝑖) if 𝐝 = 𝐝𝑖.
(4.2)

The definition of 𝐴(𝑖) and Proposition 4.1, imply 𝐴 ⩽𝐴(1) ⩽𝐴(2) ⩽⋯ ⩽𝐴(𝑖−1) ⩽𝐴(𝑖) ⩽ ⋯ and 𝐴(𝑖) ⩽𝐵. Using Proposition 4.1, we also 
have 𝛾 (𝐴

(𝑖) ,𝐵)
𝑘,D

(𝐝𝑖) = 0 for all 𝑖 ∈ ℕ and 𝐿(𝐴(𝑖) ,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). It follows that 𝛾 (𝐴,𝐵)
𝑘,D

(𝐝) ⩾ 𝛾 (𝐴
(1),𝐵)

𝑘,D
(𝐝) ⩾⋯ ⩾ 𝛾 (𝐴

(𝑖) ,𝐵)
𝑘,D

(𝐝) ⩾⋯

for all 𝐝 ∈ D . Hence, 𝛾 (𝐴
(𝑖),𝐵)

𝑘,D
(𝐝𝑗 ) = 0 for all 𝑖 ⩾ 𝑗.

Now, let 𝐶 be the pointwise limit of the sequence (𝐴(𝑖))𝑖∈ℕ. The limit exists since at each 𝐝 ∈ D the sequence of numbers 
8

(𝐴(𝑖)(𝐝))𝑖∈ℕ is increasing and bounded. It immediately follows that
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(i) 𝐴 ⩽ 𝐶 ⩽ 𝐵 on D ;
(ii) 𝛾 (𝐶,𝐵)

𝑘,D
(𝐝𝑗 ) = 0 for all 𝑗 ∈ℕ;

(iii) 𝐿(𝐶,𝐵)
𝑘

(𝐑) = lim𝑖→∞𝐿(𝐴(𝑖) ,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D);

where (iii) holds because there are only finitely many points 𝐝 ∈ D with 𝑚𝐑(𝐝) ≠ 0, thus completing the proof. □

4.2. On the 𝑘-increasingness of 𝐶

We have so far shown that for two 𝑛-variate functions 𝐴, 𝐵∶ D → 𝕀 on a dense countably infinite mesh D ⊆ 𝕀𝑛 with 𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0
for all 𝐑 ∈ R𝑘(D) we may obtain another function 𝐶 ∶ D → 𝕀𝑛 as the pointwise limit of a sequence of functions (𝐴(𝑖))𝑖∈ℕ as given 
by (4.2).

We shall show that the function 𝐶 obtained in this way is 𝑘-increasing, i.e., fulfills 𝐿(𝐶,𝐶)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Before doing 
so, let us first look at the consequences a violation of the 𝑘-increasingness for 𝐶 would have.

Without loss of generality we may assume that the 𝑘-increasingness is violated for a 𝑘-box 𝑅∗ ∈ R𝑘(D), i.e., 𝐿(𝐶,𝐶)
𝑘

(𝑅∗) < 0. Note 
that the 𝑘-box 𝑅∗ has exactly 2𝑘 vertices, half of them with positive multiplicities. We shall denote these vertices by 𝐱𝑖, i.e., for each 
𝑖 ∈ [2𝑘−1] we have

𝐱𝑖 ∈ ver𝑅∗ and 𝑚𝑅∗ (𝐱𝑖) = 1. (4.3)

The following lemma illustrates that for a subset thereof the values of 𝐵 and 𝐶 differ and give rise to the existence of a disjoint union 
of 𝑘-boxes with respect to which the vertex has a negative multiplicity.

Lemma 4.3. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐵, 𝐶 ∶ D → 𝕀 be functions with 𝐶 ⩽ 𝐵, 
𝐿(𝐶,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D), and 𝛾 (𝐶,𝐵)
𝑘,D

(𝐝) = 0 for all 𝐝 ∈ D . Furthermore, assume that 𝐶(𝐯) = 𝐵(𝐯) for all vertices 𝐯 of the unit cube 
𝕀𝑛 and that there exists a 𝑘-box 𝑅∗ ∈ R𝑘(D) with

𝐿(𝐶,𝐶)
𝑘

(𝑅∗) = 𝑣 < 0. (4.4)

Then there exists 𝑠 ∈ [2𝑘−1] such that for each 𝑖 ∈ [𝑠] there exist a vertex 𝐱𝑖 ∈ ver𝑅∗ and a finite disjoint union of 𝑘-boxes 𝐑𝑖 ∈ R𝑘(D) with

𝐶(𝐱𝑖) < 𝐵(𝐱𝑖), 𝑚𝑅∗ (𝐱𝑖) = 1, 𝑚𝐑𝑖
(𝐱𝑖) < 0 and

𝐿(𝐶,𝐵)
𝑘

(𝐑𝑖)|𝑚𝐑𝑖
(𝐱𝑖)| <

|𝑣|
𝑠
. (4.5)

For all other 𝐱𝑖 ∈ ver𝑅∗ with 𝑚𝑅∗ (𝐱𝑖) = 1 it holds that 𝐶(𝐱𝑖) = 𝐵(𝐱𝑖).

Proof. Let 𝑅∗ ∈ R𝑘(D) be a 𝑘-box with 𝐿(𝐶,𝐶)
𝑘

(𝑅∗) = 𝑣 < 0, and denote by 𝐱𝑖 its vertices with positive multiplicity, i.e., for each 
𝑖 ∈ [2𝑘−1] we have 𝐱𝑖 ∈ ver𝑅∗ and 𝑚𝑅∗ (𝐱𝑖) = 1 (as in (4.3)).

Since 𝛾 (𝐶,𝐵)
𝑘,D

(𝐝) =min{𝑃 (𝐶,𝐵)
O,𝑘,D (𝐝), 𝐵(𝐝) −𝐶(𝐝)} = 0 for all 𝐝 ∈ D , this holds in particular also for all 𝐱𝑖. Assuming 𝐵(𝐱𝑖) −𝐶(𝐱𝑖) = 0

for all vertices 𝐱𝑖 with 𝑖 ∈ [2𝑘−1] leads, on the basis of the assumptions for 𝐶 (compare also Proposition 4.2 (iii)), to the contradiction

0 ⩽𝐿(𝐶,𝐵)
𝑘

(𝑅∗) =𝐿(𝐶,𝐶)
𝑘

(𝑅∗) < 0.

We may therefore assume that (after a possible rearrangement of the vertices) there exists 𝑠 ∈ [2𝑘−1] such that

𝛾 (𝐶,𝐵)
𝑘,D

(𝐱𝑖) =
{

𝑃 (𝐶,𝐵)
O,𝑘,D (𝐱𝑖) = 0 < 𝐵(𝐱𝑖) −𝐶(𝐱𝑖) if 𝑖 ∈ [𝑠],

𝐵(𝐱𝑖) −𝐶(𝐱𝑖) = 0 if 𝑖 ∈ [2𝑘−1] ⧵ [𝑠].
(4.6)

Since for each 𝑖 ∈ [𝑠] we have 𝐵(𝐱𝑖) > 𝐶(𝐱𝑖), the point 𝐱𝑖 is not a vertex of the unit cube 𝕀𝑛, and by Lemma 2.3 there exists an 
𝐑′
𝑖 ∈ R𝑘(D) with 𝑚𝐑′

𝑖
(𝐱𝑖) < 0. Since, for all 𝐝 ∈ D , the function 𝑃 (𝐶,𝐵)

O,𝑘,D is given by

𝑃 (𝐶,𝐵)
O,𝑘,D (𝐝) = inf

𝐑∈R𝑘(D),
𝑚𝐑(𝐝)<0

𝐿(𝐶,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐝)| ,

we can further conclude that, for each 𝑖 ∈ [𝑠], the infimum for 𝑃 (𝐶,𝐵)
O,𝑘,D (𝐱𝑖) is not taken over the empty set, implying that there exists 

an 𝐑𝑖 ∈ R𝑘(D) with

𝑚𝐑𝑖
(𝐱𝑖) < 0 and

𝐿(𝐶,𝐵)
𝑘

(𝐑𝑖)|𝑚𝐑𝑖
(𝐱𝑖)| <

|𝑣|
𝑠

9

while 𝑚𝑅∗ (𝐱𝑖) = 1 for 𝑖 ∈ [𝑠] is trivially fulfilled. □
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Under the assumptions of Lemma 4.3 we obtain 𝐑𝑖 ∈ R𝑘(D) with 𝑖 ∈ [𝑠] for some 𝑠 ∈ [2𝑘−1], from which additional finite disjoint 
unions of 𝑘-boxes �̂� and �̂�𝑖 can be constructed. Taking into account that each corresponding vertex 𝐱𝑖 ∈ ver𝑅∗ fulfills (4.5), and in 
particular also 𝐶(𝐱𝑖) < 𝐵(𝐱𝑖) for all 𝑖 ∈ [𝑠], we define the following additional disjoint unions of 𝑘-boxes putting, for 𝑖 ∈ [𝑠],

𝑚 = |𝑚𝐑1
(𝐱1)| ⋅… ⋅ |𝑚𝐑𝑠

(𝐱𝑠)| and 𝑚𝑖 =
𝑚|𝑚𝐑𝑖
(𝐱𝑖)| ,

�̂� =

(
𝑚⨆
𝑡=1

𝑅∗

)
⊔

(
𝑚1⨆
𝑡=1

𝐑1

)
⊔⋯ ⊔

(𝑚𝑠⨆
𝑡=1

𝐑𝑠

)
=

(
𝑚⨆
𝑡=1

𝑅∗

)
⊔

(
𝑠⨆

𝑙=1

( 𝑚𝑙⨆
𝑡=1

𝐑𝑙

))
, (4.7)

�̂�𝑖 =

(
𝑚⨆
𝑡=1

𝑅∗

)
⊔

⎛⎜⎜⎜⎝
𝑠⨆

𝑙=1
𝑙≠𝑖

( 𝑚𝑙⨆
𝑡=1

𝐑𝑙

)⎞⎟⎟⎟⎠ . (4.8)

For every 𝐝 ∈ D , the multiplicities with respect to �̂� and �̂�𝑖, for 𝑖 ∈ [𝑠], can be evaluated as

𝑚�̂�(𝐝) =𝑚 ⋅𝑚𝑅∗ (𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐝) and 𝑚�̂�𝑖
(𝐝) =𝑚 ⋅𝑚𝑅∗ (𝐝) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐝), (4.9)

respectively. In particular, for each vertex 𝐱𝑖 of the 𝑘-box 𝑅∗ with 𝑚𝑅∗ (𝐱𝑖) = 1 and 𝑖 ∈ [𝑠] we obtain the following equalities:

𝑚�̂�(𝐱𝑖) =𝑚 ⋅𝑚𝑅∗ (𝐱𝑖)
⏟⏟⏟

=1

+
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐱𝑖) =𝑚+

=−𝑚
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑚𝑖 ⋅𝑚𝐑𝑖

(𝐱𝑖)
⏟⏟⏟

<0

+
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐱𝑖) =
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐱𝑖)

𝑚�̂�𝑖
(𝐱𝑖) =𝑚 ⋅𝑚𝑅∗ (𝐱𝑖) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐱𝑖) =𝑚+𝑚�̂�(𝐱𝑖). (4.10)

Having disjoint unions of 𝑘-boxes �̂� and �̂�𝑖 for 𝑖 ∈ [𝑠] at hand, we are now interested in identifying upper bounds for 𝐿(𝐶,𝐵)
𝑘

(�̂�)
and 𝐿(𝐶,𝐵)

𝑘
(�̂�𝑖).

Proposition 4.4. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐵, 𝐶 ∶ D → 𝕀 be functions with 𝐶 ⩽ 𝐵, 
𝐿(𝐶,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D), and 𝛾 (𝐶,𝐵)
𝑘,D

(𝐝) = 0 for all 𝐝 ∈ D . Furthermore, assume that 𝐶(𝐯) =𝐵(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛

and that there exists a 𝑘-box 𝑅∗ ∈ R𝑘(D) with 𝐿(𝐶,𝐶)
𝑘

(𝑅∗) = 𝑣 < 0 such that there are vertices 𝐱𝑖 with 𝑚𝑅∗ (𝐱𝑖) = 1 and 𝐶(𝐱𝑖) < 𝐵(𝐱𝑖) for 
all 𝑖 ∈ [𝑠] and some 𝑠 ∈ [2𝑘−1], while for all other 𝐱𝑖 ∈ ver𝑅∗ with 𝑚𝑅∗ (𝐱𝑖) = 1 the equality 𝐶(𝐱𝑖) =𝐵(𝐱𝑖) holds.

(i) For each 𝑖 ∈ [𝑠] and each �̂�𝑖 as defined by (4.8) we obtain

𝐿(𝐶,𝐵)
𝑘

(�̂�𝑖) ⩽𝑚 ⋅
(
𝐵(𝐱𝑖) −𝐶(𝐱𝑖)

)
+𝑚 ⋅𝐿(𝐶,𝐶)

𝑘
(𝑅∗) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝐿
(𝐶,𝐵)
𝑘

(𝐑𝑙). (4.11)

(ii) For �̂� as defined by (4.7) we get

𝐿(𝐶,𝐵)
𝑘

(�̂�) ⩽𝑚 ⋅𝐿(𝐶,𝐶)
𝑘

(𝑅∗) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝐿

(𝐶,𝐵)
𝑘

(𝐑𝑙). (4.12)

Proof. We first focus on the upper bound for 𝐿(𝐶,𝐵)
𝑘

(�̂�𝑖) for some arbitrary but fixed 𝑖 ∈ [𝑠]. Due to 𝐶 ⩽ 𝐵, and taking into ac-
count (2.1), we can express

𝐿(𝐶,𝐵)
𝑘

(�̂�𝑖) =
∑
𝐝∈D

max{𝑚�̂�𝑖
(𝐝)𝐵(𝐝),𝑚�̂�𝑖

(𝐝)𝐶(𝐝)},

leading to the following equivalent expression of (4.11)∑
𝐝∈D

max{𝑚�̂�𝑖
(𝐝) ⋅𝐵(𝐝),𝑚�̂�𝑖

(𝐝) ⋅𝐶(𝐝)}

⩽𝑚 ⋅
(
𝐵(𝐱𝑖) −𝐶(𝐱𝑖)

)
+𝑚 ⋅

∑
𝐝∈D

𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅

(∑
𝐝∈D

max{𝑚𝐑𝑙
(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙

(𝐝) ⋅𝐶(𝐝)}
)
.

We shall investigate the contribution of each 𝐝 ∈ D to both sides of the above equivalent form of inequality (4.11) by distinguishing 
the following three cases: (1) 𝐝 = 𝐱𝑖, (2) 𝐝 = 𝐱𝑗 , with 𝑗 ∈ [𝑠] ⧵ {𝑖} and (3) 𝐝 ∈ D ⧵ {𝐱𝑗 ∣ 𝑗 ∈ [𝑠]}, i.e., whether or not 𝐝 is one of the 
10

vertices of 𝑅∗ with positive multiplicity and different values at 𝐵 and 𝐶 .
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Case 1: Suppose 𝐝 = 𝐱𝑖, i.e., 𝑚𝑅∗ (𝐱𝑖) = 1 and 𝐵(𝐱𝑖) > 𝐶(𝐱𝑖) (and 𝑃 (𝐶,𝐵)
O,𝑘,D (𝐱𝑖) = 0). We consider two subcases. First assume that 

𝑚�̂�𝑖
(𝐱𝑖) ⩾ 0. By (4.10), for the contribution of 𝐱𝑖 to 𝐿(𝐶,𝐵)

𝑘
(�̂�𝑖) we obtain the following (in)equalities:

𝑚�̂�𝑖
(𝐱𝑖) ⋅𝐵(𝐱𝑖) =𝑚 ⋅𝑚𝑅∗ (𝐱𝑖) ⋅𝐵(𝐱𝑖) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐱𝑖) ⋅𝐵(𝐱𝑖)

=𝑚 ⋅𝐵(𝐱𝑖) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐱𝑖) ⋅𝐵(𝐱𝑖)

=𝑚(𝐵(𝐱𝑖) −𝐶(𝐱𝑖)) +𝑚 ⋅𝑚𝑅∗ (𝐱𝑖) ⋅𝐶(𝐱𝑖) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐱𝑖) ⋅𝐵(𝐱𝑖)

⩽𝑚(𝐵(𝐱𝑖) −𝐶(𝐱𝑖)) +𝑚 ⋅𝑚𝑅∗ (𝐱𝑖) ⋅𝐶(𝐱𝑖) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐱𝑖) ⋅𝐵(𝐱𝑖),𝑚𝐑𝑙
(𝐱𝑖) ⋅𝐶(𝐱𝑖)}.

Secondly, if 𝑚�̂�𝑖
(𝐱𝑖) < 0, then for the contribution of 𝐱𝑖 to 𝐿(𝐶,𝐵)

𝑘
(�̂�𝑖) we obtain, taking into account 𝐶(𝐱𝑖) < 𝐵(𝐱𝑖),

𝑚�̂�𝑖
(𝐱𝑖) ⋅𝐶(𝐱𝑖) =𝑚 ⋅𝑚𝑅∗ (𝐱𝑖) ⋅𝐶(𝐱𝑖) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐱𝑖) ⋅𝐶(𝐱𝑖)

⩽𝑚 ⋅ (𝐵(𝐱𝑖) −𝐶(𝐱𝑖)) +𝑚 ⋅𝑚𝑅∗ (𝐱𝑖) ⋅𝐶(𝐱𝑖) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐱𝑖) ⋅𝐵(𝐱𝑖),𝑚𝐑𝑙
(𝐱𝑖) ⋅𝐶(𝐱𝑖)}.

Case 2: Consider 𝐝 = 𝐱𝑗 with 𝑗 ∈ [𝑠] ⧵ {𝑖}, i.e., 𝑚𝑅∗ (𝐱𝑗 ) = 1, and 𝐶(𝐱𝑗) < 𝐵(𝐱𝑗 ). Assuming first that 𝑚�̂�𝑖
(𝐱𝑗 ) ⩾ 0 we obtain for the 

contribution of 𝐱𝑗 to 𝐿(𝐶,𝐵)
𝑘

(�̂�𝑖) the following series of (in)equalities:

𝑚�̂�𝑖
(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ) =𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 )

=𝑚 ⋅𝐵(𝐱𝑗 ) +𝑚𝑗 ⋅𝑚𝐑𝑗
(𝐱𝑗 )

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=−𝑚

⋅𝐵(𝐱𝑗 ) +
∑

𝑙∈[𝑠]⧵{𝑖,𝑗}
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 )

=
∑

𝑙∈[𝑠]⧵{𝑖,𝑗}
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 )

⩽
∑

𝑙∈[𝑠]⧵{𝑖,𝑗}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ),𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )}

=𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) −𝑚 ⋅𝐶(𝐱𝑗 ) +
∑

𝑙∈[𝑠]⧵{𝑖,𝑗}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ),𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )}.

Using the definition of 𝑚, it follows that

𝑚�̂�𝑖
(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ) ⩽𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) +𝑚𝑗 ⋅𝑚𝐑𝑗

(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) +
∑

𝑙∈[𝑠]⧵{𝑖,𝑗}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ),𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )}

⩽𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ),𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )}.

Next assume that 𝑚�̂�𝑖
(𝐱𝑗 ) < 0. Then the contribution of 𝐱𝑗 to 𝐿(𝐶,𝐵)

𝑘
(�̂�𝑖) satisfies

𝑚�̂�𝑖
(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) =𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )

⩽𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ),𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )}.

Case 3: Consider 𝐝 ∈ D ⧵ {𝐱1, … , 𝐱𝑠}. If 𝑚𝑅∗ (𝐝) = 1 then 𝐝 is a vertex of 𝑅∗ with positive multiplicity and necessarily fulfilling 
𝐵(𝐝) = 𝐶(𝐝). As a consequence,

max{𝑚�̂�𝑖
(𝐝) ⋅𝐵(𝐝),𝑚�̂�𝑖

(𝐝) ⋅𝐶(𝐝)} =𝑚�̂�𝑖
(𝐝) ⋅𝐶(𝐝)

=𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐝) ⋅𝐶(𝐝)

=𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙
(𝐝) ⋅𝐶(𝐝)}.

Otherwise 𝑚𝑅∗ (𝐝) ∈ {−1, 0}, i.e., 𝑚 ⋅ 𝑚𝑅∗ (𝐝) ⋅ 𝐵(𝐝) ⩽ 𝑚 ⋅ 𝑚𝑅∗ (𝐝) ⋅ 𝐶(𝐝). Therefore, evaluating each term separately using (4.9), we 
11

obtain
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max{𝑚�̂�𝑖
(𝐝) ⋅𝐵(𝐝),𝑚�̂�𝑖

(𝐝) ⋅𝐶(𝐝)} ⩽max{𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐵(𝐝),𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝)} +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙
(𝐝) ⋅𝐶(𝐝)}

=𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
∑

𝑙∈[𝑠]⧵{𝑖}
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙
(𝐝) ⋅𝐶(𝐝)}.

Summarizing all three cases we have shown that (4.11) holds since the contribution of any 𝐝 ∈𝐷 to its left-hand side is surpassed by 
its contribution to the right-hand side of the inequality.

We now turn to 𝐿(𝐶,𝐵)
𝑘

(�̂�) and show that the inequality (4.12) holds which, following (2.1), can be equivalently expressed by

∑
𝐝∈D

max{𝑚�̂�(𝐝) ⋅𝐵(𝐝),𝑚�̂�(𝐝) ⋅𝐶(𝐝)} ⩽
∑
𝐝∈D

𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅

(∑
𝐝∈D

max{𝑚𝐑𝑙
(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙

(𝐝) ⋅𝐶(𝐝)}
)
.

We again look at the contribution of each 𝐝 ∈ D to both sides of this inequality and distinguish different cases for 𝐝 ∈ D .
Case 1: 𝐝 ∈ {𝐱1, … , 𝐱𝑠}, i.e., 𝑚𝑅∗ (𝐱𝑗 ) = 1 and 𝐶(𝐱𝑗 ) < 𝐵(𝐱𝑗 ) for each 𝑗 ∈ [𝑠]. Assuming that 𝑚�̂�(𝐱𝑗 ) > 0, (4.10) implies that also 

𝑚�̂�𝑗
(𝐱𝑗 ) =𝑚 +𝑚�̂�(𝐱𝑗 ) > 0. As a consequence,

𝑃 (𝐶,𝐵)
M,𝑘,D

(𝐱𝑗 ) = inf
𝐑∈R𝑘(D)
𝑚𝐑(𝐱𝑗 )>0

𝐿(𝐶,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐱𝑗 )| ⩽
𝐿(𝐶,𝐵)
𝑘

(�̂�𝑗 )|𝑚�̂�𝑗
(𝐱𝑗 )| .

Since 𝑃 (𝐶,𝐵)
O,𝑘,D (𝐱𝑗 ) = 0, it follows from Proposition 2.11 that

|𝑚�̂�𝑗
(𝐱𝑗 )| ⋅ (𝐵(𝐱𝑗 ) −𝐶(𝐱𝑗 )) ⩽ |𝑚�̂�𝑗

(𝐱𝑗 )| ⋅ (𝑃 (𝐶,𝐵)
O,𝑘,D (𝐱𝑗 ) + 𝑃 (𝐶,𝐵)

M,𝑘,D
(𝐱𝑗 )) ⩽𝐿(𝐶,𝐵)

𝑘
(�̂�𝑗 ).

Moreover, by (4.11) and taking into account (4.4) and (4.5), we may argue that

𝑚�̂�𝑗
(𝐱𝑗 ) ⋅ (𝐵(𝐱𝑗 ) −𝐶(𝐱𝑗 )) ⩽𝐿(𝐶,𝐵)

𝑘
(�̂�𝑗 )

⩽𝑚 ⋅ (𝐵(𝐱𝑗 ) −𝐶(𝐱𝑗 )) +𝑚 ⋅𝐿(𝐶,𝐶)
𝑘

(𝑅∗) +
∑

𝑙∈[𝑠]⧵{𝑗}
𝑚𝑙 ⋅𝐿

(𝐶,𝐵)
𝑘

(𝐑𝑙)

<𝑚 ⋅ (𝐵(𝐱𝑗 ) −𝐶(𝐱𝑗 )) +𝑚 ⋅ 𝑣+
∑

𝑙∈[𝑠]⧵{𝑗}
𝑚𝑙 ⋅ |𝑚𝐑𝑙

(𝐱𝑙)| ⋅ |𝑣|𝑠
=𝑚 ⋅ (𝐵(𝐱𝑗 ) −𝐶(𝐱𝑗 )) +𝑚 ⋅ 𝑣+𝑚

|𝑣|
𝑠
(𝑠− 1)

=𝑚 ⋅ (𝐵(𝐱𝑗 ) −𝐶(𝐱𝑗 )) −
𝑚|𝑣|
𝑠

.

Since 𝑚�̂�𝑗
(𝐱𝑗 ) =𝑚 +𝑚�̂�(𝐱𝑗 ), we further obtain the contradiction

0 ⩽ 𝑚�̂�(𝐱𝑗 )
⏟⏟⏟

>0

⋅(𝐵(𝐱𝑗 ) −𝐶(𝐱𝑗 )) < −𝑚 ⋅ |𝑣|
𝑠

< 0,

showing that necessarily 𝑚�̂�(𝐱𝑗 ) ⩽ 0 for all 𝑗 ∈ [𝑠]. Therefore, for the contribution of any 𝐱𝑗 with 𝑗 ∈ [𝑠] to the left-hand side of (4.12)
we obtain

𝑚�̂�(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) =
(
𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) +

𝑠∑
𝑙=1

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐱𝑗 )

)
⋅𝐶(𝐱𝑗 ) ⩽𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) +

𝑠∑
𝑙=1

𝑚𝑙 ⋅max{𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐵(𝐱𝑗 ),𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )}.

Case 2: 𝐝 ∈ D ⧵ {𝐱1, … , 𝐱𝑠}. If 𝑚𝑅∗ (𝐝) = 1 then 𝐝 is a vertex of 𝑅∗ with positive multiplicity and necessarily fulfills 𝐵(𝐝) = 𝐶(𝐝)
(compare also (4.6)). Then 𝑚�̂�(𝐝) ⋅𝐵(𝐝) =𝑚�̂�(𝐝) ⋅𝐶(𝐝) and 𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝) =𝑚𝐑𝑙
(𝐝) ⋅𝐶(𝐝) for all 𝑙 ∈ [𝑠], and therefore trivially

max{𝑚�̂�(𝐝) ⋅𝐵(𝐝),𝑚�̂�(𝐝) ⋅𝐶(𝐝)} =𝑚�̂�(𝐝) ⋅𝐶(𝐝)

=𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐝) ⋅𝐶(𝐝)

=𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙
(𝐝) ⋅𝐶(𝐝)}.

If 𝑚𝑅∗ (𝐝) ≠ 1 then 𝐝 is not a vertex of 𝑅∗ or it is a vertex with negative multiplicity to 𝑅∗, i.e., fulfills 𝑚𝑅∗ (𝐝) ∈ {0, −1} since 𝑅∗ is a 
12

𝑘-box. Assume first that 𝑚�̂�(𝐝) ⩾ 0. Then, due to 𝑚𝑅∗ (𝐝) ∈ {0, −1}, the contribution to the left-hand side of (4.12) satisfies
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𝑚�̂�(𝐝) ⋅𝐵(𝐝) =𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐵(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝)

⩽𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐝 ⋅𝐵(𝐝))

⩽𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙
(𝐝) ⋅𝐶(𝐝)}.

If 𝑚�̂�(𝐝) < 0 then for the contribution to the left-hand side of (4.12) we obtain

𝑚�̂�(𝐝) ⋅𝐶(𝐝) =𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝑚𝐑𝑙

(𝐝) ⋅𝐶(𝐝) ⩽𝑚 ⋅𝑚𝑅∗ (𝐝) ⋅𝐶(𝐝) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅max{𝑚𝐑𝑙

(𝐝) ⋅𝐵(𝐝),𝑚𝐑𝑙
(𝐝) ⋅𝐶(𝐝)},

verifying that inequality (4.12) holds. □

We have now collected all the necessary details for showing that the function 𝐶 obtained as the pointwise limit of the sequence 
(𝐴(𝑖))𝑖∈ℕ does not only have all the properties shown in Proposition 4.2 but is also 𝑘-increasing on D .

Proposition 4.5. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐵
and 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Furthermore, assume that 𝐴(𝐯) = 𝐵(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛. Let 𝐶 ∶ D → 𝕀 be the 

pointwise limit of the sequence (𝐴(𝑖))𝑖∈ℕ defined in (4.2). Then 𝐶 is 𝑘-increasing on D , i.e., 𝐿(𝐶,𝐶)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D).

Proof. Note that 𝐶 = lim𝑖→∞𝐴(𝑖) implies that for each 𝐝 ∈ D

𝛾 (𝐶,𝐵)
𝑘,D

(𝐝) = min{𝑃 (𝐶,𝐵)
O,𝑘,D (𝐝),𝐵(𝐝) −𝐶(𝐝)} = 0,

and 𝐿(𝐶,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D), according to Proposition 4.2.

Assume that 𝐶 is not 𝑘-increasing, i.e., there exists a 𝑘-box 𝑅∗ such that 𝐿(𝐶,𝐶)
𝑘

(𝑅∗) = 𝑣 < 0, where the vertices 𝐱𝑖 of 𝑅∗ fulfill 
𝑚𝑅∗ (𝐱𝑖) = 1 and 𝐶(𝐱𝑖) < 𝐵(𝐱𝑖) for all 𝑖 ∈ [𝑠] and some 𝑠 ∈ [2𝑘−1], while 𝐶(𝐱𝑖) = 𝐵(𝐱𝑖) for all other vertices with 𝑚𝑅∗ (𝐱𝑖) = 1. Note 
that 𝐶(𝐯) =𝐵(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛 since 𝐴 ⩽ 𝐶 ⩽ 𝐵 and 𝐴(𝐯) =𝐵(𝐯). Then, following Lemma 4.3, there exist finite 
disjoint unions of 𝑘-boxes 𝐑𝑖 ∈ R𝑘(D) such that for all 𝑖 ∈ [𝑠]

𝑚𝐑𝑖
(𝐱𝑖) < 0 and

𝐿(𝐶,𝐵)
𝑘

(𝐑𝑖)|𝑚𝐑𝑖
(𝐱𝑖)| <

|𝑣|
𝑠
.

Combining the 𝑘-box 𝑅∗ and the corresponding disjoint unions of 𝑘-boxes 𝐑𝑖, we introduce an additional disjoint union �̂� ∈ R𝑘(D)
by means of (4.7). Proposition 4.4 provides us with an upper bound for 𝐿(𝐶,𝐵)

𝑘
(�̂�) by means of (4.12), implying the contradiction

0 ⩽𝐿(𝐶,𝐵)
𝑘

(�̂�) ⩽𝑚 ⋅𝐿(𝐶,𝐶)
𝑘

(𝑅∗) +
𝑠∑

𝑙=1
𝑚𝑙 ⋅𝐿

(𝐶,𝐵)
𝑘

(𝐑𝑙) < 𝑚 ⋅ 𝑣+
𝑠∑

𝑙=1
𝑚𝑙 ⋅

|𝑣|
𝑠

⋅ |𝑚𝐑𝑙
(𝐱𝑙)| =𝑚 ⋅ (𝑣+ |𝑣|) = 0,

showing that 𝐶 has to be 𝑘-increasing on D . □

5. Construction of 𝑪 from above and discussion of its properties

The results of the previous section already prove the existence of a 𝑘-increasing 𝑛-variate function 𝐶 on a dense countable mesh D

by a construction from below, i.e., starting from the lower bound 𝐴. A rather natural question is whether or not the construction of 
a, possibly different, function 𝐶 could also be initiated from the upper bound 𝐵. This question can be answered to the positive. In 
this section we briefly sketch the proof steps and the construction, pointing to possibly different arguments needed in the proofs in 
comparison to the results related to the construction of a function 𝐶 from the lower bound 𝐴.

In the single construction step, function 𝐵 defined on the mesh D is reduced at an arbitrary but fixed point 𝐱 ∈ D by means 
of 𝛿(𝐴,𝐵)

𝑘,D
, leading to a smaller function 𝐵′ still satisfying 𝐿(𝐴,𝐵′)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(𝐷). The proof of the following proposition 

formalizing this step is in complete analogy to the proof of Proposition 4.1.

Proposition 5.1. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐵
and 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Fix a point 𝐱 ∈ D and define the function 𝐵′ ∶ D → 𝕀 by

𝐵′(𝐮) =
{

𝐵(𝐮) if 𝐮 ≠ 𝐱,
𝐵(𝐱) − 𝛿(𝐴,𝐵)

𝑘,D
(𝐱) if 𝐮 = 𝐱.

′ ′
13

Then we have that 𝐴 ⩽ 𝐵′ ⩽𝐵, that the pair (𝐴, 𝐵′) satisfies the condition 𝐿(𝐴,𝐵 )
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D), and that 𝛿(𝐴,𝐵 )
𝑘,D

(𝐱) = 0.
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Since D is a dense countably infinite mesh in 𝕀𝑛 containing the points 𝟎 and 𝟏, its elements can be rearranged into a sequence 
(𝐝𝑖)𝑖∈ℕ. As a consequence, a function 𝐶 can be obtained as the pointwise limit of a sequence of functions 𝐵(𝑖) ∶ D → 𝕀 recursively 
defined by successively applying Proposition 5.1, i.e., putting 𝐵(0) =𝐵 and, for 𝑖 ⩾ 1,

𝐵(𝑖)(𝐝) =
{

𝐵(𝑖−1)(𝐝) if 𝐝 ≠ 𝐝𝑖,
𝐵(𝑖−1)(𝐝𝑖) − 𝛿(𝐴,𝐵

(𝑖−1))
𝑘,D

(𝐝𝑖) if 𝐝 = 𝐝𝑖,
(5.1)

(compare also Proposition 4.2). The function 𝐶 constructed in this way has the following properties.

Proposition 5.2. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐵
and 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Then there exists 𝐶 ∶ D → 𝕀 such that

(i) 𝐴 ⩽ 𝐶 ⩽𝐵 on D ,

(ii) 𝛿(𝐴,𝐶)
𝑘,D

(𝐝) = 0 for all 𝐝 ∈ D ,

(iii) 𝐿(𝐴,𝐶)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D).

When showing that 𝐶 is 𝑘-increasing, assume first, to the contrary, that there is some 𝑘-box 𝑅∗ where the vertices 𝐱𝑖 ∈ ver𝑅∗

with negative multiplicities, i.e., fulfilling 𝑚𝑅∗ (𝐱𝑖) = −1, are in the focus of our argumentation, in particular those fulfilling in addition 
𝐴(𝐱𝑖) < 𝐶(𝐱𝑖) with 𝑖 ∈ [𝑠] and some 𝑠 ∈ [2𝑘−1].

Lemma 5.3. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐶 ∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐶 , 
𝐿(𝐴,𝐶)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D), and 𝛿(𝐴,𝐶)
𝑘,D

(𝐝) = 0 for all 𝐝 ∈ D . Furthermore, assume that 𝐴(𝐯) = 𝐶(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛

and that there exists a 𝑘-box 𝑅∗ ∈ R𝑘(D) with 𝐿(𝐶,𝐶)
𝑘

(𝑅∗) = 𝑣 < 0. Then there exists 𝑠 ∈ [2𝑘−1] such that for each 𝑖 ∈ [𝑠] there exist a 
vertex 𝐱𝑖 ∈ ver𝑅∗ and a finite disjoint union of 𝑘-boxes 𝐑𝑖 ∈ R𝑘(D) with

𝐴(𝐱𝑖) < 𝐶(𝐱𝑖), 𝑚𝑅∗ (𝐱𝑖) = −1, 𝑚𝐑𝑖
(𝐱𝑖) > 0, and

𝐿(𝐴,𝐶)
𝑘

(𝐑𝑖)|𝑚𝐑𝑖
(𝐱𝑖)| <

|𝑣|
𝑠
.

For all other 𝐱𝑖 ∈ ver𝑅∗ with 𝑚𝑅∗ (𝐱𝑖) = −1 the equality 𝐴(𝐱𝑖) = 𝐶(𝐱𝑖) holds.

The proof of Lemma 5.3 follows in analogy to the arguments for Lemma 4.3 and is thus omitted at this place.
For any such vertex 𝐱𝑖 with 𝑖 ∈ [𝑠], 𝑚𝑅∗ (𝐱𝑖) = −1 and 𝑚𝐑𝑖

(𝐱𝑖) > 0 the following notations and additional disjoint unions of 𝑘-boxes 
can be defined by putting, for 𝑖 ∈ [𝑠],

𝑚 = |𝑚𝐑1
(𝐱1)| ⋅… ⋅ |𝑚𝐑𝑠

(𝐱𝑠)| and 𝑚𝑖 =
𝑚|𝑚𝐑𝑖
(𝐱𝑖)| ,

�̌� =

(
𝑚⨆
𝑡=1

𝑅∗

)
⊔

(
𝑚1⨆
𝑡=1

𝐑1

)
⊔⋯ ⊔

(𝑚𝑠⨆
𝑡=1

𝐑𝑠

)
=

(
𝑚⨆
𝑡=1

𝑅∗

)
⊔

(
𝑠⨆

𝑙=1

( 𝑚𝑙⨆
𝑡=1

𝐑𝑙

))
, (5.2)

�̌�𝑖 =

(
𝑚⨆
𝑡=1

𝑅∗

)
⊔

⎛⎜⎜⎜⎝
𝑠⨆

𝑙=1
𝑙≠𝑖

( 𝑚𝑙⨆
𝑡=1

𝐑𝑙

)⎞⎟⎟⎟⎠ . (5.3)

In analogy to Proposition 4.4, we are now interested in finding upper bounds for 𝐿(𝐴,𝐶)
𝑘

(�̌�) and 𝐿(𝐴,𝐶)
𝑘

(�̌�𝑖).

Proposition 5.4. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐶 ∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐶 , 
𝐿(𝐴,𝐶)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D), and 𝛿(𝐴,𝐶)
𝑘,D

(𝐝) = 0 for all 𝐝 ∈ D . Furthermore, assume that 𝐴(𝐯) = 𝐶(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛

and that there exists a 𝑘-box 𝑅∗ ∈ R𝑘(D) with 𝐿(𝐶,𝐶)
𝑘

(𝑅∗) = 𝑣 < 0 such that there are vertices 𝐱𝑖 with 𝑚𝑅∗ (𝐱𝑖) = −1 and 𝐴(𝐱𝑖) < 𝐶(𝐱𝑖) for 
all 𝑖 ∈ [𝑠] and some 𝑠 ∈ [2𝑘−1], while for all other vertices 𝐱𝑖 ∈ ver𝑅∗ with 𝑚𝑅∗ (𝐱𝑖) = −1 we have 𝐴(𝐱𝑖) = 𝐶(𝐱𝑖).

(i) For each 𝑖 ∈ [𝑠] and each �̌�𝑖 as defined by (5.3), the following holds

𝐿(𝐴,𝐶)
𝑘

(�̌�𝑖) ⩽𝑚 ⋅
(
𝐶(𝐱𝑖) −𝐴(𝐱𝑖)

)
+𝑚 ⋅𝐿(𝐶,𝐶)

𝑘
(𝑅∗) +

∑
𝑙∈[𝑠]⧵{𝑖}

𝑚𝑙 ⋅𝐿
(𝐴,𝐶)
𝑘

(𝐑𝑙). (5.4)

(ii) For �̌� as defined by (5.2) the following holds

(𝐴,𝐶) ̌ (𝐶,𝐶) ∗
𝑠∑ (𝐴,𝐶)
14

𝐿
𝑘

(𝐑) ⩽𝑚 ⋅𝐿
𝑘

(𝑅 ) +
𝑙=1

𝑚𝑙 ⋅𝐿𝑘
(𝐑𝑙). (5.5)
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Proof. When showing the validity of (5.4), the contribution of each 𝐝 ∈ D to both sides of the inequality can be considered in 
analogy to the scenario when constructing 𝐶 from below, i.e., starting from 𝐴 (compare also the proof of Proposition 4.4). The cases 
to be checked are (1) 𝐝 = 𝐱𝑖, (2) 𝐝 = 𝐱𝑗 with 𝑗 ∈ [𝑠] ⧵ {𝑖} and (3) 𝐝 ∈ D ⧵ {𝐱𝑗 ∣ 𝑗 ∈ [𝑠]}, i.e., distinguishing whether or not 𝐝 is one of 
the vertices of 𝑅∗ with negative multiplicity and different values with respect to 𝐴 and 𝐶 or not.

In order to show that (5.5) holds, only the contribution of 𝐝 ∈ {𝐱1, … , 𝐱𝑠}, i.e., for elements 𝐱𝑗 ∈ D with 𝑚𝑅∗ (𝐱𝑗 ) = −1 and 
𝐴(𝐱𝑗 ) < 𝐶(𝐱𝑗 ) for all 𝑗 ∈ [𝑠] to both sides of the corresponding inequality needs slightly different arguments compared with the 
situation when constructing 𝐶 from 𝐴 (see also the proof of Proposition 4.4). We briefly discuss these differences:

Case 1: 𝐝 ∈ {𝐱1, … , 𝐱𝑠}, i.e., 𝑚𝑅∗ (𝑥𝑗 ) = −1 and 𝐴(𝐱𝑗 ) < 𝐶(𝐱𝑗 ) for all 𝑗 ∈ [𝑠]. If 𝑚�̌�(𝐱𝑗 ) < 0 then also 𝑚�̌�𝑗
(𝐱𝑗 ) = −𝑚 + 𝑚�̌�(𝐱𝑗 ) < 0

and, as a consequence, we get

𝑃 (𝐴,𝐶)
O,𝑘,D (𝐱𝑗 ) = inf

𝐑∈R𝑘(D)
𝑚𝐑(𝐱𝑗 )<0

𝐿(𝐴,𝐶)
𝑘

(𝐑)|𝑚𝐑(𝐱𝑗 )| ⩽
𝐿(𝐴,𝐶)
𝑘

(�̌�𝑗 )|𝑚�̌�𝑗
(𝐱𝑗 )| .

Since 𝑃 (𝐴,𝐶)
M,𝑘,D

(𝐱𝑗 ) = 0, Proposition 2.11 implies

|𝑚�̌�𝑗
(𝐱𝑗 )| ⋅ (𝐶(𝐱𝑗 ) −𝐴(𝐱𝑗 )) ⩽ |𝑚�̌�𝑗

(𝐱𝑗 )| ⋅ (𝑃 (𝐴,𝐶)
O,𝑘,D (𝐱𝑗 ) + 𝑃 (𝐴,𝐶)

M,𝑘,D
(𝐱𝑗 )) ⩽𝐿(𝐴,𝐶)

𝑘
(�̌�𝑗 ).

Moreover, by (5.4) and in analogy to the proof of Proposition 4.4 we may argue that

|𝑚�̌�𝑗
(𝐱𝑗 )| ⋅ (𝐶(𝐱𝑗 ) −𝐴(𝐱𝑗 )) ⩽𝑚 ⋅ (𝐶(𝐱𝑗 ) −𝐴(𝐱𝑗 )) +𝑚 ⋅𝐿(𝐶,𝐶)

𝑘
(𝑅∗) +

∑
𝑙∈[𝑠]⧵{𝑗}

𝑚𝑙 ⋅𝐿
(𝐴,𝐶)
𝑘

(𝐑𝑙)

< 𝑚 ⋅ (𝐶(𝐱𝑗 ) −𝐴(𝐱𝑗 )) +𝑚 ⋅ 𝑣+
∑

𝑙∈[𝑠]⧵{𝑗}
𝑚𝑙 ⋅ |𝑚𝐑𝑙

(𝐱𝑙)| ⋅ |𝑣|𝑠
=𝑚 ⋅ (𝐶(𝐱𝑗 ) −𝐴(𝐱𝑗 )) −

𝑚 ⋅ |𝑣|
𝑠

.

Since 𝑚�̌�(𝐱𝑗 ) =𝑚�̌�𝑗
(𝐱𝑗 ) +𝑚, we obtain the contradiction

0 ⩽ (−1) ⋅ 𝑚�̌�(𝐱𝑗 )
⏟⏟⏟

<0

⋅(𝐶(𝐱𝑗 ) −𝐴(𝐱𝑗 )) = (−𝑚�̌�𝑗
(𝐱𝑗 ) −𝑚)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=|𝑚�̌�𝑗

(𝐱𝑗 )|−𝑚
⋅(𝐶(𝐱𝑗 ) −𝐴(𝐱𝑗 )) < −𝑚 ⋅ |𝑣|

𝑠
< 0,

showing that 𝑚�̌�(𝐱𝑗 ) ⩾ 0 for all 𝑙 ∈ [𝑠]. Therefore, for the contribution of any 𝐱𝑗 with 𝑗 ∈ [𝑠] to the left-hand side of (5.5) we obtain

𝑚�̌�(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) =
(
𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) +

𝑠∑
𝑙=1

𝑚𝑙 ⋅𝑚𝐑𝑙
(𝐱𝑗 )

)
⋅𝐶(𝐱𝑗 ) ⩽𝑚 ⋅𝑚𝑅∗ (𝐱𝑗 ) ⋅𝐶(𝐱𝑗 ) +

𝑠∑
𝑙=1

𝑚𝑙 ⋅max{𝑚𝐑𝑙
(𝐱𝑗 ) ⋅𝐴(𝐱𝑗 ),𝑚𝐑𝑙

(𝐱𝑗 ) ⋅𝐶(𝐱𝑗 )}.

Case 2: 𝐝 ∈ D ⧵ {𝐱1, … , 𝐱𝑠} with 𝑚𝑅∗ (𝐝) = −1 and fulfilling 𝐴(𝐝) = 𝐶(𝐝). This case can be handled in analogy to the situation 
when constructing 𝐶 from 𝐴 (see Proposition 5.4). □

Based on these results it can be shown that the function 𝐶 obtained as pointwise limit of the sequence (𝐵(𝑖))𝑖∈ℕ does not only 
have all the properties mentioned in Proposition 5.2, but is also 𝑘-increasing on D .

Proposition 5.5. Let D be a dense countably infinite mesh in 𝕀𝑛 and fix some integer 𝑘 ∈ [𝑛]. Let 𝐴, 𝐵∶ D → 𝕀 be functions with 𝐴 ⩽ 𝐵
and 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). Furthermore, assume that 𝐴(𝐯) = 𝐵(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛. Let 𝐶 ∶ D → 𝕀 be the 

pointwise limit of the sequence (𝐵(𝑖))𝑖∈ℕ as given by (5.1). Then 𝐶 is 𝑘-increasing on D , i.e., 𝐿(𝐶,𝐶)
𝑘

(𝐑) ⩾ 0 for each 𝐑 ∈ R𝑘(D).

The proof of Proposition 5.5 can be carried out in analogy to the proof of Proposition 4.5, using some of the results of Lemma 5.3
and Propositions 5.2 and 5.4.

6. From a dense mesh to the unit cube

Given functions 𝐴 ⩽ 𝐵 defined on 𝕀𝑛, in both Propositions 4.2 and 5.2 a function 𝐶 , defined on D , is constructed satisfying 
𝐴(𝐱) ⩽ 𝐶(𝐱) ⩽ 𝐵(𝐱) for all 𝐱 ∈ D . Propositions 4.5 and 5.5 show that the function 𝐶 obtained in this way is 𝑘-increasing on D for 
some 𝑘 ∈ [𝑛]. Thus we can extend 𝐶 to the entire unit cube 𝕀𝑛 and show that this extension is still 𝑘-increasing and lies between 𝐴
and 𝐵 (on the whole 𝕀𝑛).

Proposition 6.1. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be standardized functions with 𝐴 ⩽ 𝐵 and fix some integer 𝑘 ∈ [𝑛]. Suppose that at least one of the 
functions 𝐴 and 𝐵 satisfies Condition S with set 𝑆 . Furthermore, let D ⊆ 𝕀𝑛 be a dense countably infinite mesh with 𝑆𝑛 ⊆ D and 𝐶 ∶ D → 𝕀
a 𝑘-increasing function such that 𝐴(𝐝) ⩽ 𝐶(𝐝) ⩽ 𝐵(𝐝) for all 𝐝 ∈ D . Then 𝐶 can be extended to a 𝑘-increasing function 𝐶 ∶ 𝕀𝑛 → 𝕀 such that 
15

𝐴(𝐱) ⩽ 𝐶(𝐱) ⩽ 𝐵(𝐱) for all 𝐱 ∈ 𝕀𝑛.
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Proof. Suppose first that the function 𝐴 satisfies Condition S, let D = 𝛿1 × 𝛿2 ×⋯ × 𝛿𝑛 and define the function 𝐶 ∶ 𝕀𝑛 → 𝕀 by

𝐶(𝐱) = sup{𝐶(𝐝) ∣ 𝐝 ∈ [𝟎,𝐱] ∩D}. (6.1)

Note that the set on the right-hand side is non-empty because of 𝟎 ∈D . Since 𝐶 is grounded and 𝑘-increasing on D , it is 1-increasing 
on D . Hence, for each 𝐝 ∈ D we have 𝐶(𝐝) = 𝐶(𝐝), and 𝐶 is an extension of 𝐶 to 𝕀𝑛.

We claim that 𝐶 is 𝑘-increasing on 𝕀𝑛. Let 𝑅 =
[
𝐱,𝐲

]
⊆ 𝕀𝑛 be a 𝑘-box. Denote the vertices of 𝑅 by 𝐯1, 𝐯2, … , 𝐯𝑟, where 𝑟 = 2𝑘. We 

may assume that 𝑚𝑅(𝐯𝑗 ) = 1 if 𝑗 ∈ [ 𝑟2 ] and 𝑚𝑅(𝐯𝑗 ) = −1 if 𝑗 ∈ [𝑟] ⧵ [ 𝑟2 ]. Let 𝜀 > 0. For every 𝑗 ∈ [𝑟] there exists 𝐝𝑗 ∈
[
𝟎,𝐯𝑗

]
∩ D such 

that 𝐶(𝐯𝑗 ) −
2𝜀
𝑟
< 𝐶(𝐝𝑗 ). Using these points 𝐝𝑗 we construct a 𝑘-box 𝑅 with vertices in D which approximates 𝑅. For each 𝑖 ∈ [𝑛]

let 𝐽 1
𝑖 = {𝑗 ∈ [𝑟] ∣ (𝐯𝑗 )𝑖 = 𝑥𝑖} and 𝐽 2

𝑖 = {𝑗 ∈ [𝑟] ∣ (𝐯𝑗 )𝑖 = 𝑦𝑖}, so that 𝐽 1
𝑖 ∪ 𝐽 2

𝑖 = [𝑟]. If 𝑥𝑖 = 𝑦𝑖, we define 𝑥𝑖 = max{(𝐝𝑗 )𝑖 ∣ 𝑗 ∈ [𝑟]} ∈ 𝛿𝑖
and 𝑦𝑖 = 𝑥𝑖, so that 𝑥𝑖 = 𝑦𝑖 ⩽ 𝑥𝑖 = 𝑦𝑖. If 𝑥𝑖 < 𝑦𝑖, we define 𝑥𝑖 = max{(𝐝𝑗 )𝑖 ∣ 𝑗 ∈ 𝐽 1

𝑖 } ∈ 𝛿𝑖, choose 𝑑𝑖 ∈
]
𝑥𝑖, 𝑦𝑖

[
∩ 𝛿𝑖, and also define 

𝑦𝑖 =max{𝑑𝑖, max{(𝐝𝑗 )𝑖 ∣ 𝑗 ∈ 𝐽 2
𝑖 }} ∈ 𝛿𝑖, so that 𝑥𝑖 ⩽ 𝑥𝑖 < 𝑦𝑖 ⩽ 𝑦𝑖. Finally, we put ̂𝐱 = (𝑥1, ̂𝑥2, … , ̂𝑥𝑛), �̂� = (𝑦1, ̂𝑦2, … , ̂𝑦𝑛), and 𝑅 =

[
�̂�, �̂�

]
, 

the latter being a 𝑘-box with vertices in D . Denote the vertices of 𝑅 by 𝐝1, ̂𝐝2, … , ̂𝐝𝑟 in such a way that for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑟] we 
have 

(
𝐝𝑗
)
𝑖
= 𝑥𝑖 if and only if (𝐯𝑗 )𝑖 = 𝑥𝑖, i.e., if and only if 𝑗 ∈ 𝐽 1

𝑖 . Then 𝑚𝑅

(
𝐝𝑗
)
= 𝑚𝑅(𝐯𝑗 ) and 𝐝𝑗 ⩽ 𝐝𝑗 ⩽ 𝐯𝑗 for all 𝑗 ∈ [𝑟]. By (6.1), 

this implies 𝐶(𝐯𝑗 ) ⩾ 𝐶(𝐝𝑗 ). Therefore we have the following inequality,

𝑉𝐶 (𝑅) =
𝑟∕2∑
𝑗=1

𝐶(𝐯𝑗 ) −
𝑟∑

𝑗=𝑟∕2+1
𝐶(𝐯𝑗 ) >

𝑟∕2∑
𝑗=1

𝐶
(
𝐝𝑗
)
−

𝑟∑
𝑗=𝑟∕2+1

(
𝐶(𝐝𝑗 ) +

2𝜀
𝑟

)
=

𝑟∕2∑
𝑗=1

𝐶
(
𝐝𝑗
)
−

𝑟∑
𝑗=𝑟∕2+1

𝐶(𝐝𝑗 ) − 𝜀,

and since 𝐶 is 1-increasing and 𝑘-increasing on D we obtain

𝑉𝐶 (𝑅) >
𝑟∕2∑
𝑗=1

𝐶
(
𝐝𝑗
)
−

𝑟∑
𝑗=𝑟∕2+1

𝐶
(
𝐝𝑗
)
− 𝜀 = 𝑉𝐶

(
𝑅
)
− 𝜀 ⩾ −𝜀.

Sending 𝜀 to 0, we get 𝑉𝐶 (𝑅) ⩾ 0 for all 𝑘-boxes 𝑅 ⊆ 𝕀𝑛, i.e., 𝐶 is 𝑘-increasing on 𝕀𝑛.

We have 𝐴(𝐝) ⩽ 𝐶(𝐝) ⩽ 𝐵(𝐝) for any 𝐝 ∈ D by assumption. For any 𝐱 ∈ 𝕀𝑛 and 𝐝 ∈ [𝟎,𝐱] ∩ D we have 𝐶(𝐝) ⩽ 𝐵(𝐝) ⩽ 𝐵(𝐱), so 
𝐶(𝐱) ⩽𝐵(𝐱) by (6.1). To complete the proof it remains to show that 𝐴(𝐱) ⩽ 𝐶(𝐱) for each 𝐱 ∈ 𝕀𝑛 ⧵D .

Let 𝐱 ∈ 𝕀𝑛 ⧵D . Since 𝐱 ∉ D , at least one coordinate 𝑥𝑖 of 𝐱 does not belong to 𝛿𝑖. We may assume without loss of generality that, 
for some 𝑚 ∈ [𝑛], we have 𝑥𝑗 ∉ 𝛿𝑗 for 𝑗 ∈ [𝑚] and 𝑥𝑗 ∈ 𝛿𝑗 for 𝑗 ∈ [𝑛] ⧵ [𝑚]. Put 𝐝 = (𝑑1, … , 𝑑𝑚, 𝑥𝑚+1, … , 𝑥𝑛) ∈ [𝟎,𝐱] ∩ D for each 
𝐝 ∈ [𝟎,𝐱]∩D . The function 𝑓1 ∶ 𝑡1 ⟼𝐴(𝑡1, 𝑑2, … , 𝑑𝑚, 𝑥𝑚+1, … , 𝑥𝑛) is continuous at 𝑡1 = 𝑥1 by Condition S, since 𝑥1 ∉ 𝛿1 and 𝑆 ⊆ 𝛿1. 
Since 𝑓1 is also increasing and 𝛿1 is dense in 𝕀, it follows that

𝐴(𝑥1, 𝑑2,… , 𝑑𝑚, 𝑥𝑚+1,… , 𝑥𝑛) = sup
{
𝐴(𝑡1, 𝑑2,… , 𝑑𝑚, 𝑥𝑚+1,… , 𝑥𝑛)

||| 𝑡1 ∈ [
0, 𝑥1

]
∩ 𝛿1

}
.

The function 𝑓2 ∶ 𝑡2 ⟼𝐴(𝑥1, 𝑡2, 𝑑3, … , 𝑑𝑚, 𝑥𝑚+1, … , 𝑥𝑛) is continuous at 𝑡2 = 𝑥2, increasing, and 𝛿2 is dense in 𝕀, so

𝐴(𝑥1, 𝑥2, 𝑑3,… , 𝑑𝑚, 𝑥𝑚+1,… , 𝑥𝑛) = sup
{
𝐴(𝑥1, 𝑡2, 𝑑3,… , 𝑑𝑚, 𝑥𝑚+1,… , 𝑥𝑛)

||| 𝑡2 ∈ [
0, 𝑥2

]
∩ 𝛿2

}
= sup

{
𝐴(𝑡1, 𝑡2, 𝑑3,… , 𝑑𝑚, 𝑥𝑚+1,… , 𝑥𝑛)

||| 𝑡1 ∈ [
0, 𝑥1

]
∩ 𝛿1, 𝑡2 ∈

[
0, 𝑥2

]
∩ 𝛿2

}
.

Continuing inductively up to index 𝑚, and at the last step using the increasing function 𝑓𝑚∶ 𝑡𝑚 ⟼ 𝐴(𝑥1, … , 𝑥𝑚−1, 𝑡𝑚, 𝑥𝑚+1, … , 𝑥𝑛)
which is continuous at 𝑡𝑚 = 𝑥𝑚, we obtain

𝐴(𝐱) = sup
{
𝐴(𝑥1,… , 𝑥𝑚−1, 𝑡𝑚, 𝑥𝑚+1,… , 𝑥𝑛)

||| 𝑡𝑚 ∈
[
0, 𝑥𝑚

]
∩ 𝛿𝑚

}
= sup

{
𝐴(𝑡1,… , 𝑡𝑚, 𝑥𝑚+1,… , 𝑥𝑛)

||| 𝑡𝑗 ∈ [
0, 𝑥𝑗

]
∩ 𝛿𝑗 for all 𝑗 ∈ [𝑚]

}
= sup

{
𝐴
(
𝐝
) ||| 𝐝 ∈ [𝟎,𝐱] ∩D

}
= sup

{
𝐴(𝐝) ||| 𝐝 ∈ [𝟎,𝐱] ∩D

}
⩽ sup

{
𝐶(𝐝) ||| 𝐝 ∈ [𝟎,𝐱] ∩D

}
= 𝐶(𝐱),

completing the proof when 𝐴 satisfies Condition S. Suppose now that the function 𝐵 satisfies Condition S. In this case we define for 
every 𝐱 ∈ 𝕀𝑛

𝐶(𝐱) = inf{𝐶(𝐝) ∣ 𝐝 ∈ [𝐱,𝟏] ∩D}.

The function 𝐶 is another extension of 𝐶 to 𝕀𝑛. Similarly as in the previous case we show that also 𝐶 is 𝑘-increasing. It is obvious 
that 𝐴(𝐱) ⩽ 𝐶(𝐱) for any 𝐱 ∈ 𝕀𝑛. In order to prove 𝐶(𝐱) ⩽𝐵(𝐱) we use Condition S for the function 𝐵 to show that

𝐵(𝐱) = inf{𝐵(𝐝) ∣ 𝐝 ∈ [𝐱,𝟏] ∩D}

in a similar way as above. □
16

When formulating the counterpart of Proposition 6.1 for the case of semicopulas, we can drop Condition S.
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Proposition 6.2. Consider two 𝑛-variate semicopulas 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 with 𝐴 ⩽𝐵 and fix some integer 𝑘 ∈ [𝑛] ⧵ {1}. Further, let D ⊆ 𝕀𝑛 be a 
dense countably infinite mesh and 𝐶 ∶ D → 𝕀 a 𝑘-increasing function such that 𝐴(𝐝) ⩽ 𝐶(𝐝) ⩽ 𝐵(𝐝) for all 𝐝 ∈ D . Then 𝐶 can be extended 
to a 𝑘-increasing function 𝐶 ′ ∶ 𝕀𝑛 → 𝕀 such that 𝐴(𝐱) ⩽ 𝐶 ′(𝐱) ⩽ 𝐵(𝐱) for all 𝐱 ∈ 𝕀𝑛.

Proof. The functions 𝐴 and 𝐵 are semicopulas and 𝐶 lies between them, so 𝐶 is grounded and has uniform marginals on D . Since 𝐶
is grounded and 𝑘-increasing on D for some 𝑘 ⩾ 2, it is also 1-Lipschitz. A 1-Lipschitz function has a unique continuous extension 
to the closure of its definition set. The fact that D is dense in 𝕀𝑛 makes the unique extension 𝐶 ′ defined for all 𝐱 ∈ 𝕀𝑛. Note that 𝐶 ′

coincides with the extension 𝐶 of 𝐶 defined in (6.1). However, when proving 𝑘-increasingness of 𝐶 in the proof of Proposition 6.1, 
Condition S was not utilized. Thus the same proof can be used here to show that 𝐶 ′ is 𝑘-increasing.

Furthermore, since 𝐶 is 1-Lipschitz on D , the extension 𝐶 ′ also coincides with the extension 𝐶 from the proof of Proposition 6.1. 
The proofs that 𝐴(𝐱) ⩽ 𝐶(𝐱) and 𝐶(𝐱) ⩽ 𝐵(𝐱) for all 𝐱 ∈ 𝕀𝑛 did not require Condition S, hence 𝐴(𝐱) ⩽ 𝐶 ′(𝐱) ⩽𝐵(𝐱). □

7. Proofs of the main theorems

Now we can combine our findings to prove our main results, i.e., Theorems 3.1 and 3.2 which were stated in Section 3.

Proof of Theorem 3.1. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be standardized functions with 𝐴 ⩽ 𝐵. Suppose that at least one of the functions 𝐴 and 𝐵
satisfies Condition S with a set 𝑆 .

We first show that (i) implies (ii). Let 𝐶 ∶ 𝕀𝑛 → 𝕀 be a 𝑘-increasing function with 𝐴 ⩽ 𝐶 ⩽𝐵 and 𝐑 ∈ R𝑘(𝕀𝑛). Then

𝐿(𝐴,𝐵)
𝑘

(𝐑) =
∑
𝐲∈𝕀𝑛

𝑚𝐑(𝐲)>0

𝑚𝐑(𝐲)𝐵(𝐲) +
∑
𝐲∈𝕀𝑛

𝑚𝐑(𝐲)<0

𝑚𝐑(𝐲)𝐴(𝐲) ⩾
∑
𝐲∈𝕀𝑛

𝑚𝐑(𝐲)>0

𝑚𝐑(𝐲)𝐶(𝐲) +
∑
𝐲∈𝕀𝑛

𝑚𝐑(𝐲)<0

𝑚𝐑(𝐲)𝐶(𝐲) =𝐿(𝐶,𝐶)
𝑘

(𝐑) ⩾ 0.

To prove that (ii) implies (i), suppose 𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(𝕀𝑛). Let D be a dense countably infinite mesh that contains 𝑆𝑛. 
Then 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(D). By Proposition 4.2 there exists a function 𝐶 ∶ D → 𝕀 such that 𝐴(𝐝) ⩽ 𝐶(𝐝) ⩽ 𝐵(𝐝) for all 

𝐝 ∈ D . Since 𝐴 and 𝐵 are standardized functions, we have 𝐴(𝐯) = 𝐵(𝐯) for all vertices 𝐯 of the unit cube 𝕀𝑛. Proposition 4.5 implies 
that 𝐶 is 𝑘-increasing on D . Hence, by Proposition 6.1, function 𝐶 can be extended to a 𝑘-increasing function 𝐶 ∶ 𝕀𝑛 → 𝕀 such that 
𝐴(𝐱) ⩽ 𝐶(𝐱) ⩽ 𝐵(𝐱) for all 𝐱 ∈ 𝕀𝑛. □

In the proof of Proposition 4.2 we arranged the elements of D into a sequence (𝐝𝑖)𝑖∈ℕ. The order is not important for the proof to 
work. Note, however, that the obtained function 𝐶 , constructed from below, satisfies

𝐶(𝐝1) =𝐴′(𝐝1) =𝐴(𝐝1) + 𝛾 (𝐴,𝐵)
𝑘,D

(𝐝1) =𝐴(𝐝1) +min{𝐵(𝐝1) −𝐴(𝐝1), 𝑃
(𝐴,𝐵)
O,𝑘,D (𝐝1)} = min{𝐵(𝐝1),𝐴(𝐝1) + 𝑃 (𝐴,𝐵)

O,𝑘,D (𝐝1)}, (7.1)

where the function 𝐴′ is defined as in Proposition 4.1.
The proof of Theorem 3.1 could analogously be done with the use of Propositions 5.2 and 5.5, in which case the obtained 

function 𝐶 , constructed from above, would satisfy

𝐶(𝐝1) =𝐵′(𝐝1) =𝐵(𝐝1) − 𝛿(𝐴,𝐵)
𝑘,D

(𝐝1) = max{𝐴(𝐝1),𝐵(𝐝1) − 𝑃 (𝐴,𝐵)
M,𝑘,D

(𝐝1)}. (7.2)

Proof of Theorem 3.2. The proof for 𝑘 ⩾ 2 is analogous to the proof of Theorem 3.1 (note that the assumption 𝑘 ⩾ 2 appears in 
Proposition 6.2). The only differences are that we can choose the dense countably infinite mesh D arbitrarily since we do not have 
Condition S, and that we use Proposition 6.2 instead of Proposition 6.1. Note that the function 𝐶 we obtain is a semicopula because 
it has uniform marginals, a property that it inherits from 𝐴 and 𝐵, since 𝐴 ⩽𝐶 ⩽ 𝐵. If 𝑘 = 1 then the proof that (i) implies (ii) is the 
same while the opposite direction is trivial since we can take 𝐶 =𝐴. □

8. Coherence results

In the previous sections we were dealing with results related to the avoidance of sure loss. Now we present four consequences 
concerning coherence (see Definition 2.7). Theorems 8.1 and 8.3 consider the case when the bounds are standardized functions, 
while Theorems 8.2 and 8.4 deal with the case when the bounds are semicopulas. The 𝑘-coherence for the upper bound is given in 
Theorems 8.1 and 8.2, while the 𝑘-coherence for the lower bound is considered in Theorems 8.3 and 8.4.

Theorem 8.1. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be standardized functions with 𝐴 ⩽ 𝐵 and fix some integer 𝑘 ∈ [𝑛]. Suppose that at least one of the 
functions 𝐴 and 𝐵 satisfies Condition S and that 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(𝕀𝑛). Then the following are equivalent:

(i) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) ⩾ 𝐵(𝐱) −𝐴(𝐱);
17

(ii) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝐵(𝐱) = sup{𝐶(𝐱) ∣ 𝐶 ∶ 𝕀𝑛 → 𝕀, 𝐴 ⩽ 𝐶 ⩽ 𝐵, 𝐶 is a 𝑘-increasing standardized function}.
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Proof. (i) ⇒ (ii): Assume that condition (i) holds and fix some 𝐱 ∈ 𝕀𝑛. Choose a dense countable mesh D ⊂ 𝕀𝑛 such that 𝐱 ∈ D and 
𝑆𝑛 ⊆ D . Note that for all 𝐝 ∈ D we have

𝑃 (𝐴,𝐵)
O,𝑘 (𝐝) = inf

𝐑∈R𝑘(𝕀𝑛),
𝑚𝐑(𝐝)<0

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐝)| ⩽ inf
𝐑∈R𝑘(D),
𝑚𝐑(𝐝)<0

𝐿(𝐴,𝐵)
𝑘

(𝐑)|𝑚𝐑(𝐝)| = 𝑃 (𝐴,𝐵)
O,𝑘,D (𝐝).

We repeat the proof from Theorem 3.1 by choosing 𝐝1 = 𝐱 in the proof of Proposition 4.2. By Equation (7.1) we get 𝐶(𝐱) = 𝐵(𝐱)
since 𝑃 (𝐴,𝐵)

O,𝑘,D (𝐱) ⩾ 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) by the above and 𝑃 (𝐴,𝐵)

O,𝑘 (𝐱) ⩾ 𝐵(𝐱) −𝐴(𝐱) by assumption. Doing this for all 𝐱 ∈ 𝕀𝑛 gives us condition (ii), 
because any 𝑘-increasing function between the standardized functions 𝐴 and 𝐵 is automatically standardized.

(ii) ⇒ (i): Now assume that condition (ii) holds. Fix some 𝐱 ∈ 𝕀𝑛 and some 𝜀 > 0. By condition (ii) there is a 𝑘-increasing 
standardized function 𝐶 ∶ 𝕀𝑛 → 𝕀 such that 𝐴 ⩽ 𝐶 ⩽ 𝐵 and 𝐵(𝐱) − 𝜀 < 𝐶(𝐱). Then 𝑃 (𝐴,𝐵)

O,𝑘 (𝐱) ⩾ 𝑃 (𝐴,𝐶)
O,𝑘 (𝐱) and, for any 𝐑 ∈ R𝑘(𝕀𝑛) with 

𝑚𝐑(𝐱) < 0, we have

𝐿(𝐴,𝐶)
𝑘

(𝐑) =𝐿(𝐶,𝐶)
𝑘

(𝐑)
⏟⏞⏞⏟⏞⏞⏟

⩾0

+
∑
𝐲∈𝕀𝑛

𝑚𝐑(𝐲)<0

𝑚𝐑(𝐲)(𝐴(𝐲) −𝐶(𝐲))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⩾0

⩾𝑚𝐑(𝐱)(𝐴(𝐱) −𝐶(𝐱)).

Hence, we get

𝑃 (𝐴,𝐶)
O,𝑘 (𝐱) = inf

𝐑∈R𝑘(𝕀𝑛)
𝑚𝐑(𝐱)<0

𝐿(𝐴,𝐶)
𝑘

(𝐑)|𝑚𝐑(𝐱)| ⩾ −(𝐴(𝐱) −𝐶(𝐱)) > 𝐵(𝐱) −𝐴(𝐱) − 𝜀

and, therefore, 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) ⩾ 𝐵(𝐱) −𝐴(𝐱). □

When the bounds are semicopulas, Condition S can be omitted and the equivalent condition (i) can be given as an equality.

Theorem 8.2. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be semicopulas with 𝐴 ⩽𝐵 and fix some integer 𝑘 ∈ [𝑛] ⧵{1}. Assume that 𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(𝕀𝑛). 
Then the following are equivalent:

(i) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) = 𝐵(𝐱) −𝐴(𝐱);

(ii) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝐵(𝐱) = sup{𝐶(𝐱) ∣ 𝐶 ∶ 𝕀𝑛 → 𝕀, 𝐴 ⩽ 𝐶 ⩽ 𝐵, 𝐶 is a 𝑘-increasing semicopula}.

Each of the conditions (i) and (ii) implies that 𝐵 is a quasi-copula.

Proof. Assume that the condition (i) holds. It trivially follows that for all 𝐱 ∈ 𝕀𝑛

𝑃 (𝐴,𝐵)
O,𝑘 (𝐱) ⩾𝐵(𝐱) −𝐴(𝐱). (8.1)

We prove the condition (ii) in the same way as in Theorem 8.1, but with the use of Theorem 3.2 instead of Theorem 3.1.
Now assume that condition (ii) holds. We verify condition (8.1), again, in the same way as in Theorem 8.1. Every 𝑘-increasing 

semicopula 𝐶 is also 2-increasing and thus 1-Lipschitz. By (ii) the function 𝐵 is a supremum of 1-Lipschitz functions, so it is 1-
Lipschitz and thus continuous. By Lemma 2.12 it holds that 𝑃 (𝐴,𝐵)

O,𝑘 (𝐱) ⩽ 𝐵(𝐱) −𝐴(𝐱). Together with (8.1), condition (i) follows. □

The proofs of the following two theorems rely on the proofs of Theorems 3.1 and 3.2 by constructing 𝐶 from above, replacing 
the function 𝛾 (𝐴,𝐵)

𝑘,D
by 𝛿(𝐴,𝐵)

𝑘,D
and using Equation (7.2) instead of Equation (7.1) (see also Section 5).

Theorem 8.3. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be standardized functions with 𝐴 ⩽ 𝐵 and fix some integer 𝑘 ∈ [𝑛]. Suppose that at least one of the 
functions 𝐴 and 𝐵 satisfies Condition S and that 𝐿(𝐴,𝐵)

𝑘
(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(𝕀𝑛). Then the following are equivalent:

(i) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝑃 (𝐴,𝐵)
M,𝑘

(𝐱) ⩾ 𝐵(𝐱) −𝐴(𝐱);
(ii) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝐴(𝐱) = inf{𝐶(𝐱) ∣ 𝐶 ∶ 𝕀𝑛 → 𝕀, 𝐴 ⩽ 𝐶 ⩽𝐵, 𝐶 is a 𝑘-increasing standardized function}.

Theorem 8.4. Let 𝐴, 𝐵∶ 𝕀𝑛 → 𝕀 be semicopulas with 𝐴 ⩽𝐵 and fix some integer 𝑘 ∈ [𝑛] ⧵{1}. Assume that 𝐿(𝐴,𝐵)
𝑘

(𝐑) ⩾ 0 for all 𝐑 ∈ R𝑘(𝕀𝑛). 
Then the following are equivalent:

(i) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝑃 (𝐴,𝐵)
M,𝑘

(𝐱) = 𝐵(𝐱) −𝐴(𝐱);
(ii) for all 𝐱 ∈ 𝕀𝑛 ∶ 𝐴(𝐱) = inf{𝐶(𝐱) ∣ 𝐶 ∶ 𝕀𝑛 → 𝕀, 𝐴 ⩽ 𝐶 ⩽𝐵, 𝐶 is a 𝑘-increasing semicopula}.
18

Each of the conditions (i) and (ii) implies that 𝐴 is a quasi-copula.
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Concluding remarks

We discuss 𝑘-increasing 𝑛-variate standardized functions, semicopulas and quasi-copulas. The case of 𝑘 = 𝑛 refers to the charac-
terization of 𝑛-variate copulas and the problem of relating a true copula to an imprecise copula has been solved in [28]. In [2–4,26]
several aspects of 𝑘-increasing 𝑛-quasi-copulas have been discussed, in particular for 𝑘 = 2 covering the case of supermodularity. 
One of our aims has been to further reduce the conditions imposed on the functions we start with. Thus we work with a larger class 
of functions but still obtain results on their avoidance of sure loss, i.e., provide a characterization of the existence of a 𝑘-increasing 
𝑛-variate standardized function and of a semicopula. Furthermore, we also show coherence results in this general setting. We expect 
that our results contribute to a deeper understanding of probability and imprecise probabilities.
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[28] M. Omladič, N. Stopar, Final solution to the problem of relating a true copula to an imprecise copula, Fuzzy Sets Syst. 393 (2020) 96–112, https://doi .org /10 .

1016 /j .fss .2019 .07 .002.
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