
Citation: Milanic, M.; Hren, R. GPU

Adding-Doubling Algorithm for

Analysis of Optical Spectral Images.

Algorithms 2024, 17, 74. https://

doi.org/10.3390/a17020074

Academic Editor: Francesc Pozo

Received: 26 December 2023

Revised: 31 January 2024

Accepted: 4 February 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

GPU Adding-Doubling Algorithm for Analysis of Optical
Spectral Images
Matija Milanic 1,2 and Rok Hren 1,3,4,*

1 Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
2 Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
3 Institute of Mathematics, Physics, and Mechanics, SI-1000 Ljubljana, Slovenia
4 Syreon Research Institute, 1145 Budapest, Hungary
* Correspondence: rok.hren@fmf.uni-lj.si

Abstract: The Adding-Doubling (AD) algorithm is a general analytical solution of the radiative
transfer equation (RTE). AD offers a favorable balance between accuracy and computational effi-
ciency, surpassing other RTE solutions, such as Monte Carlo (MC) simulations, in terms of speed
while outperforming approximate solutions like the Diffusion Approximation method in accuracy.
While AD algorithms have traditionally been implemented on central processing units (CPUs),
this study focuses on leveraging the capabilities of graphics processing units (GPUs) to achieve
enhanced computational speed. In terms of processing speed, the GPU AD algorithm showed an
improvement by a factor of about 5000 to 40,000 compared to the GPU MC method. The optimal
number of threads for this algorithm was found to be approximately 3000. To illustrate the utility
of the GPU AD algorithm, the Levenberg–Marquardt inverse solution was used to extract object
parameters from optical spectral data of human skin under various hemodynamic conditions. With
regards to computational efficiency, it took approximately 5 min to process a 220 × 100 × 61 image
(x-axis × y-axis × spectral-axis). The development of the GPU AD algorithm presents an advancement
in determining tissue properties compared to other RTE solutions. Moreover, the GPU AD method
itself holds the potential to expedite machine learning techniques in the analysis of spectral images.

Keywords: adding-doubling method; GPU implementation; optical spectral images; tissue properties;
computational speed-up and accuracy

1. Introduction

Building on Stokes’ method to calculate the transmission of light through a pile of
plates [1], van de Hulst [2] in 1962 proposed the Adding-Doubling (AD) algorithm, an
efficient technique to solve the radiative transfer equation (RTE) within complex media,
such as clouds, aerosols, and biological tissues. Numerous studies have adopted the AD
algorithm to advance our understanding of atmospheric processes and remote sensing
applications [3–5], luminescence in solar cells [6], biomedical optics [7,8], and photovoltaic
and nuclear reactor research [9–11].

Briefly, the AD algorithm consists of two essential components: the Doubling method
and the Adding method [12,13]. The Doubling method relies on prior knowledge of the
reflection and transmission properties of a single thin homogeneous layer. By combin-
ing two identical slabs and summing their individual contributions, the reflection and
transmission of a slab that is twice as thick can be determined. This doubling process
is then iteratively applied, progressively increasing the slab’s thickness until the desired
magnitude is achieved. The Adding method extends the Doubling method by allowing
for the simulation of media that consist of diverse layers and involve instances of internal
reflection at boundaries. By incorporating dissimilar slabs into the calculations, we can
achieve a more comprehensive representation of complex media structures.

Algorithms 2024, 17, 74. https://doi.org/10.3390/a17020074 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020074
https://doi.org/10.3390/a17020074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4417-0293
https://doi.org/10.3390/a17020074
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020074?type=check_update&version=1

Algorithms 2024, 17, 74 2 of 22

Understanding the interaction of photons with biological tissues holds immense
importance in various fields, including medical imaging, diagnostics, and laser therapy.
To model this intricate process, two widely used approaches are the Monte Carlo (MC)
method [14] and the AD algorithm [13]. The MC method is a statistical technique that
simulates photon transport by creating random photon paths within the tissue. It uses
probabilistic calculations to model absorption, scattering, and reflection/refraction events
based on the tissue’s optical properties. Starting from an initial position and direction,
photons are randomly sampled and tracked as they interact with the tissue. At each
interaction, the path length and probability of scattering or absorption are considered,
allowing the simulation to replicate the complex behavior of photons in a stochastic manner.
The MC method offers several advantages, including its flexibility to simulate complex
geometries and heterogeneous tissue structures. It is particularly adept at capturing
intricate molecular and cellular photon interactions, making it valuable for biological
and medical research. However, due to its statistical nature, the MC method requires an
extremely large number of photons to achieve accurate results, leading to computationally
intensive simulations. Our preliminary unpublished research revealed that analyzing a
hyperspectral image of dimension 223 × 452 using the GPU MC method would entail
approximately 9 min per spectrum, or roughly 1.7 years per single image, which would
render the MC method impractical. Similar computational times when using the MC
method were also reported in the literature [15].

The AD algorithm enables the calculation of light propagation in layered turbid media
in a slab geometry. The algorithm breaks down the biological tissue into multiple layers,
each with its specific properties, such as absorption and scattering coefficients. Using an
iterative process, it determines the reflected and transmitted light at each layer interface.
By aggregating the contributions from each layer, the AD algorithm provides an estimation
of the overall photon distribution within the tissue. The AD algorithm accounts for both
the multiple scattering events within the tissue and the interface effects, yielding accurate
predictions of light transport. This capability is particularly valuable in applications such as
skin imaging, where the multiple layers of the epidermis and dermis need to be accounted
for. The AD algorithm is particularly well-suited for multi-layer homogeneous tissue
models with known optical properties, providing a quick and efficient solution, which may
be, in turn, practical for real-time simulations, clinical applications, and large-scale studies.

In recent years, the integration of graphics processing units (GPUs) has proven to be
highly effective in reducing execution time and has revolutionized computational efficiency
and accelerated processing, particularly in the field of medical imaging [16–18]. GPU platforms
provide means to accelerate specific computational tasks and algorithms, surpassing the per-
formance of central processing units (CPUs) while retaining a desirable level of flexibility [19].
In our study, we focus on implementing AD on GPUs to achieve enhanced computational
speed; additionally, we augment GPU AD with the GPU Levenberg–Marquardt (LM) algo-
rithm to extract object parameters from optical spectral data. The overall goal of our study
was to address the practical challenges associated with analyzing hyperspectral images. We
aimed to develop an algorithm that could deliver both computational speed and accuracy
while yielding results comparable to the MC method. With this pragmatic focus, we sought to
make the analysis of hyperspectral images more manageable.

2. Materials and Methods
2.1. Preliminaries of Adding Doubling (AD) Algorithm

The AD algorithm is specifically designed for layered geometries with uniform irradi-
ation, requiring each layer to possess homogeneous optical properties. These assumptions
align well with the requirements of layered or homogenous samples used in hyperspectral
imaging (HSI), making the AD algorithm a highly practical and appealing method for fast
analysis of hyperspectral images. In this subsection, the details of the AD algorithm are
presented, following the formalism of Prahl et al. [13]. We have divided the AD algorithm
into seven distinct steps, outlined in Sections 2.1.1–2.1.7.

Algorithms 2024, 17, 74 3 of 22

2.1.1. Division of Incident and Reflected Light into Fluxes

Within the framework of the AD algorithm, incoming and outcoming light is divided
into m conical fluxes [13], as shown in Figure 1. A cone of light incident on any flat surface
will transmit and reflect different amounts of light depending on the angle of departure.
To capture this, we introduce the notation for the cosine of an arbitrary angle νc = cos(θ).
The function R(ν′, ν) denotes the reflectance in the direction ν for light incident from the
direction ν′. The incident light flux, denoted as I+(ν′), and the reflected light flux, denoted
as I−(ν), can be expressed in the matrix form as: I−(ν1)

...
I−(νm)

 =

R(ν1
′, ν1) · · · R(ν1

′, νm)
...

...
R(νm

′, ν1) · · · R(νm
′, νm)

×

 I+(ν′ ′)
...

I+(νm
′)

 (1)

Analytically, the reflected flux can also be calculated as an integral:

I−(ν) =
∫ ν2

ν1

I+
(
ν′
)

R
(
ν′, ν

)
2ν′ dν′ (2)

where ν1 in ν2 are the boundary angles of the reflected flux I−(ν). The total reflected flux
for the normal incidence Rc can be determined by the Equation:

Rc =
∫ 1

0

∫ 1

0

δ(1 − ν′)

2ν′
R
(
ν′, ν

)
2ν′ dν′ 2ν dν =

∫ 1

0
R(1, ν) 2ν dν (3)

Algorithms 2024, 17, x FOR PEER REVIEW 3 of 23

The AD algorithm is specifically designed for layered geometries with uniform irra-

diation, requiring each layer to possess homogeneous optical properties. These assump-

tions align well with the requirements of layered or homogenous samples used in hyper-

spectral imaging (HSI), making the AD algorithm a highly practical and appealing

method for fast analysis of hyperspectral images. In this subsection, the details of the AD

algorithm are presented, following the formalism of Prahl et al. [13]. We have divided the

AD algorithm into seven distinct steps, outlined in Sections 2.1.1–2.1.7.

2.1.1. Division of Incident and Reflected Light into Fluxes

Within the framework of the AD algorithm, incoming and outcoming light is divided

into m conical fluxes [13], as shown in Figure 1. A cone of light incident on any flat surface

will transmit and reflect different amounts of light depending on the angle of departure.

To capture this, we introduce the notation for the cosine of an arbitrary angle νc = cos(θ).

The function R(ν′, ν) denotes the reflectance in the direction ν for light incident from the

direction ν′. The incident light flux, denoted as I+(ν′), and the reflected light flux, denoted

as I−(ν), can be expressed in the matrix form as:

()

()

() ()

() ()

()

()

1 1 1 1 1

1

', ', '

', ', '

m

m m m m m

I R R I

I R R I

− +

− +

=

(1)

Analytically, the reflected flux can also be calculated as an integral:

() () ()
2

1

' ', 2 'd 'I I R

− +
=

(2)

where ν1 in ν2 are the boundary angles of the reflected flux I−(ν). The total reflected flux for

the normal incidence Rc can be determined by the Equation:

()
() ()

1 1 1

0 0 0

1 '
', 2 'd '2 d 1, 2 d

2 '
cR R R

−
= =

(3)

Figure 1. Division of incident and reflected light into m conical segments.

2.1.2. Approximating Reflected Flux Integral Using Quadrature

In the context of the AD algorithm, it is necessary to discretize the integral (Equation

(3)) to convert it into matrix form, for which quadrature should be implemented. The in-

tegral of the function f(x) on the interval (a, b) with a weight g(x) can be approximated by

summing over m points as:

() () ()
1

d
mb

i i
a

i

f x g x x f x w
=

(4)

Figure 1. Division of incident and reflected light into m conical segments.

2.1.2. Approximating Reflected Flux Integral Using Quadrature

In the context of the AD algorithm, it is necessary to discretize the integral (Equation (3))
to convert it into matrix form, for which quadrature should be implemented. The integral of
the function f (x) on the interval (a, b) with a weight g(x) can be approximated by summing
over m points as: ∫ b

a
f (x) g(x)dx ≈

m

∑
i=1

f (xi)wi (4)

The points xi and associated weights wi can be chosen to be either uniformly dis-
tributed over the interval or as specific points, such as the zeros of the Legendre polynomi-
als. Using the relation from Equation (4), the integral from Equation (3) can be expressed as:

∫ 1

0
R(1, ν) 2ν dν ≈

m

∑
i=1

2νi wi Ri,m (5)

where Ri,m is the reflectance matrix. AD algorithm further divides the integral (expression
for the total reflected flux for the normal incidence Rc in Equation (3)) into two parts: the

Algorithms 2024, 17, 74 4 of 22

first part on the interval (0, νc), and the second part on the interval (νc, 1], where νc is the
cosine of the critical angle:

Rc =
∫ νc

0
R(1, ν) 2ν dν +

∫ 1

νc
R(1, ν) 2ν dν (6)

For the first integral, we use the Gaussian quadrature, and the Radau quadrature is
used for the second one. The distinction between these two quadrature methods lies in
the consideration of endpoints. In Gaussian quadrature, both endpoints are not included,
whereas Radau quadrature accounts for only one endpoint. By adopting this approach,
we can avoid the potential singularity at ν = 0 in the Gaussian quadrature, while ν = 1 is
taken as a quadrature point in the Radau quadrature. In total, we need to find m roots, one
for each conical flux: Gaussian and Radau quadratures obtain each half of the quadrature
points n = m/2.

In the Radau quadrature, we thus need to find n roots of the following Equation:

Rn−1(xi) +
xi − 1

n
Pn−1

′(xi) = 0 (7)

where Pn−1(xi) is the (n − 1)th Legendre polynomial of order zero and P′
n−1(xi) denotes

the first derivative of the (n − 1)th Legendre polynomial. Since these roots correspond
to the integration range from −1 to 1, the appropriate adjustments need to be made for
integration angles νc and weights wi when performing integration from νc to 1:

νi =
1+νc

2 − 1−νc
2 xi

wi =
1−νc

2(1−xi)Pn−1
′(xi)

2

(8)

Similarly, for the Gaussian quadrature, we need to find n roots of the following Equation:

Pn(xi) = 0 (9)

with the adjustments made to accommodate the integration range from 0 to νc:

νi =
νc
2 (1 − xi)

wi =
νc

(1−xi
2) Pn

′(xi)
2 =

νc(1−xi
2)

(n+1)2 Pn+1(xi)
2

(10)

2.1.3. Calculating Scattering Phase Function

Two matrices are constructed, one for forward scattering, denoted as P+, and one for
backward scattering, denoted as P−. The elements of scattering matrix Pij determine the
fraction of light scattered from an incident cone with angle νi into a cone with angle νj and
are calculated by averaging the phase function p(νi, νj) over all possible azimuthal angles
for fixed angles νi and νj:

Pi,j =
1

2π

∫ 2π

0
p
(

νiνj +
√

1 − νi
2
√

1 − νj
2 cos(ϕ)

)
dϕ (11)

The choice between obtaining the forward scattering matrix P+ or the backward
scattering matrix P− depends on the signs of angles νi and νj. If both angles are either
positive or negative, the forward scattering matrix P+ is obtained; otherwise, the backward
scattering matrix P− is obtained. Furthermore, it is required that the quadrature weighted
sum over outgoing angles i for a given incoming angle j adds to 2:

m

∑
i=1

(
Pi,j

+ + Pi,j
−)wi = 2 (12)

Algorithms 2024, 17, 74 5 of 22

Matrices P+ and P− can be calculated analytically if we utilize the Hanyey–Greenstein
scattering phase function (SPF), which is defined as:

p(ν, g) =
1
2

1 − g2

(1 + g2 + 2gν)
3
2

(13)

where −1 < g < 1 is known as the asymmetry factor. The scattering matrix can be calculated
from the following expression:

p(ν, g) = 1−g2

πw−
√

w+
E0

(
4gB
w+

)
w± = 1 + g2 − 2g(A ± B)

(14)

where A = νi νj and B =
√

1 − νi
2
√

1 − νj
2. and E0 (x) denotes an elliptic integral of the

second kind.
Alternatively, matrices P+ and P− can be calculated through numerical integration:

Pi,j
± =

1
2π

∫ 2π

0
p(A + B cos(z))dz (15)

with A and B as defined above. In this case, we employ the Gegenbauer scattering phase
function (SPF), given by:

p(ν, g, α) = 2αg
(
1 − g2)2α

(1 + g)2α − (1 − g)2α

1

(1 + g2 − 2gν)
1+α

(16)

It has been demonstrated by Engler [20] that when using the trapezoidal rule for nu-
merical integration, an exponential convergence to the accurate scattering matrix elements
can be achieved.

2.1.4. Initializing Starting Layer

A very thin layer must be initially simulated with optical thickness dτ, albedo a, and
scattering matrices P+ and P−. The optical thickness is calculated as τ = (µa + µs)·d and
albedo as a = µs/(µa + µs), where d represents the thickness of the entire layer, and µs
and µa are the scattering and absorption coefficients of the layer. Different approaches
for initializing the layer exist, with diamond initialization being derived directly from the
time-independent, one-dimensional, azimuthally averaged RTE; the details of derivation
can be found elsewhere [15]. The initialization involves determining initial matrices using
the following matrix relations:

c = diag(w)

M = diag
(

1
ν

)
A = M

(
I − a

2 P+c
)dτ

2

B = a
2 MP−c dτ

2

G =
(

I + A − B(I + A)−1B
)−1

R0 = 2GB(I + A)−1

T0 = 2G − I

(17)

2.1.5. Constructing the Entire Layer

Once the reflectance and transmittance matrices of the initial thin layer are obtained,
we can proceed to construct the entire layer. However, even before performing any cal-
culations for the initial layer matrices, we must select an appropriate value for the initial

Algorithms 2024, 17, 74 6 of 22

layer optical depth. In the literature, two criteria have been proposed for this selection:
dτ < 0.01 and dτ < νc− For example, when using criterion dτ < 0.01, we can calculate
number of doubling steps required:

nd = floor
(

log
(

d
0.01|ν1|

)
/log(2) + 1

)
(18)

The initial optical depth is then calculated as dτ = τ/(2)n
d. with nd defined by Equa-

tion (18). To obtain the reflectance and transmittance matrices for the entire layer, the
following iterative procedure is performed:

Gk =
(
I − Rk

2)−1

Rk+1 = TkGkRkTk + Rk

Tk+1 = TkGkTk

(19)

where k is the number of steps from 0 to nd − 1. The matrices calculated under Equation (17)
obtain an index of 0. After that, with each doubling of the layer, the index increases by 1.

2.1.6. Calculating Reflectance and Transmittance

For normal irradiation, the resulting approximation for the reflectance and transmit-
tance is given by:

Rn =
∫ 1

0 R(1, ν) 2ν dν = m2

2

m
∑

i=1
2νiwiRi,m

Tn =
∫ 1

0 T(1, ν) 2ν dν =m2

2

m
∑

i=1
2νiwiTi,m

(20)

while for isotropic irradiation, it is expressed by:

Rt =
∫ 1

0 2ν dν
∫ 1

0 R(ν, ν′) 2ν′ dν′ =
(

m2

2

)2 m
∑

j=1
2νjwj

m
∑

i=1
2νiwiRi,j

Tt =
∫ 1

0 2ν dν
∫ 1

0 T(ν, ν′) 2ν′ dν′ =
(

m2

2

)2 m
∑

j=1
2νjwj

m
∑

i=1
2νiwiTi,j

(21)

2.1.7. Adding Boundary Layers

Finally, boundary conditions are included as an additional layer when there is a
refractive index mismatch between the layer and the surrounding medium. Since the
boundary is flat, the Fresnel equations can be used:

rs =
(

n1ν1−n2ν2
n1ν1+n2ν2

)2

rp =
(

n1ν2−n2ν1
n1ν2+n2ν1

)
r = rs+rp

2

t = 1 − r

(22)

As we are dealing with nonpolarized light, we simply average the reflectivities for
the s and p polarizations. Before calculating the reflectance and transmittance values, it is
necessary to determine the critical angle where total reflection starts:

νc =

√
1 −

(
n1

n2

)2
(23)

Algorithms 2024, 17, 74 7 of 22

For angles smaller than the critical angle, the cosines outside layer ν1 are calculated
from the cosines inside layer ν2 using Snells’s refraction law:

ν1 =

√√√√(1 −
(

n2

n1

√
1 − ν22

)2
)

(24)

The boundary matrices are then formulated as follows:

R01
i,j =

r(ν2)δi,j, ν2 > νc

δi,j, ν2 ≤ νc

R01 = R10

T01 = 1 − R01

T10 = T01

(25)

The reflection r(νi) is the unpolarized Fresnel reflection function, while the Kronecker
delta implies matrices R01, R10, T10, and T01 are diagonal, which means that light is
specularly reflected at an angle equal to the incident angle [12]. Figure 2 depicts a boundary
between medium 0 and 1 with different refraction indices.

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 23

Figure 2. Scheme of a boundary between medium 0 and 1 with different refraction indices. The

reflectances R and transmittances T for both media are included.

The upper boundary is added to the layer, and the corresponding reflectance and

transmittance matrices are calculated in the following way:

()

()

1
10

1

02 01

1

20 10

1

1
10

2

20 10

2

02 10 01

2

t

t

t t t

t

t

t

−

−

= −

=

= +

= −

=

=

γ I R R

T T γ T

R Tγ R T R

γ I R R

T T γ T

R T γ R T

(26)

To incorporate the bottom boundary layer, different cases can be specified. In the first

case, when the bottom layer is specular, the reflectance matrix RL equals:

0

0

0

0 0

0 0

0 0

L

R

R

R

 =

R

(27)

where R0 stands for the surface reflectance. In this scenario, only the reflectance matrix at

the sample surface is relevant, while the other matrices are 0.

In the second case, when the bottom layer is Lambertian, the reflectance matrix is

calculated as follows:

1 1 2 2

0

1 1

2L

m m

w w

R

w w

 =

R

(28)

For the third case, when the bottom layer is assumed to be the same as the external

medium, we can employ previously calculated reflectance and transmittance matrices

from Equation (25). The reflectance matrices R30 and R03, as well as the transmittance ma-

trices T30 and T03, are determined as follows:

Figure 2. Scheme of a boundary between medium 0 and 1 with different refraction indices. The
reflectances R and transmittances T for both media are included.

The upper boundary is added to the layer, and the corresponding reflectance and
transmittance matrices are calculated in the following way:

γ1 =
(
I − R10Rt

)−1

T02 = Ttγ1T01

R20 = Ttγ1R10Tt + Rt

γ2 =
(
I − RtR10)−1

T20 = T10γ2Tt

R02 = T10γ2RtT01

(26)

To incorporate the bottom boundary layer, different cases can be specified. In the first
case, when the bottom layer is specular, the reflectance matrix RL equals:

RL =

R0 0 . . . 0

0 R0
. . . 0

...
.

...
0 0 . . . R0

 (27)

where R0 stands for the surface reflectance. In this scenario, only the reflectance matrix at
the sample surface is relevant, while the other matrices are 0.

Algorithms 2024, 17, 74 8 of 22

In the second case, when the bottom layer is Lambertian, the reflectance matrix is
calculated as follows:

RL = 2R0

ν1w1 ν2w2 · · ·
...

. . .
...

ν1w1 · · · νmwm

 (28)

For the third case, when the bottom layer is assumed to be the same as the external
medium, we can employ previously calculated reflectance and transmittance matrices from
Equation (25). The reflectance matrices R30 and R03, as well as the transmittance matrices
T30 and T03, are determined as follows:

γ1 =
(
I − R20R23)−1

T03 = T23γ1T02

R30 = T23γ1R20T32 + R32

γ2 =
(
I − R23R20)−1

T30 = T20γ2T32

R03 = T20γ2R23T02 + R02

(29)

In the situation where the bottom layer is the same as the external medium, the
boundary conditions are identical on the upper and bottom boundaries; thus, we have
R01 = R32, R10 = R23, T01 = T32, and T10 = T23. If the bottom layer is specular or Lambertian,
then R23 = RL, and only matrix R03 is relevant, as all other matrices R30, T03, and T30 are 0.
Once we have obtained all the reflectance and transmittance matrices denoted generically
as M, it is necessary to normalize them to ensure they are symmetrical:

Mi,j =
Mi,j

2νjwj
(30)

After normalization, we can calculate the reflectance and transmittance for normal incidence:

R03
n =

m
∑

i=1
2νiwiR03

i,m

T03
n =

m
∑

i=1
2νiwiT03

i,m

(31)

For isotropic irradiance, we can calculate corresponding values of reflectance and
transmittance by following Equation (21). Finally, the specular reflectance is determined
as follows:

Rsp
n =

m

∑
i=1

2νiwiR01
i,m (32)

2.2. Implementation of the Adding-Doubling (AD) Algorithm

A GPU-accelerated AD algorithm for single-layer tissue was developed using MAT-
LAB’s parallel toolbox. We utilized the library supporting batched functions, which enabled
us to perform parallel calculations of several smaller matrices. Initialization of the CUDA
library and running the algorithm on GPU required about 3 s; however, this initialization
only needed to be performed once. Subsequent memory allocations would have posed
an obstacle, potentially leading to time delays. To tackle this issue, we undertook a com-
prehensive rearrangement of the code to eliminate the need for for loops and enable the
application of the code to larger arrays, specifically optimized for the operations with
the previously mentioned library. In this way, we avoided the problem of performance
degradation, which would have happened when calculating small matrices on GPU, as
the matrix operation times would be comparable to data transfer times between GPU and

Algorithms 2024, 17, 74 9 of 22

CPU. Figure 3 shows the flowchart of the CUDA implementation of the GPU-accelerated
AD algorithm.

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 23

Figure 3. Flowchart of the proposed GPU-accelerated Adding-Doubling algorithm, which runs ex-

clusively on a graphics processing unit (GPU). The first step, “Initialize object”, a computationally

intensive process, is executed only once during the algorithm initialization. The “Set tissue proper-

ties” and “Perform Adding Doubling” steps are run whenever there is a change in tissue properties.

A detailed description of each algorithm step can be found in Prahl [12].

In the following, we will describe the individual parts of the AD1L class. The algo-

rithm is implemented in a custom class AD1L. The class is initialized by calling the con-

structor AD1L

obj = AD1L(lam, [dtype]);

where lam represents an array of wavelengths with Nl rows. The dtype parameter is op-

tional and specifies the precision used in the algorithm. There are two options: single and

double. By default, the precision is set to single as it provides faster computation. An exam-

ple of the class initialization with double precision is as follows:

A = AD1L(lam, ‘dtype’,’double’);

First, the algorithm is initialized by specifying the properties which remain constant

throughout the computation. This includes calculating tissue matrices, such as scattering

and reflectance/refraction matrices. The algorithm is initialized by calling the function in-

itPR with the following syntax:

obj = obj.initPR(g, [‘alpha’, alpha], [‘SPFtype’, SPFtype], [‘R0L’,

R0L][‘nE’, nE], [‘nS’, nS], [‘m’, m], [‘Nsam’,Nsam])

where g is a matrix of tissue anisotropies at the specified wavelengths lam and samples;

the parameters in [] are optional. These optional parameters include:

1. alpha—the Gegenbauer scattering phase function (SPF) exponent at the specified

wavelengths lam for each sample. It is empty by default;

2. SPFtype—the type of SPF to be used. Currently implemented options are Henyey–

Greenstein (HG) SPF and Gegenbauer (GB) SPF. To select HG SPF, the parameter

value is 0, and to select GB SPF, the parameter value is 1. If GB SPF is selected, the

alpha parameter must also be specified;

3. R0L—the reflectance of the bottom substrate, ranging between 0 and 1, if it is different

from the upper environmental medium. This parameter is used in cases where a sam-

ple is placed on top of another thick substrate, such as a support plate. R0L is a matrix

with Nl rows corresponding to lam and Ns columns corresponding to the number of

samples;

4. nE—a column vector of environmental medium refraction indices with Nl values cor-

responding to lam. By default, the value is set to 1, representing air;

Figure 3. Flowchart of the proposed GPU-accelerated Adding-Doubling algorithm, which runs
exclusively on a graphics processing unit (GPU). The first step, “Initialize object”, a computationally
intensive process, is executed only once during the algorithm initialization. The “Set tissue properties”
and “Perform Adding Doubling” steps are run whenever there is a change in tissue properties.
A detailed description of each algorithm step can be found in Prahl [12].

In the following, we will describe the individual parts of the AD1L class. The al-
gorithm is implemented in a custom class AD1L. The class is initialized by calling the
constructor AD1L

obj = AD1L(lam, [dtype]);

where lam represents an array of wavelengths with Nl rows. The dtype parameter is optional
and specifies the precision used in the algorithm. There are two options: single and double.
By default, the precision is set to single as it provides faster computation. An example of
the class initialization with double precision is as follows:

A = AD1L(lam, ‘dtype’, ’double’);

First, the algorithm is initialized by specifying the properties which remain constant
throughout the computation. This includes calculating tissue matrices, such as scattering
and reflectance/refraction matrices. The algorithm is initialized by calling the function
initPR with the following syntax:

obj = obj.initPR(g, [‘alpha’, alpha], [‘SPFtype’, SPFtype], [‘R0L’,

R0L][‘nE’, nE], [‘nS’, nS], [‘m’, m], [‘Nsam’, Nsam])

where g is a matrix of tissue anisotropies at the specified wavelengths lam and samples; the
parameters in [] are optional. These optional parameters include:

1. alpha—the Gegenbauer scattering phase function (SPF) exponent at the specified
wavelengths lam for each sample. It is empty by default;

2. SPFtype—the type of SPF to be used. Currently implemented options are Henyey–
Greenstein (HG) SPF and Gegenbauer (GB) SPF. To select HG SPF, the parameter
value is 0, and to select GB SPF, the parameter value is 1. If GB SPF is selected, the
alpha parameter must also be specified;

3. R0L—the reflectance of the bottom substrate, ranging between 0 and 1, if it is different
from the upper environmental medium. This parameter is used in cases where a
sample is placed on top of another thick substrate, such as a support plate. R0L is

Algorithms 2024, 17, 74 10 of 22

a matrix with Nl rows corresponding to lam and Ns columns corresponding to the
number of samples;

4. nE—a column vector of environmental medium refraction indices with Nl values
corresponding to lam. By default, the value is set to 1, representing air;

5. nS—a column vector of substrate refraction indices with Nl values corresponding to
lam. By default, the value is set to 1.4.+;

6. m—the number of fluxes (even integer >= 2) used in the algorithm. The default value
is 20, as it has been found to provide adequate accuracy for most combinations of
optical parameters;

7. Nsam—the number of different spectra being calculated. By default, it is set to 1,
meaning that only one set of different wavelengths is considered.

An example of initializing the algorithm, providing g for Gegenbauer SPF and 20 fluxes,
can be performed as follows:

A.initPR(g,’SPFtype’,1,’alpha’,alpha,’m’,20);

where g is a column vector of Nl anisotropy factors, alpha is a column vector of Nl GB SPF
exponents, and m is the number of fluxes.

The variable properties of the tissues are set by calling the setOP method. The calling
syntax is

obj = obj.setOP(muA, muS, d)

where muA and muS represent the matrices of absorption and scattering coefficients in
units of [1/cm], and d is the layer thickness in units of [cm]. The dimensions of muA and
muS are Nl rows and Ns columns, while d has Ns values, one for each sample.

An example of calling this method is

A.setOP(muAar,muSar,d);

Finally, the solveAD is called to calculate the reflectance and transmittance values at
the specified wavelengths. The calling syntax is

obj = obj.solveAD()

Although this method does not directly return any values, it stores the results in the
class properties. Currently, only normal incidence of the illumination and complete diffuse
reflectance and transmittance (e.g., all radiation in the exit hemispheres, two solid angles)
are supported.

The results can be retrieved through the following properties:

- obj.Rn—2 diffuse reflectance;
- obj.Tn—2 transmittance;
- obj.Rsp—specular reflectance.

An example of retrieving all these parameters in a MATLAB environment is:

[A.Rn, A.Tn, A.Rsp]

2.3. Single-Layer AD Model Simulations

To evaluate the accuracy and computational speed of the AD1L algorithm, a compari-
son was made with layered MC results. The MC simulation was conducted using CUDA
MCML software [21], which provided sufficient computational speed for the calculations.
To achieve acceptable accuracy, 107 photons were simulated. The simulated single layer had
fixed properties, including a thickness d of 1 cm, a sample refraction index nS of 1.4, and an
environmental medium refraction index nE of 1, corresponding to air. The environmental
medium was present on both sides of the layer.

Algorithms 2024, 17, 74 11 of 22

To cover a range of optical properties similar to the SiliGlass tissue phantoms pre-
pared in our lab, various absorption coefficients muA (0.1, 0.5, and 1.0/cm) and scattering
coefficients muS (25, 50, 100, and 150/cm) were used. The computation was carried out
using a single GeForce GTX TITAN X graphic card (Nvidia, Santa Clara, CA, USA).

2.4. Inverse Adding-Doubling (IAD) Solution

In addition to the forward problem, the GPU AD algorithm demonstrated utility in
solving the inverse scattering problem. The human skin model used for this purpose
consisted of two layers: epidermis and dermis (Figure 4). The epidermis and dermis
are characterized by various optical parameters, which are discussed in more detail in
Appendix A. The diamond initialization was used to simulate an initial thin skin layer,
and the incident and reflected light were divided into 20 fluxes to ensure accurate results.
To perform non-linear least-squares fitting, the Levenberg–Marquardt (LM) algorithm
(Appendix B) was adopted on the GPU; the maximum number of iterations for the LM
algorithm was limited to 200. A large batch of HSI reflectance spectra in the range of
430–750 nm with a step of 5 nm was fitted at once, enabling a rapid solution of the
inverse scattering problem. The total number of fitting parameters was 11; however, only
6 were considered free variables: (a) volume fraction of melanin, fm, (b) volume fraction of
deoxyhemoglobin, fHb, (c) volume fraction of oxyhemoglobin, fHbO2, (d) scattering factor a,
where a = µs (λ = 500 nm), (e) scattering power, b, and (f) fraction of Rayleigh scattering,
fRay. Among these free parameters, (a) and (d–f) were fitted for the epidermis, and (b–f)
were fitted for the dermis. Several fixed parameters were also defined: (a) volume fraction
of bilirubin, fbrub, was set to 0.01, (b) volume fraction of reduced cytochrome oxidase, fCO,
was fixed to 0.01; (c) volume fraction of oxidized cytochrome oxidase, fCOO2, was set to 0.01,
(d) epidermis thickness, depi, was fixed at 0.2 mm, and (e) dermis thickness, dder, was set to
1 cm. While the LM algorithm allowed the fitting of all parameters, the above parameters
were fixed to prevent crosstalk between different sets of parameters and, therefore, improve
the robustness of the inverse problem-solving process.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 23

coefficients muS (25, 50, 100, and 150/cm) were used. The computation was carried out

using a single GeForce GTX TITAN X graphic card (Nvidia, Santa Clara, CA, USA).

2.4. Inverse Adding-Doubling (IAD) Solution

In addition to the forward problem, the GPU AD algorithm demonstrated utility in

solving the inverse scattering problem. The human skin model used for this purpose con-

sisted of two layers: epidermis and dermis (Figure 4). The epidermis and dermis are char-

acterized by various optical parameters, which are discussed in more detail in Appendix

A. The diamond initialization was used to simulate an initial thin skin layer, and the inci-

dent and reflected light were divided into 20 fluxes to ensure accurate results. To perform

non-linear least-squares fitting, the Levenberg–Marquardt (LM) algorithm (Appendix B)

was adopted on the GPU; the maximum number of iterations for the LM algorithm was

limited to 200. A large batch of HSI reflectance spectra in the range of 430–750 nm with a

step of 5 nm was fitted at once, enabling a rapid solution of the inverse scattering problem.

The total number of fitting parameters was 11; however, only 6 were considered free var-

iables: (a) volume fraction of melanin, fm, (b) volume fraction of deoxyhemoglobin, fHb, (c)

volume fraction of oxyhemoglobin, fHbO2, (d) scattering factor a, where a = µs (λ = 500 nm),

(e) scattering power, b, and (f) fraction of Rayleigh scattering, fRay. Among these free pa-

rameters, (a) and (d–f) were fitted for the epidermis, and (b–f) were fitted for the dermis.

Several fixed parameters were also defined: (a) volume fraction of bilirubin, fbrub, was set

to 0.01, (b) volume fraction of reduced cytochrome oxidase, fCO, was fixed to 0.01; (c) vol-

ume fraction of oxidized cytochrome oxidase, fCOO2, was set to 0.01, (d) epidermis thick-

ness, depi, was fixed at 0.2 mm, and (e) dermis thickness, dder, was set to 1 cm. While the LM

algorithm allowed the fitting of all parameters, the above parameters were fixed to prevent

crosstalk between different sets of parameters and, therefore, improve the robustness of

the inverse problem-solving process.

Figure 4. The two-layer skin model consists of the epidermis and dermis and corresponding optical

parameters. fm—volume fraction of melanin; a—scattering factor, where a = µs (λ = 500 nm); b—scat-

tering power; fRay—fraction of Rayleigh scattering; fHb—volume fraction of deoxyhemoglobin; fHbO2—

volume fraction of oxyhemoglobin; fbrub—volume fraction of bilirubin; fCO—volume fraction of re-

duced cytochrome oxidase; fCOO2—volume fraction of oxidized cytochrome oxidase; depi—epidermis

thickness; dder—dermis thickness.

To test the reliability and robustness of the GPU LM algorithm, a healthy partici-

pant’s forearm was imaged with the HSI-integrated imaging system [22] before, during,

and after applying a blood pressure cuff. Prior to cuff application, a steady-state image

was acquired. The cuff was then inflated to about 200 mmHg to obstruct the blood flow

completely, and the image was recorded three minutes after the initial inflation. Subse-

quently, the cuff was deflated, and one minute later, another image was captured. Hyper-

spectral images were acquired and processed as described in detail in our previous pub-

lications [22–24].

3. Results

3.1. Comparison between the Performance of GPU-Accelerated AD and CPU AD Algorithms

In the preliminary step, we compared GPU-accelerated AD and CPU AD algorithms.

By repeatedly executing each algorithm 1000 times, we derived average times of solveAD

as representative values, thereby minimizing the impact of external factors. For fixed val-

Figure 4. The two-layer skin model consists of the epidermis and dermis and corresponding op-
tical parameters. fm—volume fraction of melanin; a—scattering factor, where a = µs (λ = 500 nm);
b—scattering power; fRay—fraction of Rayleigh scattering; fHb—volume fraction of deoxyhemoglobin;
fHbO2—volume fraction of oxyhemoglobin; fbrub—volume fraction of bilirubin; fCO—volume frac-
tion of reduced cytochrome oxidase; fCOO2—volume fraction of oxidized cytochrome oxidase;
depi—epidermis thickness; dder—dermis thickness.

To test the reliability and robustness of the GPU LM algorithm, a healthy participant’s
forearm was imaged with the HSI-integrated imaging system [22] before, during, and after
applying a blood pressure cuff. Prior to cuff application, a steady-state image was acquired.
The cuff was then inflated to about 200 mmHg to obstruct the blood flow completely, and
the image was recorded three minutes after the initial inflation. Subsequently, the cuff was
deflated, and one minute later, another image was captured. Hyperspectral images were
acquired and processed as described in detail in our previous publications [22–24].

3. Results
3.1. Comparison between the Performance of GPU-Accelerated AD and CPU AD Algorithms

In the preliminary step, we compared GPU-accelerated AD and CPU AD algorithms.
By repeatedly executing each algorithm 1000 times, we derived average times of solveAD
as representative values, thereby minimizing the impact of external factors. For fixed values

Algorithms 2024, 17, 74 12 of 22

of absorption coefficient muA = 0.1/cm, scattering coefficient muS = 25/cm, and a number
of fluxes m = 20, we found that the GPU-accelerated AD algorithm was roughly seven
times faster than the CPU AD algorithm (time per sample of 1.5 × 10−4 s vs. 1.1 × 10−3 s)
(Figure 5). As shown in Figure 5, time per sample stabilized at around 1000 samples for
GPU, while time per sample for CPU changed only marginally with the number of samples.

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 23

ues of absorption coefficient muA = 0.1/cm, scattering coefficient muS = 25/cm, and a num-

ber of fluxes m = 20, we found that the GPU-accelerated AD algorithm was roughly seven

times faster than the CPU AD algorithm (time per sample of 1.5 × 10−4 s vs. 1.1 × 10−3 s)

(Figure 5). As shown in Figure 5, time per sample stabilized at around 1000 samples for

GPU, while time per sample for CPU changed only marginally with the number of sam-

ples.

Figure 5. Dependence of time per sample on the number of samples, computed on the graphics

processing unit (GPU) (left) and central processing unit (CPU) (right) at m = 20.

3.2. Comparison between Single and Double Precision for Single-Layer AD Model Simulations

We conducted a comparative analysis of reflectance and transmittance calculations

using both single and double precision. The testing involved all possible combinations of

absorption coefficients (µa = 0.1, 0.5, 1.0 cm−1) and scattering coefficients (µs = 25, 50, 100,

150 cm−1) at m = 20. The relative difference between the single and double precision results

for reflectance ranged from 2 × 10−7 to 6 × 10−5; the highest discrepancy occurred with the

combination of the highest scattering coefficient and the smallest absorption coefficient.

For transmittance, the differences between the single and double precision results were

slightly higher, between 2 × 10−6 and 5 × 10−4, the worst agreement corresponding again to

the highest scattering and lowest absorption coefficients. However, these discrepancies

are considerably smaller than the typical noise amplitude encountered in experimental

spectra, which usually falls within the range of 1%.

In terms of computation speed, the single precision computations were, on average,

4.3 times faster compared to double precision when considering the above set of optical

parameters. In addition to the faster computation, the advantage of using single precision

is that it also has two times lower memory requirements, facilitating the upload of larger

datasets to the GPU memory.

3.3. Single-Layer AD Model Simulations

We compared the AD algorithm with MC separately for the HG SPF and GB SPF. As

the results were similar for both SPFs, we are presenting the results solely for the GB SPF

with the exponent αGB set at 1.051 and factor of anisotropy g at 0.851. Our evaluation fo-

cused on different numbers of fluxes, specifically m = 8, 12, 16, and 20.

Table 1 shows results for reflectance and transmittance, obtained using the CUDA

MCML software, while Tables 2 and 3 exhibit results obtained using the AD1L algorithm

with single precision. A comparison between MCML and AD1L reveals that perfect agree-

ment was reached for m = 20, though adequate accuracy was obtained for m = 16.

Figure 5. Dependence of time per sample on the number of samples, computed on the graphics
processing unit (GPU) (left) and central processing unit (CPU) (right) at m = 20.

3.2. Comparison between Single and Double Precision for Single-Layer AD Model Simulations

We conducted a comparative analysis of reflectance and transmittance calculations
using both single and double precision. The testing involved all possible combinations of
absorption coefficients (µa = 0.1, 0.5, 1.0 cm−1) and scattering coefficients (µs = 25, 50, 100,
150 cm−1) at m = 20. The relative difference between the single and double precision results
for reflectance ranged from 2 × 10−7 to 6 × 10−5; the highest discrepancy occurred with
the combination of the highest scattering coefficient and the smallest absorption coefficient.
For transmittance, the differences between the single and double precision results were
slightly higher, between 2 × 10−6 and 5 × 10−4, the worst agreement corresponding again
to the highest scattering and lowest absorption coefficients. However, these discrepancies
are considerably smaller than the typical noise amplitude encountered in experimental
spectra, which usually falls within the range of 1%.

In terms of computation speed, the single precision computations were, on average,
4.3 times faster compared to double precision when considering the above set of optical
parameters. In addition to the faster computation, the advantage of using single precision
is that it also has two times lower memory requirements, facilitating the upload of larger
datasets to the GPU memory.

3.3. Single-Layer AD Model Simulations

We compared the AD algorithm with MC separately for the HG SPF and GB SPF.
As the results were similar for both SPFs, we are presenting the results solely for the GB
SPF with the exponent αGB set at 1.051 and factor of anisotropy g at 0.851. Our evaluation
focused on different numbers of fluxes, specifically m = 8, 12, 16, and 20.

Table 1 shows results for reflectance and transmittance, obtained using the CUDA
MCML software, while Tables 2 and 3 exhibit results obtained using the AD1L algorithm
with single precision. A comparison between MCML and AD1L reveals that perfect
agreement was reached for m = 20, though adequate accuracy was obtained for m = 16.

To assess the computational speed of the GPU-accelerated AD1L algorithm, we con-
sidered different simultaneous numbers of threads: 100, 1000, and 3000. Table 4 presents
the computation times for the MC method per single optical properties set, whereas
Tables 5 and 6 present the corresponding results for the AD1L algorithm using the GB SPF
for the number of examined fluxes m = 20 and m = 16, respectively. Comparing the MC
method to the AD1L algorithm, we found that at m = 16 and a thread count of N = 3000, the
speed-up ranged from 5333 to 40,556 times (Table 7). The computation times did not vary
between the two SPFs since the number of elements in the array was the same. The optimal

Algorithms 2024, 17, 74 13 of 22

number of threads for the AD1L algorithm was around 3000; larger batches of threads did
not considerably enhance computational speed.

Table 1. Reflectance and transmittance for different absorption and scattering coefficients (in cm−1)
using the Monte Carlo method (CUDA MCML software). µa—absorption coefficient; µs—scattering
coefficient.

Reflectance Transmittance

µs

µa 25 50 100 150 25 50 100 150

0.1 0.26 0.36 0.48 0.54 0.42 0.31 0.20 0.14
0.5 0.09 0.15 0.24 0.31 0.18 0.11 0.05 0.03
1.0 0.04 0.08 0.15 0.20 0.08 0.04 0.01 0.01

Table 2. Reflectance for different absorption and scattering coefficients (in cm−1) using the AD
method (AD1L algorithm) employing Gegenbauer scattering phase function; the value of exponent
αGB was set at 1.051 and factor of anisotropy g at 0.851; the number of examined fluxes m was 8, 12,
16, and 20. µa—absorption coefficient; µs—scattering coefficient. The values where the discrepancy
with the Monte Carlo method in Table 1 is present are shown in grey.

m = 8 m = 12

µs

µa 25 50 100 150 25 50 100 150

0.1 0.28 0.43 0.68 0.96 0.27 0.37 0.50 0.59
0.5 0.07 0.13 0.25 0.34 0.08 0.15 0.24 0.31
1.0 0.03 0.06 0.13 0.19 0.03 0.08 0.15 0.2

m = 16 m = 20

µa

µs 25 50 100 150 25 50 100 150

0.1 0.26 0.36 0.48 0.55 0.26 0.36 0.48 0.54
0.5 0.09 0.15 0.24 0.31 0.09 0.15 0.24 0.31
1.0 0.04 0.08 0.15 0.20 0.04 0.08 0.15 0.20

Table 3. Transmittance for different absorption and scattering coefficients (in cm−1) using the AD
method (AD1L algorithm) employing Gegenbauer scattering phase function; the value of exponent
αGB was set at 1.051 and factor of anisotropy g at 0.851; the number of examined fluxes m was 8, 12,
16, and 20. µa—absorption coefficient; µs—scattering coefficient. The values where the discrepancy
with the Monte Carlo method in Table 1 is present are shown in grey.

m = 8 m = 12

µs

µa 25 50 100 150 25 50 100 150

0.1 0.59 0.50 0.47 0.55 0.45 0.34 0.23 0.17
0.5 0.28 0.17 0.10 0.07 0.20 0.11 0.05 0.03
1.0 0.14 0.07 0.03 0.02 0.09 0.04 0.02 0.01

m = 16 m = 20

µa

µs 25 50 100 150 25 50 100 150

0.1 0.42 0.32 0.20 0.14 0.42 0.31 0.20 0.14
0.5 0.18 0.11 0.05 0.03 0.18 0.11 0.05 0.03
1.0 0.09 0.04 0.01 0.01 0.08 0.04 0.01 0.01

Algorithms 2024, 17, 74 14 of 22

Table 4. Values of times (in seconds) per single optical properties set of the Monte Carlo (MC)
simulation for different absorption and scattering coefficients (in cm−1); µa—absorption coefficient;
µs—scattering coefficient.

µa

µs 25 50 100 150

0.1 1.5 1.7 3.1 7.3
0.5 0.8 1.5 2.6 3.4
1.0 0.8 1.3 2.0 2.6

Table 5. Average values of times (in milliseconds) per single optical properties set of the AD method
(AD1L algorithm) employing Gegenbauer scattering phase function for different absorption and
scattering coefficients (in cm−1) and three different simultaneous number of threads; the number of
examined fluxes m was 20; the value of exponent αGB was set at 1.051 and factor of anisotropy g at
0.851. µa—absorption coefficient; µs—scattering coefficient.

Time per set (ms), N = 100
µa

µs
25 50 100 150

0.1 1.1 1.1 1.2 1.2
0.5 1.1 1.1 1.2 1.2
1.0 1.1 1.1 1.2 1.2

Time per set (ms), N = 1000
µa

µs
25 50 100 150

0.1 0.30 0.31 0.33 0.34
0.5 0.29 0.31 0.32 0.34
1.0 0.30 0.31 0.31 0.34

Time per set (ms), N = 3000
µa

µs
25 50 100 150

0.1 0.24 0.25 0.27 0.29
0.5 0.24 0.25 0.27 0.29
1.0 0.23 0.25 0.27 0.29

Table 6. Average values of times (in milliseconds) per single optical properties set of the AD method
(AD1L algorithm) employing Gegenbauer scattering phase function for different absorption and
scattering coefficients (in cm−1) and three different simultaneous number of threads; the number of
examined fluxes m was 16; the value of exponent αGB was set at 1.051 and factor of anisotropy g at
0.851. µa—absorption coefficient; µs—scattering coefficient.

Time per set (ms), N = 100
µa

µs
25 50 100 150

0.1 0.87 0.89 0.96 1.60
0.5 0.86 0.90 1.30 1.40
1.0 0.86 0.90 1.30 1.20

Time per set (ms), N = 1000
µa

µs
25 50 100 150

0.1 0.21 0.22 0.23 0.24
0.5 0.21 0.22 0.24 0.24
1.0 0.21 0.22 0.23 0.24

Time per set (ms), N = 3000
µa

µs
25 50 100 150

0.1 0.15 0.16 0.17 0.18
0.5 0.15 0.16 0.17 0.18
1.0 0.15 0.16 0.17 0.18

Algorithms 2024, 17, 74 15 of 22

Table 7. Computational speedup when comparing the Monte Carlo (MC) method (Table 4) and the
AD1L algorithm using the GB SPF for the number of examined fluxes m = 16 and N = 3000 (Table 6).
µa—absorption coefficient; µs—scattering coefficient.

µa

µs 25 50 100 150

0.1 10,000 10,625 18,235 40,556
0.5 5333 9375 15,294 18,889
1.0 5333 8125 11,765 14,444

3.4. Inverse Adding-Doubling (IAD) Solution: Arterial Occlusion Test

Results obtained with a GPU-accelerated LM algorithm are shown alongside mea-
sured data in Figure 6. Here, reflectance spectra of skin before, during, and after a cuff
test are presented for a single spatial data point in a curvature-corrected hyperspectral
image [25]. Upon examining the calculated spectra, we observed excellent agreement
with the measured data across the entire spectral range of 430–750 nm. However, minor
deviations can be spotted near 700 nm due to slight wiggles in the measured spectra.
To assess the goodness of fit, we calculated the reduced χ2 value for each spatial data
point; the computed data yielded reduced χ2 ranging from 10−5–10−4. In terms of com-
putational efficiency, it took approximately 5 min to process a 220 × 100 × 61 image
(x-axis × y-axis × spectral-axis).

Figure 7 shows colormaps extracted from the hyperspectral images by the inverse
AD algorithm, depicting tissue oxygenation, calculated as the ratio of fHbO2 to the sum
of fHb and fHbO2 multiplied by 100%, and the total hemoglobin concentration, calculated
as a sum of fHb and fHbO2 multiplied by 100%. These colormaps capture the conditions
before, during, and after a cuff test. Upon analyzing Figure 7a, we observe that tissue
oxygenation is visibly reduced during the cuff test, coinciding with the obstruction of blood
flow when a blood-pressure cuff is inflated to around 200 mmHg. Additionally, we can
discern from Figure 7b a slight increase in the total hemoglobin concentration throughout
the entire experiment. Conversely, tissue oxygenation reaches its peak approximately 3 min
after deflating the blood-pressure cuff, indicating rapid tissue reoxygenation following the
vascular obstruction.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 23

Time per set (ms),

N = 3000

 μs

μa
25 50 100 150

0.1 0.15 0.16 0.17 0.18

0.5 0.15 0.16 0.17 0.18

1.0 0.15 0.16 0.17 0.18

Table 7. Computational speedup when comparing the Monte Carlo (MC) method (Table 4) and the

AD1L algorithm using the GB SPF for the number of examined fluxes m = 16 and N = 3000 (Table

6). µa—absorption coefficient; µs—scattering coefficient.

 μs

μa
25 50 100 150

0.1 10,000 10,625 18,235 40,556

0.5 5333 9375 15,294 18,889

1.0 5333 8125 11,765 14,444

3.4. Inverse Adding-Doubling (IAD) Solution: Arterial Occlusion Test

Results obtained with a GPU-accelerated LM algorithm are shown alongside meas-

ured data in Figure 6. Here, reflectance spectra of skin before, during, and after a cuff test

are presented for a single spatial data point in a curvature-corrected hyperspectral image

[25]. Upon examining the calculated spectra, we observed excellent agreement with the

measured data across the entire spectral range of 430–750 nm. However, minor deviations

can be spotted near 700 nm due to slight wiggles in the measured spectra. To assess the

goodness of fit, we calculated the reduced χ2 value for each spatial data point; the com-

puted data yielded reduced χ2 ranging from 10−5–10−4. In terms of computational efficiency,

it took approximately 5 min to process a 220 × 100 × 61 image (x-axis × y-axis × spectral-

axis).

Figure 6. Measured (dashed lines) and fitted (solid lines with error bars) reflectance spectra of skin

before, during, and after performing a cuff test.

Figure 7 shows colormaps extracted from the hyperspectral images by the inverse

AD algorithm, depicting tissue oxygenation, calculated as the ratio of fHbO2 to the sum of

fHb and fHbO2 multiplied by 100%, and the total hemoglobin concentration, calculated as a

sum of fHb and fHbO2 multiplied by 100%. These colormaps capture the conditions before,

during, and after a cuff test. Upon analyzing Figure 7a, we observe that tissue oxygenation

is visibly reduced during the cuff test, coinciding with the obstruction of blood flow when

Figure 6. Measured (dashed lines) and fitted (solid lines with error bars) reflectance spectra of skin
before, during, and after performing a cuff test.

Algorithms 2024, 17, 74 16 of 22

Algorithms 2024, 17, x FOR PEER REVIEW 17 of 23

a blood-pressure cuff is inflated to around 200 mmHg. Additionally, we can discern from

Figure 7b a slight increase in the total hemoglobin concentration throughout the entire

experiment. Conversely, tissue oxygenation reaches its peak approximately 3 min after

deflating the blood-pressure cuff, indicating rapid tissue reoxygenation following the vas-

cular obstruction.

Figure 7. Colormaps of (a) tissue oxygenation and (b) the total hemoglobin concentration before,

during, and after a cuff test.

To quantify our observations from the colormaps, we present mean values and stand-

ard deviations of tissue oxygenation and the total hemoglobin concentration before, dur-

ing, and after the cuff test in Table 8. These numerical findings substantiate the conclusions

drawn from the visual examination of the colormaps in Figure 5 and also corroborate data

reported by Verdel et al. [26].

Table 8. Calculated mean values of tissue oxygenation and the total hemoglobin concentration be-

fore, during, and after the cuff test.

 Before During After

Tissue oxygenation (%) 58.57 ± 10.83 0.24 ± 2.11 92.91 ± 6.02

Total hemoglobin (%) 0.54 ± 0.07 0.68 ± 0.09 1.11 ± 0.12

4. Discussion

Our study has demonstrated that the AD algorithm matches the accuracy of the MC

method while also being versatile and compatible with implementation on GPUs. The

computational speed-up achieved by the GPU-accelerated AD algorithm when compared

to the GPU MC method, ranges from about 5000 to 40,000 times faster. This remarkable

improvement in computational efficiency allows for the entire hyperspectral image to be

analyzed within minutes. While the MC method excels in capturing intricate photon in-

teractions, its computational demands are often prohibitive for large-scale simulations. In

contrast, the AD algorithm serves as a more efficient alternative, offering an analytical

solution that strikes a balance between accuracy and computational efficiency.

Figure 7. Colormaps of (a) tissue oxygenation and (b) the total hemoglobin concentration before,
during, and after a cuff test.

To quantify our observations from the colormaps, we present mean values and stan-
dard deviations of tissue oxygenation and the total hemoglobin concentration before,
during, and after the cuff test in Table 8. These numerical findings substantiate the conclu-
sions drawn from the visual examination of the colormaps in Figure 5 and also corroborate
data reported by Verdel et al. [26].

Table 8. Calculated mean values of tissue oxygenation and the total hemoglobin concentration before,
during, and after the cuff test.

Before During After

Tissue oxygenation (%) 58.57 ± 10.83 0.24 ± 2.11 92.91 ± 6.02

Total hemoglobin (%) 0.54 ± 0.07 0.68 ± 0.09 1.11 ± 0.12

4. Discussion

Our study has demonstrated that the AD algorithm matches the accuracy of the MC
method while also being versatile and compatible with implementation on GPUs. The
computational speed-up achieved by the GPU-accelerated AD algorithm when compared
to the GPU MC method, ranges from about 5000 to 40,000 times faster. This remarkable
improvement in computational efficiency allows for the entire hyperspectral image to
be analyzed within minutes. While the MC method excels in capturing intricate photon
interactions, its computational demands are often prohibitive for large-scale simulations.
In contrast, the AD algorithm serves as a more efficient alternative, offering an analytical
solution that strikes a balance between accuracy and computational efficiency.

Based on our study results, we can conclude that a GPU-accelerated two-layer IAD
provides an acceptably accurate, fast, and reliable approach for solving inverse scattering
problems and extracting important tissue properties, such as scattering properties and
chromophore concentrations. Our calculated skin reflectance values align closely with the
measurements taken before, during, and after the cuff test. Additionally, the obtained tissue
properties using the IAD approach effectively reflect the changes in tissue physiology.

Algorithms 2024, 17, 74 17 of 22

In recent years, the use of GPUs has advanced computational efficiency and acceler-
ated processing capabilities. In our study, we specifically focused on implementing the
AD algorithm on GPUs to enhance computational speed further. Additionally, we com-
bined the AD and LM algorithms on the GPU platform to extract object parameters from
optical spectral data effectively. By harnessing the power of GPUs, we aimed to achieve
improvements in the computational speed of AD calculations. This integration of GPU
technology with the AD algorithm holds the potential to advance our understanding of
light transport in biological tissues and can pave the way for more efficient simulations and
clinical applications, either in HSI [27] or related biomedical optical applications [28,29].

In our previous publication, we reported a GPU implementation of the diffuse approx-
imation algorithm for analyzing hyperspectral images of skin [30]. Although this algorithm
proved to be sufficiently fast in providing extracted tissue parameter maps in (almost) real-
time, its primary limitation is that it is an approximation only, and therefore, the resulting
maps differ from the true values. On the other hand, the AD algorithm is as accurate as
the MC algorithm; thus, the extracted tissue properties correspond to the true values, as
demonstrated in our recent publication [31]. Although real-time image processing has not
been achieved yet, we believe that by reducing the number of the analyzed wavelengths,
further optimizing the algorithm, and implementing it in more computationally efficient
programming languages, we can attain real-time image analysis. This advancement would
make HSI even more attractive for clinical applications.

Our approach has an obvious limitation in that it operates under assumptions out-
lined by Prahl et al. [13], including the absence of time dependence, a geometric model
comprising uniform layers of finite thickness extended infinitely parallel to the surface,
uniform scattering and absorbing properties within tissue layers, and uniform illumination
by collimated or diffuse light. While these assumptions do not contradict the application of
GPU AD to HSI, it may be necessary to resort to the MC method in more complex cases
when, for example, a beam would be spreading from a finite source [32].

An obvious extension of our AD approach involves transitioning from MATLAB to
Python. We have already begun exploring this direction, and preliminary results indicate
an additional computational speed-up ranging from a factor of 3 to 10 when comparing
GPU AD (Python) to GPU AD (MATLAB). Furthermore, the GPU AD method itself has
the potential to accelerate machine learning techniques (ML) in spectral image analysis
by providing data for the training process. In contrast to the MC algorithm, the AD
algorithm can generate large training datasets in significantly shorter times, facilitating
faster optimizations of ML tools.

Through thorough development and testing, we have successfully implemented the
GPU-based AD algorithm, which offers an analytical solution for the RTE. Our research
has demonstrated the GPU AD algorithm’s significant speedup over the GPU MC method
while maintaining a high level of accuracy. We have also shown that the GPU AD algorithm
can be used to extract tissue parameters from optical spectral data of human skin under
various hemodynamic conditions using the Levenberg–Marquardt inverse algorithm. The
GPU AD algorithm can process large spectral images within minutes, surpassing the
performance of other RTE solutions. Therefore, it has the potential for real-time processing
of spectral imaging in the clinical environment.

Author Contributions: Conceptualization, R.H. and M.M.; methodology, R.H. and M.M.; software,
M.M.; validation, M.M.; formal analysis, R.H. and M.M.; investigation, R.H.; resources, M.M.; data cu-
ration, M.M.; writing—original draft preparation, R.H.; writing—review and editing, R.H. and M.M.;
visualization, M.M.; supervision, R.H. and M.M.; project administration, R.H. and M.M.; funding
acquisition, M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research and Innovation Agency, grant numbers
P1-0389 and J3-3083.

Algorithms 2024, 17, 74 18 of 22

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Medical Ethics Committee of the Republic of Slovenia (protocol
code 66/01/17 and date of approval 25 May 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data and the MATLAB implementation of the algorithms are available
upon reasonable request to the corresponding author.

Acknowledgments: The authors wish to thank Anej Sterle for running the simulations.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Optical Parameters of Epidermis and Dermis

Skin, the largest organ in the human body, covers a total surface area of approximately
1.6–1.8 m2 and weighs around 8% of the total body weight in adults [33]. It consists of two
main layers—the epidermis and dermis, which rest on the subcutaneous fat layer, called
the subcutis; the epidermis (approximately 100–150 µm) is thinner than the dermis (ap-
proximately 2–4 mm), which contains structural proteins such as collagen and elastin [33].
When exposed to ultraviolet (UV), visible (VIS), and near-infrared (NIR) radiation, human
skin exhibits distinct photobiological responses, which strongly depend on, among others,
melanin, oxygenated and deoxygenated blood particles, and water.

In the model of the epidermis and the dermis, presented in Figure 4, we considered
the following six optical parameters as free variables, which we briefly outline for the
epidermis and the dermis separately.

Appendix A.1. Epidermis

The volume fraction of melanin fm measures the concentration of melanin pigment
in the epidermis. Measuring fm can provide insights into various skin conditions, such as
hyperpigmentation, hypopigmentation, and melanoma.

Appendix A.2. Epidermis and Dermis

Scattering factor a = µs (λ = 500 nm) quantifies the scattering properties of tissue at a
specific wavelength, usually 500 nm. It measures how light scatters within tissue due to
interactions with cellular and subcellular structures.

Scattering power b is a parameter that characterizes the scattering intensity of the
tissue. It provides insights into the size and density of scattering particles within the tissue,
affecting the degree of light dispersion.

Fraction of Rayleigh scattering fRay refers to the scattering caused by small molecules
or particles compared to other forms of scattering. It is significant in studying tissue
composition and structure, as it provides information about the molecular and chemical
composition of the tissue.

Appendix A.3. Dermis

The volume fraction of deoxyhemoglobin fHb signifies the concentration of oxygen-poor
hemoglobin in tissue and serves as an indicator of tissue oxygenation. Monitoring changes in
fHb is valuable for studying conditions like hypoxia, ischemia, and vascular disorders.

The volume fraction of oxyhemoglobin fHbO2 represents the concentration of oxygen-
rich hemoglobin in tissue and provides information about tissue oxygenation. Monitoring
changes in fHbO2 is particularly relevant in studying tissue response to interventions, such
as in oncology treatments or surgical procedures.

Appendix A.4. Other Parameters

The following five other parameters (four in the dermis and one in the epidermis)
were treated as fixed variables: fbrub—volume fraction of bilirubin; fCO—volume fraction
of reduced cytochrome oxidase; fCOO2—volume fraction of oxidized cytochrome oxidase;

Algorithms 2024, 17, 74 19 of 22

depi—epidermis thickness; dder—dermis thickness. The volume fraction of bilirubin fbrub
measures the concentration of bilirubin, a yellow pigment derived from the breakdown
of heme in red blood cells; elevated levels of bilirubin can indicate liver dysfunction. An
increase in the volume fraction of reduced cytochrome oxidase fCO cytochrome oxidase
generally indicates a higher level of cellular respiration and oxygen consumption, while
the presence of oxidized cytochrome oxidase fCOO2 usually indicates a lower metabolic
activity and reduced oxygen consumption.

Appendix B. Levenberg–Marquardt Algorithm

The Levenberg–Marquardt (LM) algorithm is a well-known tool for solving nonlinear
least squares problems [34–37]. LM has been implemented as a MATLAB Class for mul-
tithread GPU fitting of spectral images. Matlab Class consists of multiple properties and
methods, which are described below.

Appendix B.1. Initialization

The class is initialized by calling the class constructor:

LM = Fit_X_(lam,img,[dtype]);

where _X_ represents the tissue light transport method to be fitted. The necessary parame-
ters are:

• lam—vector of wavelengths (Nl × 1);
• img—spectral image (Nx × Ny × Nl).

Where Nl is the number of wavelengths, and Nx and Ny are the numbers of image pixels in
x- and y-directions.

The optional parameter is as follows:

• dtype—the datatype used for the computation. It can be either ‘single’ for the single
precision or ‘double’ for the double precision.

The initialization stores image data and wavelengths in the class properties.

Appendix B.2. Algorithm Setup

The algorithm is set by calling the InitLM method; it is the main function where all
parameters of the algorithms are set:

LM.InitLM(pimg0,[options])

The necessary parameters are as follows:
pimg0—the initial parameters for the model function (Nx × Ny × Npar).
Optional parameters are as follows:

• dp—fractional increment of parameters p for numerical derivatives (Npar × 1). Default:
0.005. Additional info:

1. dp(j) > 0 central differences calculated;
2. dp(j) < 0 one-sided ‘backwards’ differences calculated;
3. dp(j) = 0 sets corresponding partials to zero, i.e., holds p(j) fixed;

• p_min—lower bounds for parameter values (Npar × 1). Default values depend on the
tissue type;

• p_max—upper bounds for parameter values (Npar × 1). Default values depend on
the tissue type;

• weight—weight matrices (Nl × Nl) or a scalar weight value; weight must be non-
negative. For more information about weights, see [36]. Default value: 1;

• eps1—convergence in the gradient. Default value: 1 × 10−4;
• eps2—convergence in parameters. Default value: 1 × 10−4;

Algorithms 2024, 17, 74 20 of 22

• eps3—convergence in χ2. Default value: 1 × 10−4;
• eps4—λlm update criterion. Default value: 1 × 10−3;
• MaxIter—maximum number of iterations. Default value: 200;
• L0—initial lambda value. Default value: 1 × 10−3;
• Lu—lambda increase multiplicator. Default value: 1.5;
• Ld—lambda decrease divisor. Default value: 5;
• Update_Type LM lambda update method. Parameter values: 1 = Levenberg–Marquardt

lambda update (default), 2 = Quadratic update, 3 = Nielsen’s lambda update equations,
4 = geodesic acceleration;

• epsJtWJ—the minimum allowed value of the Levenberg-Marquardt damping term
(Update_Type = 1). Default value: 1 × 10−3;

• dg—geodesic acceleration FD step. Default value: 0.1;
• galpha—geodesic acceleration acceptance criterion. Default value: 0.75;
• Broyden—Broyden’s rank 1 update for Jacobian, preventing the calculation of finite

differences, 1 = use, 0 = do not use rank 1 approximation. Default value: 1;
• lambdaMax—maximum dumping parameter lambda. Default value: 10;
• muPenTer—penalty term for the nearest neighbor’s initial coefficient. Set to 0 if no

term penalty is required. Default value: 1;
• Nsit—number of spectra fitted simultaneously. Default value: 10;
• Verbose—Display messages during execution. Parameter values: 0 = no messages,

1 = messages. Default value: 1

The constraint (i.e., muPenTer) takes care to penalize individual parameter values that
are significantly different from the parameter values in the neighbor spatial points.

Appendix B.3. Running

The optimization is started by calling the RunFit method:

LM.RunFit;

The method starts an iterative process of finding the optimal parameters, minimizing
the input data—model values. The final results are stored in the class properties.

Appendix B.4. Output

The output variables are stored in the class properties and can be accessed directly
by calling:

LM.[variable]

The output variables are:

• pimgOut—fitted parameters (Nx × Ny × Npar);
• imgOut—fitted image (Nx × Ny × Nl);
• redX2—reduced χ2 (Nx × Ny × 1);
• sigma_p—asymptotic standard parameter errors (Nx × Ny × Npar);
• sigma_y—standard error of the fit (Nx × Ny × Nl);
• corr_p—parameter correlation matrix (Nx × Ny × Npar × Npar);
• R_sq—coefficient of multiple determination (Nx × Ny × 1);
• iterOut—matrix of iterations needed in each image point to stop fitting.

References
1. Stokes, G.G., IV. On the intensity of the light reflected from or transmitted through a pile of plates. Proc. R. Soc. Lond. 1862, 11,

545–556. [CrossRef]
2. van de Hulst, H.C.; Christoffel, H. A New Look at Multiple Scattering; NASA Institute for Space Studies: New York, NY, USA, 1962.
3. Liu, Q.; Weng, F. Advanced Doubling–Adding Method for Radiative Transfer in Planetary Atmospheres. J. Atmos. Sci. 2006, 63,

3459–3465. [CrossRef]

https://doi.org/10.1098/rspl.1860.0119
https://doi.org/10.1175/JAS3808.1

Algorithms 2024, 17, 74 21 of 22

4. Zhang, Z.; Yang, P.; Kattawar, G.; Huang, H.-L.; Greenwald, T.; Li, J.; Baum, B.A.; Zhou, D.K.; Hu, Y. A fast infrared radiative
transfer model based on the adding–doubling method for hyperspectral remote-sensing applications. J. Quant. Spectrosc. Radiat.
Transf. 2007, 105, 243–263. [CrossRef]

5. Mukai, S.; Sano, I.; Nakata, M. Improved Algorithms for Remote Sensing-Based Aerosol Retrieval during Extreme Biomass
Burning Events. Atmosphere 2021, 12, 403. [CrossRef]

6. Leyre, S.; Cappelle, J.; Durinck, G.; Abass, A.; Hofkens, J.; Deconinck, G.; Hanselaer, P. The use of the adding-doubling method
for the optical optimization of planar luminescent down shifting layers for solar cells. Opt. Express 2014, 22, A765. [CrossRef]
[PubMed]

7. Pickering, J.W.; Prahl, S.A.; Van Wieringen, N.; Beek, J.F.; Sterenborg, H.J.C.M.; Van Gemert, M.J.C. Double-integrating-sphere
system for measuring the optical properties of tissue. Appl. Opt. 1993, 32, 399. [CrossRef] [PubMed]

8. Lemaillet, P.; Cooksey, C.C.; Hwang, J.; Wabnitz, H.; Grosenick, D.; Yang, L.; Allen, D.W. Correction of an adding-doubling
inversion algorithm for the measurement of the optical parameters of turbid media. Biomed. Opt. Express 2018, 9, 55. [CrossRef]
[PubMed]

9. Sun, B.; Gao, C.; Spurr, R. Scalar thermal radiation using the adding-doubling method. Opt. Express 2022, 30, 30075. [CrossRef]
[PubMed]

10. Liu, X.; Wu, Y. Monte-Carlo optical model coupled with Inverse Adding-Doubling for Building Integrated Photovoltaic smart
window design and characterisation. Sol. Energy Mater. Sol. Cells 2021, 223, 110972. [CrossRef]

11. Calvin, O.W.; Ganapol, B.D.; Borrelli, R.A. Introduction of the Adding and Doubling Method for Solving Bateman Equations for
Nuclear Fuel Depletion. Nucl. Sci. Eng. 2023, 197, 558–588. [CrossRef]

12. Prahl, S.A. The Adding-Doubling Method. In Optical-Thermal Response of Laser-Irradiated Tissue; Welch, A.J., Van Gemert, M.J.C.,
Eds.; Springer: Boston, MA, USA, 1995; pp. 101–129. [CrossRef]

13. Prahl, S.A.; Van Gemert, M.J.C.; Welch, A.J. Determining the optical properties of turbid media by using the adding–doubling
method. Appl. Opt. 1993, 32, 559. [CrossRef]

14. Prahl, S.A. A Monte Carlo model of light propagation in tissue. In Proceedings of the Institutes for Advanced Optical Technologies,
Berlin, Germany, 10 January 1989; Mueller, G.J., Sliney, D.H., Potter, R.F., Eds.; p. 1030509. [CrossRef]

15. Wang, C.-Y.; Kao, T.-C.; Chen, Y.-F.; Su, W.-W.; Shen, H.-J.; Sung, K.-B. Validation of an Inverse Fitting Method of Diffuse
Reflectance Spectroscopy to Quantify Multi-Layered Skin Optical Properties. Photonics 2019, 6, 61. [CrossRef]

16. Després, P.; Jia, X. A review of GPU-based medical image reconstruction. Phys. Medica 2017, 42, 76–92. [CrossRef] [PubMed]
17. Kalaiselvi, T.; Sriramakrishnan, P.; Somasundaram, K. Survey of using GPU CUDA programming model in medical image

analysis. Inform. Med. Unlocked 2017, 9, 133–144. [CrossRef]
18. Smistad, E.; Falch, T.L.; Bozorgi, M.; Elster, A.C.; Lindseth, F. Medical image segmentation on GPUs—A comprehensive review.

Med. Image Anal. 2015, 20, 1–18. [CrossRef]
19. Alcaín, E.; Fernández, P.R.; Nieto, R.; Montemayor, A.S.; Vilas, J.; Galiana-Bordera, A.; Martinez-Girones, P.M.; Prieto-De-La-

Lastra, C.; Rodriguez-Vila, B.; Bonet, M.; et al. Hardware Architectures for Real-Time Medical Imaging. Electronics 2021, 10, 3118.
[CrossRef]

20. Engler, H. Computation of Scattering Kernels in Radiative Transfer. arxiv 2015. [CrossRef]
21. Alerstam, E.; Svensson, T.; Andersson-Engels, S. Parallel computing with graphics processing units for high-speed Monte Carlo

simulation of photon migration. J. Biomed. Opt. 2008, 13, 060504. [CrossRef]
22. Stergar, J.; Hren, R.; Milanič, M. Design and Validation of a Custom-Made Laboratory Hyperspectral Imaging System for

Biomedical Applications Using a Broadband LED Light Source. Sensors 2022, 22, 6274. [CrossRef]
23. Rogelj, L.; Simončič, U.; Tomanič, T.; Jezeršek, M.; Pavlovčič, U.; Stergar, J.; Milanič, M. Effect of curvature correction on

parameters extracted from hyperspectral images. J. Biomed. Opt. 2021, 26, 096003. [CrossRef]
24. Rogelj, L.; Dolenec, R.; Tomšič, M.V.; Laistler, E.; Simončič, U.; Milanič, M.; Hren, R. Anatomically Accurate, High-Resolution

Modeling of the Human Index Finger Using In Vivo Magnetic Resonance Imaging. Tomography 2022, 8, 2347–2359. [CrossRef]
[PubMed]

25. Rogelj, L.; Pavlovčič, U.; Stergar, J.; Jezeršek, M.; Simončič, U.; Milanič, M. Curvature and height corrections of hyperspectral
images using built-in 3D laser profilometry. Appl. Opt. 2019, 58, 9002. [CrossRef]

26. Verdel, N.; Marin, A.; Milanič, M.; Majaron, B. Physiological and structural characterization of human skin in vivo using combined
photothermal radiometry and diffuse reflectance spectroscopy. Biomed. Opt. Express 2019, 10, 944. [CrossRef] [PubMed]

27. Hren, R.; Sersa, G.; Simoncic, U.; Milanic, M. Imaging perfusion changes in oncological clinical applications by hyperspectral
imaging: A literature review. Radiol. Oncol. 2022, 56, 420–429. [CrossRef] [PubMed]

28. Hren, R.; Sersa, G.; Simoncic, U.; Milanic, M. Imaging microvascular changes in nonocular oncological clinical applications by
optical coherence tomography angiography: A literature review. Radiol. Oncol. 2023, 57, 411–418. [CrossRef] [PubMed]

29. Marin, A.; Hren, R.; Milanič, M. Pulsed Photothermal Radiometric Depth Profiling of Bruises by 532 nm and 1064 nm Lasers.
Sensors 2023, 23, 2196. [CrossRef] [PubMed]

30. Bjorgan, A.; Milanic, M.; Randeberg, L.L. Estimation of skin optical parameters for real-time hyperspectral imaging applications.
J. Biomed. Opt. 2014, 19, 066003. [CrossRef] [PubMed]

31. Tomanič, T.; Rogelj, L.; Milanič, M. Robustness of diffuse reflectance spectra analysis by inverse adding doubling algorithm.
Biomed. Opt. Express 2022, 13, 921. [CrossRef]

https://doi.org/10.1016/j.jqsrt.2007.01.009
https://doi.org/10.3390/atmos12030403
https://doi.org/10.1364/OE.22.00A765
https://www.ncbi.nlm.nih.gov/pubmed/24922384
https://doi.org/10.1364/AO.32.000399
https://www.ncbi.nlm.nih.gov/pubmed/20802704
https://doi.org/10.1364/BOE.9.000055
https://www.ncbi.nlm.nih.gov/pubmed/29359087
https://doi.org/10.1364/OE.462580
https://www.ncbi.nlm.nih.gov/pubmed/36242119
https://doi.org/10.1016/j.solmat.2021.110972
https://doi.org/10.1080/00295639.2022.2129950
https://doi.org/10.1007/978-1-4757-6092-7_5
https://doi.org/10.1364/AO.32.000559
https://doi.org/10.1117/12.2283590
https://doi.org/10.3390/photonics6020061
https://doi.org/10.1016/j.ejmp.2017.07.024
https://www.ncbi.nlm.nih.gov/pubmed/29173924
https://doi.org/10.1016/j.imu.2017.08.001
https://doi.org/10.1016/j.media.2014.10.012
https://doi.org/10.3390/electronics10243118
https://doi.org/10.1016/j.jqsrt.2015.06.019
https://doi.org/10.1117/1.3041496
https://doi.org/10.3390/s22166274
https://doi.org/10.1117/1.JBO.26.9.096003
https://doi.org/10.3390/tomography8050196
https://www.ncbi.nlm.nih.gov/pubmed/36287795
https://doi.org/10.1364/AO.58.009002
https://doi.org/10.1364/BOE.10.000944
https://www.ncbi.nlm.nih.gov/pubmed/30800525
https://doi.org/10.2478/raon-2022-0051
https://www.ncbi.nlm.nih.gov/pubmed/36503709
https://doi.org/10.2478/raon-2023-0057
https://www.ncbi.nlm.nih.gov/pubmed/38038417
https://doi.org/10.3390/s23042196
https://www.ncbi.nlm.nih.gov/pubmed/36850795
https://doi.org/10.1117/1.JBO.19.6.066003
https://www.ncbi.nlm.nih.gov/pubmed/24898603
https://doi.org/10.1364/BOE.443880

Algorithms 2024, 17, 74 22 of 22

32. Klanecek, Z.; Hren, R.; Simončič, U.; Muc, B.T.; Lukač, M.; Milanič, M. Finite Element Method (FEM) Modeling of Laser-Tissue
Interaction during Hair Removal. Appl. Sci. 2023, 13, 8553. [CrossRef]

33. Young, A.R. Chromophores in human skin. Phys. Med. Biol. 1997, 42, 789–802. [CrossRef]
34. Hren, R.; Stroink, G. Application of the surface harmonic expansions for modeling the human torso. IEEE Trans. Biomed. Eng.

1995, 42, 521–524. [CrossRef]
35. Hren, R.; Zhang, X.; Stroink, G. Comparison between electrocardiographic and magnetocardiographic inverse solutions using the

boundary element method. Med. Biol. Eng. Comput. 1996, 34, 110–114. [CrossRef] [PubMed]
36. Gavin, H.P. The Levenberg-Marquardt Algorithm for Nonlinear Least Squares Curve-Fitting Problems. 27 November 2022.

Available online: https://people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf (accessed on 3 February 2024).
37. Du, Y.-C.; Stephanus, A. Levenberg-Marquardt Neural Network Algorithm for Degree of Arteriovenous Fistula Stenosis

Classification Using a Dual Optical Photoplethysmography Sensor. Sensors 2018, 18, 2322. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app13148553
https://doi.org/10.1088/0031-9155/42/5/004
https://doi.org/10.1109/10.376157
https://doi.org/10.1007/BF02520014
https://www.ncbi.nlm.nih.gov/pubmed/8733546
https://people.duke.edu/~hpgavin/ExperimentalSystems/lm.pdf
https://doi.org/10.3390/s18072322
https://www.ncbi.nlm.nih.gov/pubmed/30018275

	Introduction
	Materials and Methods
	Preliminaries of Adding Doubling (AD) Algorithm
	Division of Incident and Reflected Light into Fluxes
	Approximating Reflected Flux Integral Using Quadrature
	Calculating Scattering Phase Function
	Initializing Starting Layer
	Constructing the Entire Layer
	Calculating Reflectance and Transmittance
	Adding Boundary Layers

	Implementation of the Adding-Doubling (AD) Algorithm
	Single-Layer AD Model Simulations
	Inverse Adding-Doubling (IAD) Solution

	Results
	Comparison between the Performance of GPU-Accelerated AD and CPU AD Algorithms
	Comparison between Single and Double Precision for Single-Layer AD Model Simulations
	Single-Layer AD Model Simulations
	Inverse Adding-Doubling (IAD) Solution: Arterial Occlusion Test

	Discussion
	Appendix A
	Epidermis
	Epidermis and Dermis
	Dermis
	Other Parameters

	Appendix B
	Initialization
	Algorithm Setup
	Running
	Output

	References

