EVOLUTION OF MICROSTRUCTURE AND EMBRITTLEMENT DURING THE TEMPERING PROCESS IN SiCrCu MEDIUM-CARBON STEELS
Abstract
The effect of Cu and Si contents on the evolution of embrittlement during a heat treatment consisting of quenching into an oil bath and tempering in the range 200–500 °C was investigated in medium-carbon steels with 0.48 w/% and 0.57 w/% of C. The results showed that the higher silicon content shifted the tempered martensite embrittlement to higher tempering temperatures. The steels alloyed with Cu had lower notch-toughness values, which worsened with increasing tempering temperature compared to the Cu-free samples. In the investigated tempering temperature range, the following microstructural changes occurred: formation of transition carbides, decomposition of retained austenite, and precipitation of cementite and Cu-particles.
References
2 W.-J. Nam, H.-C. Choi, Effects of silicon, nickel, and vanadium on impact toughness in spring steels, Mater Sci Technol., 13 (1997) 7, 568-574, doi:10.1179/mst.1997.13.7.568
3 S. Teramoto, M. Imura, Y. Masuda, T. Ishida, M. Ohnuma, Y. Neishi, T. Suzuki, Influence of Iron Carbide on Mechanical Properties in High Silicon-added Medium-carbon Martensitic Steels, ISIJ Int., 60 (2020) 1, 182-189, doi:10.2355/isijinternational.ISIJINT-2019-331
4 P. Salvetr, A. Gokhman, Z. Nový, P. Motyčka, J. Kotous, Effect of 1.5 wt% Copper Addition and Various Contents of Silicon on Mechanical Properties of 1.7102 Medium Carbon Steel, Materials, 14 (2021) 18, 5244, doi:10.3390/ma14185244
5 T. Janda, H. Jirková, Š. Jeníček, L. Kučerová, Influence of Cooling Rate on Microstructure and Mechanical Properties of 42SiCr Steel after Q&P Process, Manuf Technol., 19 (2019) 4, 583-588, doi:10.21062/ujep/338.2019/a/1213-2489/MT/19/4/583
6 Š. Jeníček, K. Opatová, J. Hajšman, I. Vorel, Evolution of Mechanical Properties and Microstructure in Q&P Processed Unconventional Medium-Carbon Silicon Steel and Comparison between Q&P Processing, Quenching and Tempering, and Austempering, Manuf Technol., 22 (2022) 2,146-155, doi:10.21062/mft.2022.026
7 Z. Xiong, P.-J. Jacques, A. Perlade, T. Pardoen, Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel, Scr Mater., 157 (2018), 6-9, doi:10.1016/j.scriptamat.2018.07.030
8 M. Liu, J. Guan, Q. Zhang, L. Ai, L. Fan, G. Xu, Microstructure and Properties of a Medium-Carbon Ti-Mo-Bearing Steel Treated by One-Step Quenching and Partitioning Treatment, J Mater Eng Perform., 31 (2022) 1, 297-304, doi:10.1007/s11665-021-06198-x
9 J. Lu, H. Yu, P. Kang, X. Duan, C. Song, Study of microstructure, mechanical properties and impact-abrasive wear behavior of medium-carbon steel treated by quenching and partitioning (Q&P) process, Wear, 414-415 (2018), 21-30, doi:10.1016/j.wear.2018.07.026
10 D. Sun, S. Huang, C. Chen, H. Wang, X. An, Q. Li, X. Huang, Enhancement of the Mechanical Properties of a V–Ti–N Microalloyed Steel Treated by a Novel Precipitation-Quenching & Partitioning Process, Metall Mater Trans A Phys Metall Mater Sci., 53 (2022) 10, 3696-3712, doi:10.1007/s11661-022-06778-z
11 G.R. Speich, W.C. Leslie, Tempering of steel. Metall Trans., 3 (1972) 5, 1043-1054, doi:10.1007/BF02642436
12 S. Primig, H. Leitner, Separation of overlapping retained austenite decomposition and cementite precipitation reactions during tempering of martensitic steel by means of thermal analysis, Thermochim Acta., 526 (2011) 1-2,111-117, doi:10.1016/j.tca.2011.09.001
13 S.S.M. Tavares, R.P.C. da Cunha, C. Barbosa, J.L.M. Andia, Temper embrittlement of 9%Ni low carbon steel, Eng Fail Anal., 96 (2019), 538-542, doi:10.1016/j.engfailanal.2018.11.011
14 J.P. Materkowski, G. Krauss, Tempered martensite embrittlement in SAE 4340 steel, Metall Trans A., 10 (1979) 11, 1643-1651, doi:10.1007/BF02811697
15 H. Kwon, C.H. Kim, Tempered martensite embrittlement in Fe-Mo-C and Fe-W-C steel. Metall Trans A., 14 (1983) 7, 1389-1394, doi:10.1007/BF02664822
16 F. Zia-Ebrahimi, G. Krauss, Mechanisms of tempered martensite embrittlement in medium-carbon steels, Acta Metall., 32 (1984) 10, 1767-1778, doi:10.1016/0001-6160(84)90233-5
17 J. Pietikainen, Observations about tempered martensite embrittlement, Scand J Metall., 34 (2005) 1, 1-6, doi:10.1111/j.1600-0692.2005.00701.x
18 J.H. Bulloch, D. Crowe, Embrittlement observed in Cr-Mo turbine bolts after service, Theor Appl Fract Mech., 29 (1998) 1, 59-66, doi:10.1016/S0167-8442(98)00016-0
19 M. Sarikaya, A.K. Jhingan, G. Thomas, Retained austenite and tempered martensite embrittlement in medium carbon steels, Metall Trans A., 14 (1983) 6, 1121-1133, doi:10.1007/BF02670450
20 I. Vorel, Š. Jeníček, J. Káňa, K. Ibrahim, V. Kotěšovec, B. Mašek, Effect of silicon content on microstructure of low-alloy Q&P-Processed steels, IOP Conf Ser Mater Sci Eng., 179 (2017), 012068, doi:10.1088/1757-899X/179/1/012068
21 H. Jirková, L. Kučerová, B. Mašek, The Effect of Chromium on Microstructure Development During Q-P Process, Mater Today Proc., 2 (2015), S627-S630, doi:10.1016/j.matpr.2015.07.362
22 I. Černý, D. Mikulová, J. Sís, B. Mašek, H. Jirková, J. Malina, Fatigue properties of a low alloy 42SiCr steel heat treated by quenching and partitioning process, Procedia Eng., 10 (2011), 3310-3315, doi:10.1016/j.proeng.2011.04.546
23 E. I.Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, A model for the microstructure behaviour and strength evolution in lath martensite, Acta Mater., 98 (2015), 81-93, doi:10.1016/j.actamat.2015.07.018
24 C. Sun, P. Fu, H. Liu, H. Liu, N. Du, Y. Cao, The Effect of Lath Martensite Microstructures on the Strength of Medium-Carbon Low-Alloy Steel, Crystals, 10 (2020) 3, 232, doi:10.3390/cryst10030232
25 S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater., 51 (2003) 6, 1789-1799, doi:10.1016/S1359-6454(02)00577-3
26 A. Gokhman, Z. Nový, P. Salvetr, V. Ryukhtin, P. Strunz, P. Motyčka, J. Zmeko, J. Kotous, Effects of Silicon, Chromium, and Copper on Kinetic Parameters of Precipitation during Tempering of Medium Carbon Steels, Materials, 14 (2021) 6,1445, doi:10.3390/ma14061445
27 L. Kubin, A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scr Mater., 48 (2003) 2, 119-125, doi:10.1016/S1359-6462(02)00335-4
28 F. Liu, K. Chen, C. Kang, Z. Jiang, S. Ding, Effects of V–Nb microalloying on the microstructure and properties of spring steel under different quenching-tempering times, J Mater Res Technol., 19 (2022) 1, 779-793, doi:10.1016/j.jmrt.2022.05.043
29 B. Kim, E. Boucard, T. Sourmail, D. San Martín, N. Gey, P.E.J. Rivera-Díaz-del-Castillo, The influence of silicon in tempered martensite: Understanding the microstructure–properties relationship in 0.5–0.6wt.% C steels, Acta Mater., 68 (2014), 169-178, doi:10.1016/j.actamat.2014.01.039
30 H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, M. Igarashi, Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels, Mater Lett., 63 (2009) 28, 2423-2425, doi:10.1016/j.matlet.2009.08.024
31 C. Du, J.P.M. Hoefnagels, R. Vaes, M.G.D. Geers, Block and sub-block boundary strengthening in lath martensite, Scr Mater., 116 (2016), 117-121, doi:10.1016/j.scriptamat.2016.01.043
32 B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Microstructures and hardness of as-quenched martensites (0.1–0.5%C), Acta Mater., 59 (2011) 14, 5845-5858, doi:10.1016/j.actamat.2011.05.061
33 M.S. Suh, S.H. Nahm, C.M. Suh, N.K. Park, Impact Toughness of Spring Steel after Bainite and Martensite Transformation, Metals, 12 (2022) 2, 304, doi:10.3390/met12020304
34 D. Liu, M. Luo, B. Cheng, R. Cao, J. Chen, Microstructural Evolution and Ductile-to-Brittle Transition in a Low-Carbon MnCrMoNiCu Heavy Plate Steel, Metall Mater Trans A Phys Metall Mater Sci., 49 (2018) 10, 4918-4936, doi:10.1007/s11661-018-4823-9
35 K. Zhang, M. Zhu, B. Lan, P. Liu, W. Li, Y. Rong, The Mechanism of High-Strength Quenching-Partitioning-Tempering Martensitic Steel at Elevated Temperatures, Crystals, 9 (2019) 2, 94 doi:10.3390/cryst9020094