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A B S T R A C T   

The method of fundamental solutions with a subdomain technique is used for the solution of the free boundary 
problem associated with a two-phase Stokes flow in a 2D geometry. The solution procedure is based on the 
collocation of the boundary conditions with the Stokeslets. It is formulated for the flow of unmixing fluids in 
contact, where the velocity, pressure field, and position of the free boundary between the fluids must be 
determined. The standard formulation of the method of fundamental solutions is, for the first time, upgraded for 
the case with mixed velocity and pressure boundary conditions and verified on a T-splitter single-phase flow with 
unsymmetric pressure boundary conditions. The standard control volume method is used for the reference so-
lution. The accurate evaluation of the velocity derivatives, which are required to calculate the balance of forces 
at the free boundary between the fluids, is achieved in a closed form in contrast to previous numerical attempts. 
An algorithm for iteratively calculating the position of the free boundary that involves displacement, smoothing 
and repositioning of the nodes is elaborated. The procedure is verified for a concurrent flow of two fluids in a 
channel. The velocity and velocity derivatives show fast convergence to the analytical solution. The developed 
boundary meshless method is easy to code, accurate and computationally efficient since only collocation at the 
fixed and free boundaries is needed.   

1. Introduction 

We can consider Stokes flow when the fluid is Newtonian, incom-
pressible and steady, and the inertia and volume forces are negligible 
[1]. This flow model type describes creeping (slow-moving fluid) and 
microfluidic (small dimensions) flows well. Stokes flow is also consid-
ered in the case of high dynamic viscosity. In all these instances, the 
Reynolds number is small. Two-phase Stokes flow occurs in gas-focused 
micro-jets for sample delivery in femtosecond crystallography [2]. 

The Stokes flow equations represent the diffusion part of the estab-
lished Navier-Stokes equations. These equations are generally not 
analytically solvable, and numerical solutions must be employed. Many 
methods are available, such as the finite difference method [3], finite 
element method [4], control volume method (CVM) [5], boundary 
element method [6–8], meshless methods [9–15], and many others. 
Each of these methods has certain advantages and disadvantages. They 
are structured from the weak or strong formulation and have different 
spatial and temporal discretization, stability, accuracy, ease of coding, 
and other distinctive properties. 

To solve the two-phase Stokes flow problem, we have employed a 
method from the group of boundary meshless methods, more precisely, 
the Method of Fundamental Solutions (MFS). The main advantage of 
MFS is that it does not require a computational mesh, which means the 
discretization of the interior by spatial (3D) or planar (2D) cells or 
boundary with surface (3D) or line (2D) segments. The numerical inte-
gration and evaluation of singular functions are unnecessary, unlike in 
the boundary element method. The simple and very accurate direct 
estimation of the derivatives of the field variables is another significant 
advantage of MFS. This is particularly important when implementing 
equilibrium conditions at fixed, free, or moving interfaces [16,17]. 

The disadvantage of MFS is the artificial boundary formed by the 
source points of the fundamental solution that need to be positioned 
outside the physical domain. The placement of the source points is 
possible in many ways [18,19]. When the distance between the collo-
cation points on the physical boundary and source points tends to be 
small, the system matrix diagonal elements tend to be larger than the 
non-diagonal elements and an inexact solution is obtained. If the dis-
tance between the collocation and the source points tends to be large, 
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Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

https://doi.org/10.1016/j.enganabound.2023.10.024 
Received 10 August 2023; Received in revised form 18 September 2023; Accepted 26 October 2023   

mailto:bozidar.sarler@fs.uni.lj.si
www.sciencedirect.com/science/journal/09557997
https://www.elsevier.com/locate/enganabound
https://doi.org/10.1016/j.enganabound.2023.10.024
https://doi.org/10.1016/j.enganabound.2023.10.024
https://doi.org/10.1016/j.enganabound.2023.10.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2023.10.024&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Engineering Analysis with Boundary Elements 158 (2024) 199–210

200

the system matrix elements are of the same order of magnitude. This 
results in poor matrix conditioning, which means that a small error in 
the matrix or the right-hand-side vector can cause a significant error in 
the solution. In either of these extreme cases, the accuracy of the results 
is compromised. Recently, sophisticated methods have been developed 
to locate the source points, requiring additional computational effort 
[20–22]. In this paper, we use a heuristic approach where the sources 
are located in the outward direction of the normal vector to the 
boundary at a collocation point at 6.5 times the distance between the 
collocation points on the physical boundary. 

The MFS is particularly suited to problems with a known funda-
mental solution of the governing equation. Examples of such equations 
are the Stokes [23], Laplace [24], Poisson [25], Helmholtz [26], and 
biharmonic [27]. 

The free (moving) boundary problems are also solved with other 
meshfree (meshless) methods. The recent examples are: the multi- 
quadric radial basis function (MQ-RBF) augmented with the poly-
nomial terms is employed in the numerical analysis of fully non-linear 
liquid sloshing waves in an arbitrary shape tank [28]; an improved 
Moving-Particle Semi-Implicit (MPS) method is used for multiphase 
flows with high-density ratios and violent deformation of the interface in 
the case of Rayleigh–Taylor instability, sloshing tank flow, and 
two-phase dam-break [29]; the local radial basis function-based differ-
ential quadrature (LRBF-DQM) meshless technique is employed for the 
simulation of dam break flows with the two-dimensional shallow water 
equations (SWE) [30]; a meshfree method based on a least-square 
approximation for the reconstruction procedure allow a simpler 
handling of the interface motion the simulation of moving boundaries 
and moving rigid bodies immersed in a rarefied gas [31]; an improved 
meshless artificial viscosity (AV) method is proposed to efficiently and 
accurately solve wet-dry moving interfaces problems of shallow water 
flow [32]; the RBF meshfree method is used in computational study in 
the case of determination of freezing front location in biological tissue 
during cryosurgery [33]; the SPH meshfree method is, among other 
things, used in the case of multiphase free surface hydrodynamics and 
multiphase flows due to the natural handling of free surfaces [34]. 

Computational Fluid Dynamics (CFD) is a well-established tool for 
dealing with two-phase fluid flows, where hydrodynamic phenomena 
can be considered on multiple time and length scales (macro, mezzo, 
micro). The choice of an appropriate two-phase model is essential [35], 
as two-phase flows involve interfacial interaction, which significantly 
affects the flow’s velocity field under consideration. Therefore, the in-
fluence of these interactions with appropriate equilibrium conditions 
must be considered when defining detailed models. Two approaches 
describe the evolution of the interfacial boundary in space and time. 
These are the interface capturing (Euler model) approach and interface 
tracking (Lagrange model) approach [36]. 

The Euler method uses a fixed computational grid to solve the fluid 
flow equations and interface development. In this method, the interface 
is characterized by a scalar quantity, named volume fraction, which is 
carried by the local velocity field. Typical representatives of this 
approach are the volume of fluid (VOF) method [37,38] and the level set 
(LS) method [39]. The limit of applicability of these methods is reached 
when the characteristic dimensions of the interface are comparable to 
the cell size of the computational grid. The disadvantage of the LS 
method is that mass might not be conserved in the iterative process, 
whereas the VOF approach suffers from numerical diffusion. To mitigate 
the drawbacks of these models, several studies [40,41] have proposed a 
hybrid LS-VOF approach that combines the mass conservation proper-
ties of the VOF method and the accurate interface description of the LS 
method. 

The Lagrangian method is based on the use of markers. In this 
approach, the movement of the interface is monitored by markers 
indicating the presence or absence of a chosen phase or by markers 
located only at the interface. The method uses an adaptive grid that 
allows the strict prescription of boundary conditions at the interface 

between the two phases [42]. This approach yields a very accurate shape 
of the interfacial boundary. However, the method is not well suited to 
problems with interface instability (splitting or breakup). This paper 
uses the Lagrangian approach since the phase–boundary breakup is not 
assumed. 

The solution of the two-phase Stokes flow problem with MFS is based 
on the subdomain technique elaborated in [43]. Each phase occupies 
one subdomain, and we apply equilibrium conditions at the interface. 
Unlike the approach in [43], the interphase–boundary is not known a 
priori but has to be determined as part of the solution. Its form is ob-
tained by an iterative procedure described as follows. 

The standard MFS formulation for solving the Stokes equations is a 
velocity formulation, where the known velocity at the domain boundary 
determines the values of the coefficients used to calculate the velocity 
and pressure in the considered domain. Since in the governing equations 
of the standard MFS the pressure does not appear explicitly, but only the 
pressure gradient, the solution for the pressure field is undetermined up 
to an additive constant. Its typical value is above 106 Pa, while the 
pressure gradient is calculated correctly. However, there are situations 
[44] when the pressure on the part of the boundary is known, e.g., 
within measured values in the experiment. To solve such problems, we 
can use the pressure–stream function MFS formulation [45]. In this 
work, we derived the velocity–pressure formulation, presented below. 

The present paper was motivated by the need to upgrade the MFS to 
address two-phase (gas-liquid) Stokes flow problems commonly 
encountered in microfluidic systems [46], which are more specifically 
related to the liquid jets associated with sample delivery in femtosecond 
crystallography. The consideration of geometrically non-trivial set-ups 
thus represents an important intermediate step towards this goal. 

The remainder of this paper is organized as follows. Section 2 de-
scribes the problem and the solution method for the velocity–pressure 
formulation, calculation of stresses, and phase–boundary deformation, 
among others. Section 3 uses the 2-phase flow in a 2D channel as a 
numerical example. In the same section, a comparison of the results from 
the proposed method and reference analytical or numerical solutions is 
carried out. For numerical reference solutions, we used the CVM–based 
CFD code [47].The concluding remarks and foreseen further de-
velopments are given in the last section. 

2. The problem and the method of solution 

2.1. Method of fundamental solutions for two-phase Stokes flow using 
velocity–pressure formulation 

The two-phase Stokes flow is in point p governed by the mass and 
momentum conservation equations: 

∇⋅vφ(p) = 0, (1) 

Fig. 1. Computational domain with two immiscible phases.  
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− ∇Pφ(p) + μφ∇2vφ(p) = 0, (2)  

where in the phase φ are: vφ = (vφ
x , vφ

y ) velocity vector, Pφ pressure and 
μφ coefficient of dynamic viscosity. In the following, we shall call one 
phase a liquid and the other a gas, although both phases can also be 
immiscible liquids, Fig. 1. 

We are looking for a solution of the system of Eqs. (1)–(2) for velocity 
and pressure fields at points p = (px,py) in a 2D domain Ω = Ωl∪Ωg, 
which consists of two regions, each representing one phase. The su-
perscript φ = l represents the liquid phase subdomain, and the super-
script φ = g represents the gas phase subdomain. 

The external boundary of the domain consists of two parts Γe = Γl∪Γg, 
where Γl is a boundary between the liquid phase and the surroundings, 
Γg the boundary between the gaseous phase and the surroundings. The 
velocity or pressure can be set as a boundary condition on the part of the 
liquid or gas external boundaries Γl = Γl,v∪Γl,p, Γg = Γg,v∪Γg,p: 

vφ
x = vφ

x , v
φ
y = vφ

y on Γφ,v, (3)  

vφ
t = 0,Pφ = Pφ on Γφ,p. (4) 

The boundary between the phases (phase–boundary) is Γi. In order to 
solve the system of Eqs. (1)–(2) for the prescribed boundary conditions 
(3)–(4), we also need the equations of the equilibrium condition [48] at 
the phase–boundary. For a point p ∈ Γi the following hold:  

– kinematic condition 

vl(p) = vg(p), (5)    

– normal stress equilibrium 

2μlnl(p)⋅Sl(p)⋅nl(p) − 2μgng(p)⋅Sg(p)⋅ng(p) = 0, (6)    

– tangential stress equilibrium 

2μltl(p)⋅Sl(p)⋅nl(p) − 2μgtg(p)⋅Sg(p)⋅ng(p) = 0. (7)   

The outward unit normal and unit tangent at the point p on the 
interface are nl = (nl

x,nl
y), tl = ( − nl

y,nl
x), and ng = − nl, tg = − tl. 

The symmetric strain rate tensor in two-dimensional Cartesian co-
ordinates is defined as 

Sφ(p) =
1
2

⎡

⎢
⎢
⎢
⎢
⎣

2
∂vφ

x

∂px

∂vφ
y

∂px
+

∂vφ
x

∂py

∂vφ
y

∂px
+

∂vφ
x

∂py
2

∂vφ
y

∂py

⎤

⎥
⎥
⎥
⎥
⎦
. (8) 

According to the MFS, the system of Eqs. (1)–(7) is solved by using 
the expressions: 

vφ
x (p) =

∑Nφ

j=1
αxφ

j vφ∗
xx

(
p, sj
)
+
∑Nφ

j=1
αyφ

j vφ∗
xy

(
p, sj
)
, (9)  

vφ
y (p) =

∑Nφ

j=1
αxφ

j vφ∗
yx

(
p, sj
)
+
∑Nφ

j=1
αyφ

j vφ∗
yy

(
p, sj
)
, (10)  

vφ
t (p) =

∑Nφ

j=1
αxφ

j

(
nφ

x (p)v
φ∗
yx

(
p, sj
)
− nφ

y (p)v
φ∗
xx

(
p, sj
))

+

∑Nφ

j=1
αyφ

j

(
nφ

x (p)v
φ∗
yy

(
p, sj
)
− nφ

y (p)v
φ∗
xy

(
p, sj
))

= 0
, (11)  

Pφ(p) =
∑Nφ

j=1
αxφ

j Pφ∗
x

(
p, sj
)
+
∑Nφ

j=1
αyφ

j Pφ∗
y

(
p, sj
)
, (12) 

Where vφ
t is tangential component of velocity vector, Nφ = Nφ,v + Nφ, 

p + Ni is the number of collocation points on the external boundaries Γφ 

and phase–boundary Γi, while αxφ and αyφ are the unknown coefficients 
(weights). 

The global approximation functions (fundamental solutions of the 
2D Stokes equations) [23] are: 

vφ∗
xx (p, s) =

1
8πμφ

(

− 2lnr(p, s)+
2(px − sx)

2

r2(p, s)
− 3

)

, (13)  

vφ∗
yy (p, s) =

1
8πμφ

(

− 2lnr(p, s)+
2
(
py − sy

)2

r2(p, s)
− 3

)

, (14)  

vφ∗
xy (p, s) = vφ∗

yx (p, s) =
1

8πμφ

2(px − sx)
(
py − sy

)

r2(p, s)
, (15)  

Pφ∗
x (p, s) =

1
2π

px − sx

r2(p, s)
, (16)  

Pφ∗
y (p, s) =

1
2π

py − sy

r2(p, s)
, (17)  

where r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(px − sx)
2
+ (py − sy)

2
√

is the distance between the colloca-
tion point and the source point. The source point s, which belongs to the 
collocation point p, is located in the direction of the outer normal to the 
physical boundary point p at distance dps. The source points form the so- 
called shadow or artificial boundary. In principle, the distance dps is 
arbitrary, but there is an optimal value at which the numerical error is 
the smallest [18]. 

Eqs. (9)–(10) in the case of a velocity boundary condition, and (11)– 
(12) in the case of a pressure boundary condition are written for all Nφ 

collocation points. When we also take into account the equilibrium 
condition Eqs. (5)–(7) at Ni collocation points on the phase–boundary 
we obtain a system of linear equations for the unknown coefficients αxφ 

and αyφ 

⎡

⎢
⎢
⎢
⎢
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⎢
⎢
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⎢
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⎢
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⎣
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]
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]

[
Pl

y

]

[
Kl

y

]

[
Sl

y

]

[0]
[0]
[0]
[0]

[0]
[0]
[0]
[0]
[
Kg

x

]

[
Sg

x

]

[
Ag

xx

]

[
Ag

yx

]

[
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tx

]
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x

]

[0]
[0]
[0]
[0]
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Kg

y

]

[
Sg

y

]

[
Ag
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]

[
Ag

yy

]

[
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y
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⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

{
αxl}

{
αyl}

{αxg}

{αyg}

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{

v l
x

}

{

v l
y

}

{0}
{

P l
}

{0}
{0}
{

v g
x

}

{

v g
y

}

{0}
{

P g
}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (18) 

The system matrix consists of the following fundamental solutions 
contributions. The elements of the velocity sub-matrices [Aφ

xx], [Aφ
xy] and 

[Aφ
xy], [Aφ

yy] are obtained from Eq. (9) and Eq. (10), respectively. The 
tangential velocity sub-matrices [Aφ

tx] and [Aφ
ty] are obtained from Eq. 

(11), while the pressure submatrices [Pφ
x ] and [Pφ

y ] are obtained from Eq. 
(12). The sub-matrices [Kφ

x ] and [Kφ
y ] are obtained from the pha-

se–boundary kinematic condition (5), and the sub-matrices [Sφ
x ] and [Sφ

y ]

are obtained from the phase–boundary stress conditions (6)–(7). 
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The right-hand side (rhs) vector consists of the known velocity, or 
known pressure and zero tangential velocity at the domain external 
boundary. Details of the matrix and rhs vector structures in the case of 
subdomains are described in [43]. When the system of linear Eqs. (18) is 
solved, we can explicitly calculate the velocity vector from Eqs. (9)–(10) 
and the pressure from Eq. (12) at any point p of the domain Ω. 

2.1.1. Example: flow in the T-splitter 
As an example of the application of the presented velocity–pressure 

formulation, we consider the single-phase Stokes flow in a 2D channel 
that splits in the shape of the letter T. This example is not analytically 
solvable, so to verify the MFS calculation, we use a reference solution 
obtained by the CVM with cell size Δc = 0.025 m. The computational 
domain is represented by a vertical 2D channel of width h, which splits 

into left and right arms with height h. Between the vertical and hori-
zontal arms there is a rounding with a radius of r. The dimensions of the 
domain in the x and y direction are L and H, Fig. 2. A fully developed 
velocity profile is specified at the inlet, while pressure is prescribed at 
the left and right outlets, with the left pressure being higher than the 
right. 

The data for this case are: h = 1 m, r = 1 m, L = 5 m, H = 3 m, μ = 1 
Pa⋅s, vy(x,0) = U0(1 − 4x2), U0 = 3 m/s, vx(x,0) = 0, P( − L/2, y) = 20 Pa, 
vy( − L/2, y) = 0, P(L/2, y) = 0, vy(L/2,y) = 0. 

The N = 304 collocation points with an uniform spacing Δ = 0.05 m 
are distributed along the domain boundary. For the given boundary 
conditions, the reference CVM solution for the mean pressure at the inlet 
is P inlet = 72.38 Pa, while the MFS solution is P inlet = 72.96 Pa. The 
difference is 0.8%. 

Fig. 3 shows a comparison of the velocity and pressure profiles with 
the reference CVM solution along the horizontal line at height y = 2.5 m. 
The match appears to be perfect. 

Fig. 4 shows the velocity and pressure fields. Due to the pressure 
difference between the outlets, the velocity field is not symmetrical. The 
flow rate on the left outlet is lower than that at the right outlet. The 
example shows how we can regulate the flow through an individual 
branch of the split by adjusting the outlet pressures. 

It is noteworthy that the solution of the system of equations and the 
explicit calculation in interior points took only 1.25 s on a personal 
computer with a six-core Intel® Xeon® CPU E5–2620 v3 @ 2.40 GHz. 

2.2. Calculation of stresses 

The velocity derivatives, which are needed for the strain rate tensor 
in Eq. (8) can be obtained by using finite differences, as was done by 
Mikhaylenko [49] where the problem is solved with regularized 

Fig. 2. Geometry of the T-split domain.  

Fig. 3. Velocity (a) and pressure (b) profiles along horizontal line at the height y = 2.5 m through T-split domain.  

Fig. 4. Velocity (a) and pressure (b) fields in T-split domain. Dots (⋅) represent collocation points.  
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boundary singularity method (rBSM), which is one of the derivatives of 
the method of fundamental solutions. The other approach is by deriving 
Eqs. (9)–(10) and explicitly calculating the velocity derivatives after the 
coefficients αxφ and αyφ are known: 

∂vφ
x

∂px
(p) =

∑Nφ

j=1
αxφ

j
∂vφ∗

xx

∂px

(
p, sj
)
+
∑Nφ

j=1
αyφ

j
∂vφ∗

xy

∂px

(
p, sj
)
, (19)  

∂vφ
x

∂py
(p) =

∑Nφ

j=1
αxφ

j
∂vφ∗

xx

∂py

(
p, sj
)
+
∑Nφ

j=1
αyφ

j
∂vφ∗

xy

∂py

(
p, sj
)
, (20)  

∂vφ
y

∂px
(p) =

∑Nφ

j=1
αxφ

j
∂vφ∗

yx

∂px

(
p, sj
)
+
∑Nφ

j=1
αyφ

j
∂vφ∗

yy

∂px

(
p, sj
)
, (21)  

∂vφ
y

∂py
(p) =

∑Nφ

j=1
αxφ

j
∂vφ∗

yx

∂py

(
p, sj
)
+
∑Nφ

j=1
αyφ

j
∂vφ∗

yy

∂py

(
p, sj
)
. (22) 

The Stokeslets derivatives are: 

∂vφ∗
xx

∂px

(
p, sj
)
= −

1
2πμφ

(px − sx)
3

r4(p, s)
+

1
4πμφ

(px − sx)

r2(p, s)
, (23)  

∂vφ∗
xx

∂py

(
p, sj
)
= −

1
2πμφ

(px − sx)
2( py − sy

)

r4(p, s)
+

1
4πμφ

(
py − sy

)

r2(p, s)
, (24)  

∂vφ∗
yy

∂px

(
p, sj
)
= −

1
2πμφ

(px − sx)
(
py − sy

)2

r4(p, s)
−

1
4πμφ

(px − sx)

r2(p, s)
, (25)  

∂vφ∗
yy

∂py

(
p, sj
)
= −

1
2πμφ

(
py − sy

)3

r4(p, s)
+

1
4πμφ

(
py − sy

)

r2(p, s)
, (26)  

∂vφ∗
xy

∂px

(
p, sj
)
=

∂vφ∗
yx

∂px

(
p, sj
)
= −

1
2πμφ

(px − sx)
2( py − sy

)

r4(p, s)
+

1
4πμφ

(
py − sy

)

r2(p, s)
,

(27)  

∂vφ∗
xy

∂py

(
p, sj
)
=

∂vφ∗
yx

∂py

(
p, sj
)
= −

1
2πμφ

(px − sx)
(
py − sy

)2

r4(p, s)
+

1
4πμφ

(px − sx)

r2(p, s)
.

(28) 

For the first time, we employed the second approach because it is 
superior to the approach with numerical differentiation, as seen in the 
example below. 

2.2.1. Example: semi-circular solid object in 2D channel 
We can verify the computation of stresses on a frequently used 

example [50] of flow over a semi-circular solid obstacle attached to the 
bottom wall of a 2D channel, see Fig. 5. The example was used as a 
model of a cell (leukocytes) attached to the wall where the authors were 
interested in the stresses exerted by the fluid flow over the cell. The 
problem was previously solved by using the boundary element method 
[51]. 

The length of the channel is L = 1m, the height is H = 0.05m, and the 
obstacle radius is R = H/4 = 0.0125m. A Dirichlet boundary codition is 
used with fully developed laminar parabolic velocity profile at the inlet 
and outlet. The average velocity is U = 1m/s. On the solid walls no-slip 
condition is assumed. The coefficient of dynamic viscosity is μ = 1Pa⋅s. 
The N = 1692 collocation points with spacing Δ = 0.00125m were 
uniformly distributed along the domain boundary. 

We used a CVM calculation on a very dense mesh with 126,828 
quadrilateral cells and an edge length 0.000625m for the reference so-
lution. The pressure–velocity coupling scheme was SIMPLE. The spatial 
discretization for the momentum was “second order upwind”, for the 
pressure “second order” and for the gradient “least squares cell based”. 
To simulate the Stokes flow, the density was set to very small (10− 40 kg/ 
m3) value. 

The shear and normal stresses along the bottom channel wall near 
the obstacle are shown in Fig. 6. The stresses are normalized by the 
pressure difference ΔP = 12μLU/H2 = 4800 Pa between the inlet and 
outlet for flow in the un-obstructed channel. The MFS results are 
compared with reference CVM calculation and rBSM results. As can be 
seen, the match between the MFS and CVM is perfect, while the rBSM 
solution deviates, especially near the intersection of the semi-circle and 
the flat wall. The obstacle greatly influences the fluid flow since the 
maximum shear stress on a semi-circular wall is about three times higher 
than on an unobstructed flat wall. No such significant differences exist 
for the normal stress since the obstacle causes a minor perturbation of 
the otherwise linear pressure drop. 

2.3. Determination of a free phase–boundary 

The determination of the free phase–boundary takes place in an 
iterative process, where in each iteration, we solve the system of Eqs. 
(18) and calculate the velocity at the collocation points of the pha-
se–boundary according to Eqs. (9) and (10). These velocities determine 

Fig. 5. Geometry of a case with semicircular solid object in 2D channel.  

Fig. 6. Shear stress (a) and normal stress (b) along the contour of the semicircular object.  
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the movement of the collocation points to a new position. The iterations 
are repeated until a phase–boundary final shape is reached, which 
means that the maximum displacement of any point of the pha-
se–boundary is less than the prescribed small value. The algorithm of the 
iterative process is shown in Fig. 7. 

The steps of the algorithm are elaborated below: 

Step 0: Initialization. 

The Ni collocation points pi and associated source points si are 
distributed along the initial shape of the phase–boundary. At these 
points, the velocities are calculated according to the previously 
described procedure. 

Step 1: Displacement of collocation points (pi→p̃i). 

The collocation points are moved in the direction of the velocity 
vector 

p̃i
j = pi

j + frΔminv
(

pi
j

)/
vmax, j = 1,…,Ni. (29) 

The maximum velocity in the current iteration at the interface is 

vmax = max
({

v
(

pi
j

)
: j= 1,…,Ni

})
. (30) 

The collocation points shift is limited. The maximum permissible 
displacement of the points is determined by the product of the relaxation 
factor fr and the minimum distance between adjacent collocation points 
at the phase–boundary 

Δmin = min
({⃒
⃒
⃒pi

j+1 − pi
j

⃒
⃒
⃒ : j= 1,…,Ni − 1

})
. (31) 

For example, if fr = 0.5, the maximum displacement of the pha-
se–boundary is ½ of the minimum distance between the adjacent 
collocation points. This factor affects the speed of convergence. If it is 
too big, the iterations will diverge. The safe values are fr ≤ 1. 

Step 2: Smoothing of the phase–boundary (p̃i→pi). 

By moving the collocation points, the phase–boundary becomes 
rather rough (jagged), so it is necessary to smooth it. For smoothing, a 
simple 7-point formula [52] is employed 

pi
j =
(
− p̃i

j− 3 + 9p̃i
j− 1 + 16p̃i

j + 9p̃i
j+1 − p̃i

j+3

)/
32, j = 4,…,Ni − 3. (32)   

Step 3: Repositioning of collocation points (pi→p̂i). 

After moving the points and smoothing the interface, their distri-
bution along the interface is quite uneven. The distance between the 
points is condensed at certain places and, in others, diluted. For the 
accuracy of the calculation, it is recommended that the collocation 
points are distributed approximately uniformly along the boundary. For 
the uniform repositioning of points along the phase–boundary, the cubic 
interpolation spline[53] is used 

p̂ i
j = S

(
pi

j

)
, j = 1,…,Ni. (33)   

Step 4: Check for convergence. 

If |p̂i
− pi| < ϵ a phase–boundary final shape is reached and the iter-

ations are stopped; otherwise continue with step 5. 

Step 5: Update of the phase–boundary (p̂i→pi, ŝi→si, n̂i→ni). 

After the new coordinates of the collocation points in the previous 
step are calculated, the normal, tangent, and curvature at these points 
are determined by finding 1st and 2nd derivatives of the interpolation 
polynomial from Step 3. The new normal vector n̂i also determines the 
new location of the source points ŝi. We return to Step 1. 

Fig. 8 illustrates the previously described algorithm for moving the 
collocation points. 

3. Numerical example 

Consider a 2D channel of length L = 4 m and height H = 1 m, Fig. 9. 
The liquid enters the channel in the lower part (0 ≤ y ≤ 3H/4) and the 
gas in the upper part (3H/4 ≤ y ≤ H). Both inlet flows are fully 

Fig. 7. The flowchart of phase–boundary deformation iterative procedure.  

Fig. 8. The path of the collocation point at the free boundary within 
one iteration. 

Fig. 9. Geometry of the 2D channel with the initial straigt shape of the 
phase–boundary. 
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developed with a parabolic velocity profile. Initially, the phase–boun-
dary is assumed to be a horizontal straight line from the inlet to the 
outlet. 

The boundary conditions are as follows:  

– inlet liquid: Ul = 1 m/s(Ql = 0.75 m3/s), vx = 8Ul( − 4y2/(3H2) + y/ 
H), vy = 0,  

– inlet gas: Ug = 3 m/s(Qg = 0.75 m3/s), vx = 3Ug( − 32y2/H2 + 56y/H 
− 24), vy = 0,  

– outlet: pressure P = 0, tangential velocity vt = 0. 

The coefficients of dynamic viscosity for the liquid and gas phases are 
μl = 1 Pa⋅s and μg = 0.1 Pa⋅s, respectively. The initial conditions for 
velocity in the domain are vl = vg = 0, and the initial liquid height is h =
3H/4. Because the flow is incompressible and the velocity of the gas is 
higher than the velocity of the liquid, we expect that the liquid height at 
the outlet will be lower than at the inlet. If, for example, the viscosity of 
the fluids were the same, the liquid height would be H/2 due to the 
equality of the flow rates. We expect H/2 < h < 3H/4 for the present 
problem. 

3.1. Reference solutions 

3.1.1. Exact solution 
The analytical solution for a fully developed two-phase Stokes flow 

in a 2D channel is derived to obtain the reference velocity profile at the 
outlet. For such a flow, the pressure depends only on the x coordinate Pφ 

= Pφ(x), the x component of the velocity depends only on the y coor-
dinate vφ

x = vφ
x (y), and the velocity in the y direction is zero vφ

y ≡ 0. The 
governing equation is, therefore 

∂Pφ

∂x
= μφ∂2vφ

x

∂y2 = Constant. (34) 

Because there is no flow in y direction, the pressure gradient has to be 
equal in both phases 

∂Pl

∂x
=

∂Pg

∂x
. (35) 

By analogy with a single-phase Stokes flow, the velocity vx in each 
phase is written as a second-order polynomial 

vl
x = aly2 + bly + cl, (36)  

vg
x = agy2 + bgy + cg. (37) 

The velocity derivatives are 

∂vl
x

/
∂y = 2aly + bl, (38)  

∂vg
x

/
∂y = 2agy + bg. (39) 

The boundary conditions are:  

– no slip at walls: vl
x(0) = 0, vg

x(H) = 0;  
– given liquid and gas flow rates: Ql =

∫ h
0 vl

xdy, Qg =
∫H

h vg
xdy;  

– equilibrium (kinematic and tension) at liquid-gas interface: vl
x(h) =

vg
x(h), μl

∂vl
x

∂y (h) = μg
∂vg

x
∂y (h);  

– equality of pressure gradient: μl
∂2vl

x
∂y2 = μg

∂2vg
x

∂y2 . 

After the application of boundary conditions to Eqs. (36)–(37) we 
obtain a system of 7 nonlinear equations in the 6 unknown coeficients al, 
bl, cl, ag, bg, cg and the unknown liquid height h: 

cl = 0, (40)  

agH2 + bgH + cg = 0, (41)  

alh2 + blh + cl = agh2 + bgh + cg, (42)  

2alh3 + 3blh2 + 6clh = 6Ql, (43)  

2ag(H3 − h3)+ 3bg(H2 − h2)+ 6cg(H − h) = 6Qg, (44)  

μl

(
2alh+ bl) = μg(2agh+ bg), (45)  

μla
l = μgag. (46) 

The data for this case are: H = 1 m, Qliq = Qgas = 0.75 m3/s, μliq = 1 
Pa⋅s, μgas = 0.1 Pa⋅s. The related system of nonlinear algebraic Eqs. (40)– 
(46) has been solved by the software package [54]. 

The only real number solution for h ∈ (0, H) is:  

– phase–boundary 

h = 0.61196 m (47)    

– liquid phase 

vl
x = − 3.75116y2 + 5.53574y, (48)  

∂vl
x

/
∂y = − 7.50232949y + 5.53574 (49)    

– gas phase 

vg
x = − 37.51165y2 + 55.3574y − 17.84575, (50)  

∂vg
x

/
∂y = − 75.02329y + 55.3574. (51)   

The velocity of the liquid-gas interface is vl
x = vg

x = 1.98286 m/s, 
while the velocity gradient at the phase–boundary in liquid phase is ∂vl

x/

∂y(h) = 0.94459 s− 1, and in gas phase is ∂vg
x/∂y(h) = 9.44594 s− 1. 

3.1.2. Numerical solution 
Since, in the considered case, the exact solution for the entire domain 

does not exist, the CVM numerical solution serves as a reference. We 
used the VOF model to describe the two-phase flow. The ANSYS Fluent 
software package solves the Navier-Stokes equations. Stokes flow was 
modeled using a very small value for the gas and liquid densities ρl = ρg 

= 10− 40 kg/m3. Thus, the contribution of the convective term in the 
momentum conservation equation is forced to be negligible. 

ANSYS Fluent also allows solving some steady-state VOF problems 
using the Pseudo Time Method, which unfortunately did not converge in 
our case. Therefore, we used a transient calculation for a long enough 
time to reach a steady-state. These results served as a reference solution 
for comparing the MFS calculation. 

The computational domain was discretized with 6400 quadrilateral 
cells, where the cell edge size was 0.025 m. The transient formulation 
was first–order implicit with fixed time step of Δt = 0.01 s. The SIMPLE 
scheme was used for the pressure–velocity coupling. The Least squares 
cell-based, “PRESTO!”, second order upwind, and geo-reconstruct 
spatial discretization schemes were used for gradient, pressure, mo-
mentum, and volume fraction, respectively. The under-relaxation fac-
tors were 0.3 for pressure and 0.7 for momentum. The boundary and 
initial conditions were the same as in the MFS calculation. The flow, and 
hence the liquid–gas interface, stabilizes (reaches a steady-state) in less 
than 5 s. 

3.2. Results and discussion 

Three different densities of collocation points with coarse, medium, 
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and fine spacing were used in the MFS calculations. the points were 
uniformly distributed on the external boundaries and on the liquid-gas 
interface, see Table 1. Fig. 10 shows the case with initial medium 
spacing. 

Table 2 shows a comparison of liquid height and velocity in the x 
direction on phase–boundary at the outlet. The agreement with the 
analytical reference values is good. the relative error decreases with the 
increasing number of the collocation points. 

The order of grid convergence p [55] is obtained from values of final 
liquid height for coarse (hΔ), medium (h2Δ) and fine1 (h4Δ) spacing 

p =
log h2Δ − h4Δ

hΔ − h2Δ

log2
= 5.025. (51) 

If medium (h2Δ), fine1 (h4Δ) and fine2 (h8Δ) values are used, then the 
order of grid convergence is p = 1.12. The Richardson extrapolation for 
hΔ = 0 in this case is 

hΔ=0 = h8Δ +
h8Δ − h4Δ

2p − 1
= 0.61175. (51) 

We can see that extrapolated value is very close to the reference 
solution href = 0.61196. 

The order of iterations convergence q [56], in the case of medium 
spacing, is obtained from sequence of values of liquid height hkat posi-
tion x = L/2 

q =

log
⃒
⃒
⃒
⃒

hk+1 − hk
hk − hk− 1

⃒
⃒
⃒
⃒

log
⃒
⃒
⃒
⃒

hk − hk− 1
hk− 1 − hk− 2

⃒
⃒
⃒
⃒

= 1.1 ± 0.16. (51) 

Table 1 
MFS collocation points spacing.    

coarse medium fine1 fine2 

Number of collocation points N 180 360 720 1440 
Collocation points spacing Δ[m] 0.1 0.05 0.025 0.0125 
Source point offset factor on 

phase–boundary 
fs 1.5 2 2 2 

Source point offset factor on 
outer boundary 

fs 6 6 6 6  

Fig. 10. MFS medium spacing, 360 collocation points, Δ = 0.05m.  

Table 2 
Liquid height h and velocity vx at the phase–boundary for x/L = 1.   

Reference MFS coarse MFS medium MFS fine1 MFS fine2 

h[m] 0.61196 0.66715 0.61473 0.61312 0.61238 
Δ%  9.02% 0.45% 0.19% 0.07% 
vx(h)[m/ 

s] 
1.98286 1.80088 1.99510 1.96943 1.97180 

Δ%  − 9.18% 0.62% − 0.67% − 0.56%  

Fig. 11. Velocity profiles at x = L/2 (a) and x = L (b).  

Fig. 12. Velocity derivatives at x = L/2 (a) and x = L (b).  
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The value of q indicates linear convergence. 
Figs. 11 and 12 show the velocity and velocity derivative profiles 

along the vertical line in the middle of the channel and at the outlet. The 
profiles for coarse spacing deviate considerably from the analytical ones, 
while the medium and fine spacing profiles match well the exact 
profiles. 

Fig. 13 shows the development of the phase–boundary. We see how it 
approaches the final shape from the initial linear form through itera-
tions. We can also observe how the outlet boundary’s collocation points 
adapt to the subdomain’s geometry change. Since the number of points 

is constant, the spacing between the collocation points increases in the 
gas subdomain and decreases in the liquid subdomain. We could also 
keep the spacing constant. This means that new collocation nodes must 
be added in the gas subdomain and removed in the liquid subdomain, 
which would greatly complicate programming. 

The collocation points and the corresponding source points for me-
dium spacing after 300 iterations are shown in Fig. 14, while Figs. 15 
and 16 show the final velocity field and streamlines for medium spacing, 
respectively. The liquid fraction field for the reference CVM simulation 
and the corresponding MFS calculation are shown in Figs. 17 and 18, 

Fig. 13. Velocity at inlet, outlet and deforming phase–boundary.  
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respectively. The agreement is good. As we can see from the details, the 
interface is smeared across three cells in the CVM method, while it is 
sharp in the MFS. This is essential when considering the surface tension 

force at the interface. It depends on the curvature of the phase–boun-
dary. Since, in our case, it is expressed by a cubic interpolation poly-
nomial, the first and second derivatives, which determine the radius of 
curvature, can be calculated exactly. 

4. Conclusions 

This paper demonstrates a novel boundary meshless procedure for 
solving the equations for two-phase Stokes flow in 2D. It is based on the 
MFS with collocation of the boundary conditions at the fixed and free 
boundaries by Stokeslets. We have used a subdomain technique for 
solving the velocity and pressure in each phase separated by a free 
boundary. 

The velocity at the fixed boundary can be known only at certain 
parts, so we complemented the standard MFS to cope with the mixed 
velocity and pressure boundary conditions. We have successfully 

Fig. 14. Collocation (▪) and source (+) points for medium spacing after 
300 iterations. 

Fig. 15. Final velocity field according to MFS calculation with medium spacing.  

Fig. 16. Final streamlines according MFS calculation with medium spacing.  

Fig. 17. CVM (VOF + geo-reconstruct) steady-state liquid fraction field.  

Fig. 18. MFS with fine spacing final liquid fraction field.  
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validated the approach with the results of a classical control volume 
reference solution in the case of a single-phase flow in a T-splitter with 
unsymmetric pressure outlet conditions. 

When applying the equilibrium conditions at the interfacial bound-
ary, we need to calculate the strain rate tensor, which requires the de-
rivatives of the velocity. We have obtained them by analytically 
manipulating the Stokeslets. This turned out to be much more accurate 
and efficient than the previously employed numerical approach. 

An iterative procedure for determining the shape of the free 
boundary between the phases is developed in connection with the Stokes 
flow. In each iteration, the velocity field is first calculated first by the 
standard MFS. The boundary is afterwards displaced according to the 
calculated velocities. To ensure the convergence of the free boundary 
shape, further steps of smoothing and redistribution of points are 
necessary. The procedure was verified on a two-phase concurrent flow in 
a 2D channel. The calculated velocity and velocity derivatives show 
convergence to the exact solution with increasing density of the collo-
cation points. 

We have examined the solution of two-phase Stokes flow in 2D by the 
MFS, which might be extended to axisymmetric and 3D geometries. For 
this purpose, a suitable Stokeslet has to be used. Comparing the MFS 
calculations with reference solutions shows that the developed approach 
successfully solves free boundary two-phase Stokes flow problems with 
mixed pressure and velocity boundary conditions. 
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[13] Wen S, Wang K, Zahoor R, Li M, Šarler B. Method of regularized sources for two- 
dimensional Stokes flow problems based on rational or exponential blobs. Comput 
Assist Methods Eng Sci 2015;22:289–300. 
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