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Abstract
We consider the following convective Neumann systems:

(S)

⎧
⎪⎨

⎪⎩

–�p1u1 +
|∇u1|p1
u1+δ1

= f1(x,u1,u2,∇u1,∇u2) in �,

–�p2u2 +
|∇u2|p2
u2+δ2

= f2(x,u1,u2,∇u1,∇u2) in �,

|∇u1|p1–2 ∂u1
∂η

= 0 = |∇u2|p2–2 ∂u2
∂η

on ∂�,

where � is a bounded domain in R
N (N ≥ 2) with a smooth boundary ∂�, δ1,δ2 > 0

are small parameters, η is the outward unit vector normal to ∂�,
f1, f2 :� ×R

2 ×R
2N → R are Carathéodory functions that satisfy certain growth

conditions, and �pi (1 < pi < N, i = 1, 2) are the p-Laplace operators
�piui = div(|∇ui|pi–2∇ui) for ui ∈ W1,pi (�). To prove the existence of solutions to such
systems, we use a subsupersolution method. We also obtain nodal solutions by
constructing appropriate subsolution and supersolution pairs. To the best of our
knowledge, such systems have not been studied yet.
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1 Introduction
We consider the following Neumann systems with gradient dependence:

(S)

⎧
⎪⎪⎨

⎪⎪⎩

–�p1 u1 + |∇u1|p1
u1+δ1

= f1(x, u1, u2,∇u1,∇u2) in �,

–�p2 u2 + |∇u2|p2
u2+δ2

= f2(x, u1, u2,∇u1,∇u2) in �,

|∇u1|p1–2 ∂u1
∂η

= 0 = |∇u2|p2–2 ∂u2
∂η

on ∂�,

where � is a bounded domain in R
N (N ≥ 2) with a smooth boundary ∂�, δ1, δ2 > 0 are

small parameters, η is the outward unit normal vector to ∂�, �pi (1 < pi < N , i = 1, 2) are
the p-Laplace operators �pi ui := div(|∇ui|pi–2∇ui) for ui ∈ W 1,pi (�).

In recent years, much has been done regarding the existence of solutions for nonlinear
systems with the Dirichlet condition and the reaction term depending on the gradient us-

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13661-023-01814-2
https://crossmark.crossref.org/dialog/?doi=10.1186/s13661-023-01814-2&domain=pdf
mailto:dusan.repovs@pef.uni-lj.si
mailto:dusan.repovs@fmf.uni-lj.si
mailto:dusan.repovs@guest.arnes.si
http://creativecommons.org/licenses/by/4.0/


Saoudi et al. Boundary Value Problems          (2024) 2024:4 Page 2 of 19

ing different techniques, mainly fixed point theory, variational methods, truncation meth-
ods, and subsupersolution methods. We mention for instance, Candito et al. [2], where the
authors investigated a quasilinear singular Dirichlet system with gradient dependence.
They combined Schauder’s fixed point theorem with subsupersolution approach to estab-
lish the existence of smooth positive solutions. For more detail, we refer the readers to
some recent papers: Carl and Motreanu [5], Infante et al. [10], Miyagaki and Rodrigues
[14], Kita and Otani [11], Motreanu et al. [17], Orpel [21], Ou [22], Wang et al. [24], Yang
and Yang [25], and the references therein. See also the monograph by Motreanu [16].

On the other hand, the corresponding Neumann system has been much less studied.
In this context, the Neumann quasilinear equation involving a connective term equation
was studied by Moussaoui et al. [20]. Candito et al. [3] obtained nodal solutions for a
(p1, p2)-Laplacian Neumann system without gradient terms. Neumann systems involving
variable exponent double phase operators and gradient dependence were investigated by
Guarnotta et al. [9].

The main interest of the present work is the presence of the gradient term, which con-
stitutes a serious obstacle in the investigation of system (S). Note that system (S) is not in
the variational form. Therefore the usual critical point theory cannot be directly applied.
This difficulty is overcome by using the theory of pseudomonotone operators. We first
introduce an auxiliary system using truncation operators. Then we construct a subsolu-
tion (u1, u2) and a supersolution (u1, u2) such that u1 ≤ u1, u2 ≤ u2 (see Theorem 5.1).
Finally, sub- and supersolutions and truncation techniques provide at least two solutions
for system (S) with precise sign properties.

We will assume that the nonlinearities fi for i = 1, 2 are Carathéodory functions f1, f2 :
� × R

2 × R
2N → R, that is, fi(·, s1, s2, ξ1, ξ2) is measurable for every (s1, s2, ξ1, ξ2) ∈ R

2 ×
R

2N , fi(·, s1, s2, ξ1, ξ2) is continuous for a.e. x ∈ �, and they satisfy the following growth
conditions:

(H1) There exist αi,βi, Mi > 0, i = 1, 2, such that max{αi,βi} < pi – 1 and

∣
∣fi(x, s1, s2, ξ1, ξ2)

∣
∣ ≤ Mi

(
1 + |si|αi

)(
1 + |ξi|βi

)

for i = 1, 2 and all (x, s1, s2, ξ1, ξ2) ∈ � ×R
2 ×R

2N .

(H2) With appropriate mi > 0, i = 1, 2, we have

lim inf|si|→0

{
fi(x, s1, s2, ξ1, ξ2) : (ξ1, ξ2) ∈R

2N}
> mi, uniformly in x ∈ �.

Our main results are the following theorems.

Theorem 1.1 Let δ1, δ2 > 0 be small enough and suppose that conditions (H1) and (H2)
are satisfied. Then system (S) has a nodal solution (u0, v0) ∈ C1,γ (�) × C1,γ (�) for some
γ ∈ (0, 1) such that u0(x) and u′

0(x) are negative near ∂�.

Theorem 1.2 Let δ1, δ2 > 0 be small enough and suppose that conditions (H1) and (H2)
are satisfied. Then system (S) has a positive solution (u+, u+) ∈ C1,γ (�) × C1,γ (�) for some
γ ∈ (0, 1) such that u+(x) and u+(x) are negative near ∂�.

The paper is organized as follows. In Sect. 2, we collect some needed definitions and
results. In Sect. 3, we study auxiliary systems. In Sect. 4, we prove Theorem 3.1. In Sect. 5,
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we study subsupersolutions. In Sect. 6, we study nodal solutions. In Sect. 7, we prove our
main results.

2 Preliminaries
This part is devoted to summarizing the necessary basic definitions, notations, and func-
tion spaces. For other necessary material, we refer the reader to the comprehensive mono-
graph by Papageorgiou et al. [23]. The Banach space W 1,p(�) is equipped with the usual
norm

‖u‖1,p :=
(‖u‖p

p + ‖∇u‖p
p
)1/p for u ∈ W 1,p(�),

where

‖v‖p :=

⎧
⎨

⎩

(
∫

�
|v(x)|p dx)1/p if p < +∞,

ess supx∈� |v(x)| otherwise.

Moreover, we denote

W = W 1,p1 (�) × W 1,p2 (�), W 1,pi
b (�) := W 1,pi (�) ∩ L∞(�),

[u1, u2] :=
{

u ∈ W 1,p(�) : u1 ≤ u ≤ u2
}

, C1,γ
0 (�) :=

{
u ∈ C1,γ (�) : u\∂� = 0

}
.

Now we define a weak solution of system (S).

Definition 2.1 We say that (u1, u2) ∈W is a weak solutions of system (S) if

ui + δi > 0 a.e. in �,
|∇ui|pi

ui + δi
∈ L1(�) for i = 1, 2,

∫

�

|∇u1|p1–2∇u1∇ϕ1 dx +
∫

�

|∇u1|p1

u1 + δ1
ϕ1 dx =

∫

�

f1(x, u1, u2,∇u1,∇u2)ϕ1 dx,
∫

�

|∇u2|p2–2∇u2∇ϕ2 dx +
∫

�

|∇u2|p2

u2 + δ2
ϕ2 dx =

∫

�

f2(x, u1, u2,∇u1,∇u2)ϕ2 dx,

(2.1)

for every (ϕ1,ϕ2) ∈ W 1,p1
b (�) × W 1,p2

b (�).

Remark 2.2 Note that the boundedness condition for (ϕ1,ϕ2) is necessary since |∇ui|p
ui+δi

, i =
1, 2, are only in L1(�).

Next, we state the definition of a sub-solution and a super-solution of system (S).

Definition 2.3 We say that the pair (u1, u2) ∈W is a sub-solution of system (S) if

ui + δi > 0 a.e. in �,
|∇ui|pi

ui + δi
∈ L1(�) for i = 1, 2,

∫

�

|∇u1|p1–2∇u1∇ϕ1 dx +
∫

�

|∇u1|p1

u1 + δ1
ϕ1 dx –

∫

�

f1(x, u1, w2,∇u1,∇w2)ϕ1 dx

+
∫

�

|∇u2|p2–2∇u2∇ϕ2 dx +
∫

�

|∇u2|p2

u2 + δ2
ϕ2 dx

–
∫

�

f2(x, w1, u2,∇w1,∇u2)ϕ2 dx ≤ 0,

(2.2)
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and we say that the pair (u1, u2) ∈W is a super-solution of system (S) if

ui + δi > 0 a.e. in �,
|∇ui|pi

ui + δi
∈ L1(�) for i = 1, 2,

∫

�

|∇u1|p1–2∇u1∇ϕ1 dx +
∫

�

|∇u1|p1

u1 + δ1
ϕ1 dx –

∫

�

f1(x, u1, w2,∇u1,∇w2)ϕ1 dx

+
∫

�

|∇u2|p2–2∇u2∇ϕ2 dx +
∫

�

|∇u2|p2

u2 + δ2
ϕ2 dx

–
∫

�

f2(x, w1, u2,∇w1,∇u2)ϕ2 dx ≥ 0,

(2.3)

for all (ϕ1,ϕ2) ∈ W 1,p1
b (�) × W 1,p2

b (�) such that ϕ1,ϕ2 ≥ 0 in � and for all (w1, w2) ∈ W
such that ui ≤ wi ≤ ui, i = 1, 2, with all integrals in (2.2) and (2.3) being finite.

We will use the following conditions:
(H3) Let 0 ≤ q1 ≤ p1 –1 and 0 ≤ r1 ≤ p2 –1. For every ρ > 0, there exists M1 := M1(ρ) > 0

such that

∣
∣f1(x, s1, s2, ξ1, ξ2)

∣
∣ ≤ M1

(
1 + |ξ1|q1 + |ξ2|r1

)
in � × [–ρ,ρ]2 ×R

2N .

(H4) Let 0 ≤ q2 ≤ p1 –1 and 0 ≤ r2 ≤ p2 –1. For every ρ > 0, there exists M2 := M2(ρ) > 0
such that

∣
∣f2(x, s1, s2, ξ1, ξ2)

∣
∣ ≤ M2

(
1 + |ξ1|q2 + |ξ2|r2

)
in � × [–ρ,ρ]2 ×R

2N .

(H5) There are sub- and supersolutions u1, u1 ∈ C1(�) of system (S), respectively, satis-
fying

u1 + δ1 ≥ u1 + δ1 > 0 a.e. in �. (2.4)

(H6) There are sub- and supersolutions u2, u2 ∈ C1(�) of system (S), respectively, satis-
fying

u2 + δ2 ≥ u2 + δ2 > 0 a.e. in �. (2.5)

Via a standard argument, we will prove the following:

Proposition 2.4 Suppose that conditions (H3), (H4), (H5), and (H6) are satisfied. Let
(ui, vi), (ui, vi) ∈ W 1,p1

b (�) × W 1,p2
b (�) be pairs of sub- and supersolutions of system (S). Set

u = min{u1, u2}, u = max{u1, u2},
v = min{v1, v2}, v = max{v1, v2},

and assume that u ≤ v and u ≤ v Then (u, v), (u, v) is also a pair of sub- and supersolutions
of system (S).
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Proof The proof is inspired by the proof of Motreanu et al. [19, Lemma 3]. Fix ε > 0 and
define the truncation function ξε(s) = max{–ε, min{s, ε}} for s ∈ R. By Marcus et al. [13] we
know that

ξε

(
(u1 – u2)–)

, ξε

(
(u1 – u2)+) ∈W ,

∇ξε

(
(u1 – u2)–)

= ξ ′
ε

(
(u1 – u2)–)∇(u1 – u2)–,

and

∇ξε

(
(u1 – u2)+)

= ξ ′
ε

(
(u1 – u2)+)∇(u1 – u2)+.

Now letting ϕ ∈ C1
c (�) be a test function such that ϕ ≥ 0, we obtain

〈

–�p1 u1 +
|∇u1|p1

u1 + δ1
, ξε

(
(u1 – u2)+)

ϕ

〉

≤
∫

�

f1(x, u1, w2,∇u1,∇w2)ξε

(
(u1 – u2)+)

ϕ dx, (2.6)
〈

–�p1 u1 +
|∇u1|p1

u1 + δ1
, ξε

(
(u1 – u2)–)

ϕ

〉

≥
∫

�

f1(x, u1, w2,∇u1,∇w2)ξε

(
(u1 – u2)–)

ϕ dx (2.7)

for every w2 ∈ W 1,p2 (�) with u2 ≤ w2 ≤ u2 and

〈

–�p1 u2 +
|∇u2|p1

u2 + δ1
,
(
ε – ξε

(
(u1 – u2)+))

ϕ

〉

≤
∫

�

f1(x, w1, u2,∇w1,∇u2)
(
ε – ξε

(
(u1 – u2)+))

ϕ dx, (2.8)
〈

–�p1 u2 +
|∇u2|p1

u2 + δ1
,
(
ε – ξε

(
(u1 – u2)–))

ϕ

〉

≥
∫

�

f1(x, w1, u2,∇w1,∇u2)
(
ε – ξε

(
(u1 – u2)–))

ϕ dx (2.9)

for every w1 ∈ W 1,p1 (�) with u1 ≤ w1 ≤ u1. Therefore by the monotonicity of the –p-
Laplacian operator we have

〈

–�p1 u1 +
|∇u1|p1

u1 + δ1
, ξε

(
(u1 – u2)+)

ϕ

〉

+
〈

–�p1 u2 +
|∇u2|p1

u2 + δ1
,
(
ε – ξε

(
(u1 – u2)+))

ϕ

〉

≥
∫

�

|∇u1|p1–2(∇u1,∇ϕ)RN ξε

(
(u1 – u2)+)

dx +
∫

�

|∇u1|p1

u1 + δ1
ξε

(
(u1 – u2)+)

ϕ dx

+
∫

�

|∇u2|p1–2(∇u2,∇ϕ)RN
(
ε – ξε

(
(u1 – u2)+))

dx

+
∫

�

|∇u2|p1

u2 + δ1

(
ε – ξε

(
(u1 – u2)+))

ϕ dx (2.10)
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and

〈

–�p1 u1 +
|∇u1|p1

u1 + δ1
, ξε

(
(u1 – u2)–)

ϕ

〉

+
〈

–�p1 u2 +
|∇u2|p1

u2 + δ1
,
(
ε – ξε

(
(u1 – u2)–))

ϕ

〉

≤
∫

�

|∇u1|p1–2(∇u1,∇ϕ)RN ξε

(
(u1 – u2)–)

dx +
∫

�

|∇u1|p1

u1 + δ1
ξε

(
(u1 – u2)–)

ϕ dx

+
∫

�

|∇u2|p1–2(∇u2,∇ϕ)RN
(
ε – ξε

(
(u1 – u2)+))

dx

+
∫

�

|∇u2|p1

u2 + δ1

(
ε – ξε

(
(u1 – u2)–))

ϕ dx. (2.11)

Invoking equations (2.6), (2.8), and (2.10), we obtain

∫

�

|∇u1|p1–2(∇u1,∇ϕ)RN
1
ε
ξε

(
(u1 – u2)+)

dx +
∫

�

|∇u1|p1

u1 + δ1

1
ε
ξε((u1 – u2)– dx

+
∫

�

|∇u2|p1–2(∇u2,∇ϕ)RN

(

1 –
1
ε
ξε

(
(u1 – u2)+)

)

dx

+
∫

�

|∇u2|p1

u2 + δ1
(1 –

1
ε
ξε

(
(u1 – u2)+)

dx

≤
∫

�

f1(x, u1, w2,∇u1,∇w2)
1
ε
ξε

(
(u1 – u2)+)

ϕ dx

+
∫

�

f1(x, u1, w2,∇u1,∇w2)
(

1 –
1
ε
ξε

(
(u1 – u2)–)

)

ϕ dx.

In a similar manner, invoking equations (2.7), (2.9), and (2.11), we get

∫

�

|∇u1|p1–2(∇u1,∇ϕ)RN
1
ε
ξε

(
(u1 – u2)–)

dx +
∫

�

|∇u1|p1

u1 + δ1

1
ε
ξε((u1 – u2)– dx

+
∫

�

|∇u2|p–2(∇u2,∇ϕ)RN

(

1 –
1
ε
ξε

(
(u1 – u2)–)

)

dx

+
∫

�

|∇u2|p1

u2 + δ1
(1 –

1
ε
ξε

(
(u1 – u2)–)

dx

≥
∫

�

f2(x, w1, u2,∇w1,∇u2)
1
ε
ξε

(
(u1 – u2)–)

ϕ dx

+
∫

�

f2(x, w1, u2,∇w1,∇u2)
(

1 –
1
ε
ξε

(
(u1 – u2)–)

)

ϕ dx.

Letting ε → 0 and observing that

⎧
⎨

⎩

1
ε
ξε((u1 – u2)– → 1{u1<u2}(x), a.e. in � as ε → 0,

1
ε
ξε((u1 – u2)+ → 1{u1<u2}(x), a.e. in � as ε → 0,

we see that

∫

�

|∇u|p1–2∇u∇ϕ dx +
∫

�

|∇u|p1

u + δ1
ϕ dx ≤

∫

�

f1(x, u1, w2,∇u1, w2)ϕ dx
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and
∫

�

|∇u|p1–2∇u∇ϕ dx +
∫

�

|∇u|p1

u + δ1
ϕ dx ≥

∫

�

f1(x, u1, w2,∇u1,∇w2)ϕ dx

for every ϕ ∈ C1
c (�), ϕ ≥ 0 a.e. in �. By a similar argument we obtain

∫

�

|∇v|p2–2∇v∇ϕ dx +
∫

�

|∇v|p2

v + δ2
ϕ dx ≤

∫

�

f2(x, w1, v2,∇w1,∇v2)ϕ dx

and
∫

�

|∇v|p2–2∇v∇ϕ dx +
∫

�

|∇v|p2

v + δ2
ϕ dx ≥

∫

�

f2(x, w1, v2,∇w1,∇v2)ϕ dx.

Finally, in view of the denseness of C1
c (�) in both W 1,p1 (�) and W 1,p2 (�), we deduce that

(u, v), (u, v) is also a pair of sub- and supersolutions of system (S). �

3 Auxiliary systems
Let, the pairs (u1, u2), (u1, u2) ∈ C1(�) × C1(�) be sub- and supersolutions, respectively,
of system (S) as required in conditions (H5) and (H6). Now, for a given (u1, u2) ∈ W , we
define the truncation operators Ti : W 1,pi (�) → W 1,pi (�) by

T1(u1) :=

⎧
⎪⎪⎨

⎪⎪⎩

u1 when u1 ≤ u1,

u1 if u1 ≤ u1 ≤ u1,

u1 otherwise,

T2(u2) :=

⎧
⎪⎪⎨

⎪⎪⎩

u2 when u2 ≤ u2,

u2 if u2 ≤ u2 ≤ u2,

u2 otherwise.

(3.1)

Then by Carl et al. [4, Lemma 2.89], T1 and T2 are continuous, monotone, and bounded.
In view of conditions (H3) and (H4), if ρ > 0, then

–ρ ≤ u1 ≤ u1 ≤ ρ, –ρ ≤ u2 ≤ u2 ≤ ρ. (3.2)

We introduce the Nemitskii operators Nf1 and Nf2 generated by the Carathéodory func-
tions f1 and f2, respectively, which are well defined for i = 1, 2 since the range of T1 and
T2 lies within the region [ui, ui]. So by the Rellich–Kondrachov compactness embedding
theorem the maps

Nf1 ◦ (T1,T2) : [u1, u1] ⊂W −→ Lp′
1 (�) ↪→ W –1,p1 (�), (3.3)

Nf2 ◦ (T1,T2) : [u2, u2] ⊂W −→ Lp′
2 (�) ↪→ W –1,p2 (�) (3.4)

are bounded and completely continuous. Furthermore, set

F (u) =
(
Nf1 (T1u1,T2u2,∇(T1u1),∇(T2u2),Nf2 (T1u1,T2u2,∇(T1u1),∇(T2u2)

)
.

Next, define the cut-off functions bi : � ×R −→R, i = 1, 2, by

b1(x, s) := –
(
u1(x) – s

)p1–1
+ +

(
s – u1(x)

)p1–1
+ for (x, s) ∈ � ×R, (3.5)
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b2(x, s) := –
(
u2(x) – s

)p2–1
+ +

(
s – u2(x)

)p2–1
+ for (x, s) ∈ � ×R. (3.6)

It is easy to see that bi, i = 1, 2, are Carathéodory functions fulfilling the following growth
condition:

∣
∣b1(x, s)

∣
∣ ≤ ϕ1(x) + c1|s|p1–1 for a.e. x ∈ � and every s ∈R, (3.7)

∣
∣b2(x, s)

∣
∣ ≤ ϕ2(x) + c2|s|p2–1 for a.e. x ∈ � and every s ∈R, (3.8)

with ϕ1, ϕ2 ∈ L∞(�) and c1, c2 > 0. Moreover, we have the following estimates:

∫

�

b1(·, u1)u1 dx ≥ C1‖u1‖p
p1 – C2 for every u1 ∈ W 1,p1 (�), (3.9)

∫

�

b2(·, u2)u2 dx ≥ C′
1‖u1‖p

p1 – C′
2 for every u1 ∈ W 1,p2 (�), (3.10)

where C1, C2, C′
1, C′

2 are some positive constants (for more detail, see, e.g., Carl et al. [4,
pp. 95–96]). Let μ > 0 and set

μB(u) =
(
μB1(u1),μB2(u2)

)
.

Now we introduce the following auxiliary problem:

(Sμ)

⎧
⎪⎪⎨

⎪⎪⎩

–�p1 u1 + |∇(T u1)|p1
T u1+δ1

= f1(x,T u1,T u2,∇(T u1),∇(T u2)) – μb1(x, u) in �,

–�p2 u2 + |∇(T u2)|p2
T u2+δ2

= f2(x,T u1,T u2,∇(T u1),∇(T u2)) – μb2(x, u) in �,

|∇u1|p1–2 ∂u1
∂η

= 0 = |∇u2|p2–2 ∂u2
∂η

on ∂�,

where (u1, u2) ∈W . Our main result in this section concerning system (Sμ) is as follows.

Theorem 3.1 Suppose that conditions (H3), (H4), (H5), and (H6) are satisfied. Then sys-
tem (Sμ) has a pair of weak solutions (u1, u2) ∈W .

The following estimates will be a key for the proof of Theorem 3.1 in the next section.

Lemma 3.2 Suppose that conditions (H3) and (H4) are satisfied. Then there exist constants
k0, k′

0 > 0, depending only on p1, p2, and �, such that

∫

�

∣
∣f1

(
x,T u1,T u2,∇(T u1),∇(T u2)

)∣
∣|u1|dx ≤ 1

2
(‖∇u1‖p1

p1 + ‖∇u2‖p2
p2

)

+ k0
(
1 + ‖u1‖p1 + ‖u1‖p1

p1 + ‖u1‖p2
p2

)

and
∫

�

∣
∣f2

(
x,T u1,T u2,∇(T u1),∇(T u2)

)∣
∣|u2|dx ≤ 1

2
(‖∇u1‖p1

p1 + ‖∇u2‖p2
p2

)

+ k′
0
(
1 + ‖u2‖p2 + ‖u2‖p2

p2 + ‖u2‖p1
p1

)

for every (u1, u2) ∈W .
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Proof We will only prove the first inequality. The second inequality can be verified simi-
larly. First, by condition (H3) we have

∫

�

∣
∣f1

(
x,T u1,T u2,∇(T u1),∇(T u2)

)∣
∣|u1|dx

≤ M1

∫

�

(
1 +

∣
∣∇(T u1)

∣
∣q1 +

∣
∣∇(T u2)

∣
∣r1)|u1|dx. (3.11)

Using Young’s inequality, we get that for any fixed ε ∈]0, 1
2M [ and every u1 ∈ W 1,p1 (�),

∣
∣∇(T u1)

∣
∣q1 |u1| ≤ ε

∣
∣∇(T u1)

∣
∣

q1p1
p1–1 + cε|u1|p1 ≤ ε

(
1 +

∣
∣∇(T u1)

∣
∣p1) + cε|u1|p1 . (3.12)

Similarly, for every u2 ∈ W 1,p2 (�), we have

∣
∣∇(T u2)

∣
∣r1 |u1| ≤ ε

∣
∣∇(T u2)

∣
∣

r1p2
p2–1 + c′

ε|u1|p2 ≤ ε
(
1 +

∣
∣∇(T u2)

∣
∣p2) + c′

ε|u1|p2 . (3.13)

On the other hand, using equation (3.1), we can see that
∫

�

∣
∣∇(T u1)

∣
∣p1 dx =

∫

{u1≤u1≤u1}
|∇u1|p1 dx +

∫

{u1≥u1}
|∇u1|p1 dx +

∫

{u1≤u1}
|∇u1|p1 dx

≤
∫

�

|∇u1|p1 dx +
∫

�

|∇u1|p1 dx +
∫

�

|∇u1|p1 dx

≤ ‖∇u1‖p1
p1 +

(‖∇u1‖p1∞ + ‖∇u1‖p1∞
)|�|. (3.14)

Using the same techniques, we get
∫

�

∣
∣∇(T u2)

∣
∣p2 dx ≤ ‖∇u2‖p2

p2 +
(‖∇u2‖p2∞ + ‖∇u2‖p2∞

)|�|. (3.15)

Consequently, using equations (3.12)–(3.15), we get
∫

�

∣
∣f1

(
x,T u1,T u2,∇(T u1),∇(T u2)

)∣
∣|u1|dxp1

≤ M1
(|�| p1–1

p1 ‖u1‖ + ε|�|(1 + ‖∇u1‖p1∞ + ‖∇u1‖p1∞
)

+ ε‖∇u1‖p1
p1 + cε‖u1‖p1

p1

+ ε|�|(1 + ‖∇u2‖p2∞ + ‖∇u2‖p2∞
)

+ ε‖∇u2‖p2
p2 + cε‖u1‖p2

p2

)

≤ 1
2
(‖∇u1‖p1

p1 + ‖∇u2‖p2
p2

)
+ k0

(
1 + ‖u1‖p1 + ‖u1‖p1

p1 + ‖u1‖p2
p2

)
(3.16)

for a suitable k0 > 0. The proof of the lemma is thus completed. �

The following useful estimates can be verified in a similar way as in Moussaoui et al. [20,
Lemma 2.2].

Lemma 3.3 Suppose that conditions (H3), (H4), (H5), and (H6) are satisfied. Then for every
u = (u1, u2) ∈ W , there exist constants k1 and k2, independent of u1 and u2, respectively,
such that

|∇(T u1)|p1

T u1 + δ1
|u1| ∈ L1(�) and

∫

�

|∇(T u1)|p1

T u1 + δ1
|u1|dx ≤ k1

(
1 + ‖u1‖p1

)
, (3.17)
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|∇(T u2)|p2

T u2 + δ2
|u2| ∈ L1(�) and

∫

�

|∇(T u2)|p2

T u2 + δ1
|u2|dx ≤ k2

(
1 + ‖u2‖p2

)
. (3.18)

4 Proof of Theorem 3.1
First, by the growth conditions (3.7) and (3.8) we know that the Nemytskii operators
Bi : W 1,pi (�) −→ W –1,p′

i (�) given by Biui(x) = b(·, ui) are well defined, continuous, and
bounded for i = 1, 2. Also, the operator B(u) = (B1(u1),B2(u2)) is well defined. Moreover,
using the compact embedding W 1,pi (�) ↪→ Lpi (�), we have that the operator B is com-
pletely continuous. Next, using conditions (H.3) and (H.4), we can introduce the functions
πpi ,δi : (–δi, +∞) ×R

N −→R, i = 1, 2, defined by

πpi ,δi (si, ξi) =
|ξi|pi

si + δi

having the growth

∣
∣πpi ,δi (si, ξi)

∣
∣ ≤ δ0|ξi|pi

for all si > –δi and ξi ∈ R
N , where δ0 > 0 is a constant such that ui + δi ≥ ui + δi > δ0 a.e. in

� for i = 1, 2.
By Motreanu et al. [18, Theorem 2.76] and Gasinski et al. [8, Theorem 3.4.4]) we know

that the corresponding Nemytskii operators

�pi ,δi : [ui, ui] ⊂ W 1,pi (�) −→ L1(�) ⊂ W –1,p′
i (�)

are bounded and continuous for i = 1, 2. By virtue of the compact embedding of W 1,p(�)
into Lp(�), we know that �p,δ(u) = (�p1,δ1 (u1),�p2,δ2 (u2)) is completely continuous. Fi-
nally, A(u) = (A1(u1), A2(u2)), where A : W → W∗ is defined in equation (2.1), is well de-
fined, bounded, continuous, strictly monotone, and of type (S+). Therefore, for every u
and ϕ ∈W , we have the following representations:

〈
A(u),ϕ

〉

W =
2∑

i=1

∫

�

|∇ui|pi–2∇ui∇ϕi dx,

〈
�p,δ(u),ϕ

〉

W =
2∑

i=1

∫

�

�pi ,δi (u1, u2,∇u1,∇u2)ϕi dx,

〈
B(u),ϕ

〉

W =
2∑

i=1

∫

�

Bi(u1, u2,∇u1,∇u2)ϕi dx,

〈
F (u),ϕ

〉

W =
2∑

i=1

∫

�

Nfi (T1u1,T2u2,∇(T1u1),∇(T2u2)ϕi dx.

Now for every u and ϕ ∈W , system (Pμ) can be given in the form

〈
A(u) + μBu + �p,δ(u),ϕ

〉

W =
〈
F (u),ϕ

〉

W . (4.1)

Set

χμ := A(u) + μBu + �p,δ(u) – F (u).
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First, by conditions (H.1) and (H.2), χμ is well defined, continuous, and bounded. The next
step in the proof is showing that the operator χμ is pseudo-monotone. To this end, using
the (S)+-property of A, in view of the compactness of the operators �p,δ , B, F , we can use
Gambera et al. [7, Lemma 2.2] to deduce that the operator χμ also has the (S)+-property.
Furthermore, we can apply Zeidler [26, Proposition 26.2] to see that the operator χμ is
pseudo-monotone.

Let us show that the operator χμ : W → W∗ is coercive. To this end, using equation
(4.1), we get

〈
χμ(u), u

〉
=

2∑

i=1

∫

�

|∇ui|pi dx + μ

2∑

i=1

∫

�

bi(x, ui)ui dx +
2∑

i=1

∫

�

|∇(T ui)|pi

T ui + δi
ui dx

–
2∑

i=1

∫

�

fi
(
x,T u1,T u2,∇(T u1),∇(T u2)

)
ui dx

≥
2∑

i=1

∫

�

|∇ui|pi dx + μ

2∑

i=1

∫

�

bi(x, ui)ui dx –
2∑

i=1

∫

�

|∇(T ui)|pi

T ui + δi
ui dx

–
2∑

i=1

∫

�

fi
(
x,T u1,T u2,∇(T u1),∇(T u2)

)
ui dx. (4.2)

Now using equation (4.2) and combining equations (3.9) and (3.10) with Lemmas 3.2 and
3.3, we obtain

〈
χμ(u), u

〉 ≥
2∑

i=1

‖∇ui‖pi
pi

+ μ
(
C1‖u1‖p1

p1 – C2
)

+ μ
(
C′

1‖u2‖p2
p2 – C′

2
)

–
2∑

i=1

ki
(
1 + ‖ui‖pi

)
–

(‖∇u1‖p1
p1 + ‖∇u2‖p2

p2

)

– k0
(
1 + ‖u1‖p1 + ‖u1‖p1

p1 + ‖u1‖p2
p2

)

– k′
0
(
1 + ‖u2‖p2 + ‖u2‖p2

p2 + ‖u2‖p1
p1

)

≥ (‖∇u1‖p1
p1 + ‖∇u2‖p2

p2

)
+ μC∗

1
(‖u1‖p1

p1 + ‖u2‖p2
p2

)
– μ

(
C2 + C′

2
)

–
2∑

i=1

ki
(
1 + ‖ui‖pi

)
– k∗

0
(
1 + ‖u1‖p1 + ‖u1‖p1

p1 + ‖u1‖p2
p2

)
, (4.3)

where k∗
0 := max{k0, k′

0} and C∗
1 := min{C1, C′

1}. Then invoking Moussaoui and Saoudi [20,
Lemma 2.2], we can deduce that

∥
∥∇(ui1{ui<ui<ui})

∥
∥

pi
≤ C̃i for some C̃i > 0 independent of ui, i = 1, 2.

Furthermore, for sufficiently large μ > 0 such that μC∗
1 – k∗

0 > 0 and for every sequence
(un)n in W , inequality (4.3) implies

〈
χμ(un), un

〉 → +∞ as ‖un‖W → +∞.

Therefore, since χμ is continuous, bounded, coercive, and pseudomonotone, invoking the
pseudo-monotone operator theorem (see, e.g., Carl et al. [4, Theorem 2.99]), we get the
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existence of u ∈W such that

〈
χμ(u1, u2), (ϕ1,ϕ2)

〉
= 0 for every (ϕ1,ϕ2) ∈W . (4.4)

Moreover, using Casas et al. [6, Theorem 3], we have

|∇u1|p1–2 ∂u1

∂η
= 0 = |∇u2|p2–2 ∂u2

∂η
= 0 on ∂�.

Therefore we conclude that u = (u1, u2) ∈W is a weak solution of (Sμ). This completes the
proof of the theorem.

5 Subsupersolutions
The aim of this section is to construct pairs of sub- and supersolutions of system (S).

Theorem 5.1 Assume that conditions (H3), (H4), (H5), and (H6) are satisfied. Then sys-
tem (S) has a solution u = (u1, u2) ∈ C1,γ (�)×C1,γ (�)∩[u1, u1]×[u2, u2] for some γ ∈ (0, 1).

Proof of Theorem 5.1 First, using Theorem 3.1, we can fix μ > 0 sufficiently large such
that system (Sμ) admits a pair of weak solutions u = (u1, u2) ∈W . It remains to verify that
u = (u1, u2) ∈ [u1, u1] × [u2, u2]. Here we give just the proof for u1 ∈ [u1, u1]. A similar
reasoning yields the second inequality. To this end, we set (ϕ1,ϕ2) = ((u1 – u1)+, 0). By
Lemma 3.3 and condition (H5), combined with equation (4.4), we obtain

∫

�

|∇u1|p1–2∇u1∇(u1 – u1)+ dx +
∫

�

|∇(T u1)|p1

T u1 + δ1
(u1 – u1)+ dx

=
∫

�

f
(
x,T u1,T u2,∇(T u1),∇(T u2)

)
(u1 – u1)+ dx – μ

∫

�

b(x, u1)(u1 – u1)+ dx

=
∫

�

f
(
x, u1, ,T u2,∇u1,∇(T u2)

)
(u1 – u1)+ dx – μ

∫

�

(u1 – u1)p1
+ dx

≤
∫

�

|∇u1|p1–2∇u1∇(u1 – u1)+ dx +
∫

�

|∇u1|p1

u1 + δ1
(u1 – u1)+ dx – μ

∫

�

(u1 – u1)p1
+ dx.

Now, according to equation (3.1),

∫

�

|∇(T u1)|p1

T u1 + δ1
(u1 – u1)+ dx =

∫

�

|∇u1|p1

u1 + δ1
(u1 – u1)+ dx,

so it follows that
∫

�

(|∇u1|p1–2∇u1 – |∇u1|p1–2∇u1
)∇(u1 – u1)+ dx ≤ –μ

∫

�

(u1 – u1)p1
+ dx ≤ 0. (5.1)

Hence it follows from equation (5.1), combined with the monotonicity of A1, that u1 ≤ u1.
In the same way, to see that u1 ≤ u1, we set (ϕ1,ϕ2) = ((u1 – u1)+, 0). So, u = (u1, u2) ∈
[u1, u1] × [u2, u2]. Moreover, according to Miyajima et al. [15, Remark 8], we obtain that
u = (u1, u2) ∈ C1,γ (�) × C1,γ (�) for some γ ∈ (0, 1) and ∂u1

∂η
= ∂u2

∂η
= 0 on ∂�. Therefore

we have shown that u = (u1, u2) ∈ C1,γ (�) × C1,γ (�) is a solution of the system (S) within
[u1, u1] × [u2, u2]. �
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6 Nodal solutions
The objective of this section is to show the existence of nodal solutions of system (S). The
proof is mostly based on finding pairs of sub- and supersolutions of system (S). To this end,
first, recall from Candito et al. [3, Lemma 2] that zi ∈ C1,γ (�), i = 1, 2, for some γ ∈ (0, 1)
are the unique solutions of the homogeneous Dirichlet problem

⎧
⎨

⎩

–�pi u = 1 in �,

u = 0 on ∂�,
(6.1)

which satisfies

‖zi‖C1,γ (�) ≤ L and ‖∇zi‖∞ ≤ L̂, (6.2)

ld(x) ≤ zi ≤ Ld(x) in �,
∂zi

∂η
< 0 on ∂�, (6.3)

for certain constants L̂, l, and L. Moreover, by the Minty–Browder theorem (see Brezis
[1]), combined with the Lieberman regularity Theorem [12], we know that the Dirichlet
problem

–�pi u =

⎧
⎨

⎩

1 if x ∈ �\�τ ,

–1 otherwise,
u = 0 on ∂�, (6.4)

has a unique solution, denoted by zi,τ ∈ C1,γ (�) for a given 0 < τ < diam(�), satisfying

zi,τ ≤ zi in �, (6.5)

∂zi,τ

∂η
<

1
2

∂zi

∂η
< 0 on ∂�, and zi,τ ≥ 1

2
zi in �. (6.6)

Now for a given τ > 0, we define

u1 := τ
1

p1 zω1
1,τ – τ , u2 := τ

1
p2 zω2

2,τ – τ , (6.7)

u1 := τ–p1 zω1
1 – τ , u2 := τ–p2 zω2

2 – τ , (6.8)

where

ωi – 1
ωi

>
1

pi – 1
>

ωi – 1
ωi

with ωi > ωi > 1 (6.9)

and

ωi < 1 + pi

(

1 –
max{αi,βi}

pi – 1

)

. (6.10)

According to equations (6.2)–(6.3), we have

u1 ≤ τ–p1 (Ld)ω1 , u2 ≤ τ–p2 (Ld)ω2 (6.11)
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‖∇u1‖∞ ≤ τ–p1 L̂1, ‖∇u2‖∞ ≤ τ–p2 L̂2, (6.12)

with L̂i := ωiLωi for i = 1, 2. Furthermore, on ∂�, we have

⎧
⎨

⎩

∂u1
∂η

= τ–p1 ∂(zω1
1 )

∂η
= τ–p1ω1zω1–1

1
∂z1
∂η

= 0,
∂u2
∂η

= τ–p2 ∂(zω2
2 )

∂η
= τ–p2ω2zω2–1

2
∂z2
∂η

= 0,
(6.13)

since zi is a solution of the Dirichlet problem (6.1) for ωi,ωi > 1, i = 1, 2.
Now we will prove the following result.

Lemma 6.1 For a sufficiently small τ > 0, we have u1 ≤ u1 and u2 ≤ u2.

Proof First, we show that u1 ≤ u1 in �. By a direct computation we obtain

u1(x) – u1(x) =
(
τ–p1 zω̄1

1 – τ
)

–
(
τ

1
p1 zωi

i,τ – τ
)

≥ τ–p1 zω̄1
1 – τ

1
p1 zω1

1 = zω1
(
τ–p1 zω̄1–ω1

1 – τ
1

p1
)

≥ zω1
1

(
τ–p1

(
cd(x)

)ω̄1–ω1 – τ
1

p1
) ≥ 0,

since ω1 > ω1 and z1,τ ≤ z1 for every small enough τ < diam(�). Therefore u1 ≤ u1 in �.
Finally, using a similar argument, we can obtain that u2 ≤ u2 in �. �

7 Proofs of main results

Proof of Theorem 1.1 First, we claim that equation (2.3) is satisfied by the pair of functions
(u1, u2) given by equation (6.8). To see this, pick (u1, u2) ∈ W 1,p1 (�) × W 1,p2 (�) within
[u1, u1] × [u2, u2] such that u2 ≤ u2 ≤ u2, u1 ≤ u1 ≤ u1. Now, in view of condition (H1),
combined with equations (6.11) and (6.12), we have

∣
∣f1(·, u1, u2,∇u1,∇u2)

∣
∣ ≤ M1

(
1 + |u1|α1

)(
1 + |∇u1|β1

)

≤ M1
(
1 +

(
τ–p1 (Ld)ω1

)α1)(1 +
(
τ–p1 L̂

)β1)

≤ 2M1(C1C2)α1β1τ–p1 max{α1,β1}

≤ Cτ–p1 max{α1,β1}, (7.1)

where C := 2M1(C1C2)α1β1 , and τ > 0 is small enough. Using the same argument as in
equation (7.1), we obtain

∣
∣f2(·, u1, u2,∇u1,∇u2)

∣
∣ ≤ C′τ–p2 max{α2,β2} (7.2)

for some constant C′ > 0 and for τ > 0 small enough. Now, in view of equations (6.8) and
(6.9), we have

–�p1 u1 +
|∇u1|p1

u1 + δ1
= τ–p1(p1–1)

(

–�p1 zω̄1
1 +

|∇zω̄1
1 |p1

zω̄1
1

)

. (7.3)
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On the other hand, by a direct computation we get

–�p1 zω̄1
1 +

|∇zω̄1
1 |p1

zω̄1
1

= ω̄
p1–1
1

(

1 – (ω̄1 – 1)(p1 – 1)
|∇z1|p1

z1

)

z(ω̄1–1)(p1–1)
1

+ ω̄1
p1

z(ω̄1–1)p1
1 |∇z1|p1

zω̄1
1

= ω̄p1–1
(

1 – (ω̄1 – 1)(p1 – 1)
|∇z1|p1

z1

)

z(ω̄1–1)(p1–1)
1

+ ω̄
p1
1 z(ω̄1–1)(p1–1)

1
zω̄1–1

1 |∇z1|p1

zω̄1
1

= ω̄
p1–1
1

[

1 + ω̄1

(

1 –
(ω̄1 – 1)(p1 – 1)

ω̄1

) |∇z1|p1

z1

]

z(ω̄1–1)(p1–1)
1 . (7.4)

Invoking equations (7.3) and (7.4), it follows that

–�p1 u1 +
|∇u1|p1

u1 + δ1

= τ–p1(p1–1)ω̄
p1–1
1

[

1 + ω̄1

(

1 –
(ω̄1 – 1)(p1 – 1)

ω̄1

) |∇z1|p1

z1

]

z(ω̄1–1)(p1–1)
1

≥ τ–p1(p1–1)ω̄
p1–1
1

⎧
⎨

⎩

z(ω̄1–1)(p1–1)
1 in �\�τ ,

ω̄1(1 – (ω̄1–1)(p1–1)
ω̄1

)z(ω̄1–1)(p1–1)–1
1 |∇z1|p1 in �τ .

Moreover, using equation (6.10) and decreasing τ if necessary, we have

τ–p1(p1–1)ω̄
p1–1
1 z(ω̄1–1)(p1–1)

1 ≥ τ–p1(p1–1)ω̄p1–1(c–1d(x)
)(ω̄1–1)(p1–1)

≥ τ–p1(p1–1)ω̄
p1–1
1

(
c–1τ

)(ω̄–1)(p1–1)

= τ (ω̄1–1–p1)(p1–1)ω̄
p1–1
1 c–(ω̄1–1)(p1–1)

≥ τ–p1 max{α1,β1} in �\�τ . (7.5)

Finally, combining equations (7.1) and (7.5), we obtain

–�p1 u1 +
|∇u1|p1

u1 + δ1
≥ f1(·, u1, u2,∇u1,∇u2) in �\�τ . (7.6)

Now pick any x ∈ �τ . By equations (6.3) and (6.9) we can find a constant β > 0 such that

(

1 –
(ω̄1 – 1)(p1 – 1)

ω̄1

)

|∇z1| > β in �τ .

By equations (6.3) and (6.9) we have

τ–p1(p1–1)ω̄
p1
1

(

1 –
(ω̄1 – 1)(p1 – 1)

ω̄1

)

z(ω̄1–1)(p1–1)–1
1 |∇z1|p1

≥ τ–p1(p1–1)ω̄
p1
1

(
Ld(x)

)(ω̄1–1)(p1–1)–1
μ̄p
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≥ τ–p1(p1–1)ω̄
p1
1 (Lτ )(ω̄1–1)(p1–1)–1βp1

≥ τ–p1 max{α1,β1} in �τ .

Therefore, for τ > 0 sufficiently small, we obtain

–�p1 u1 +
|∇u1|p1

u1 + δ1
≥ f1(·, u1, u2,∇u1,∇u2) in �τ . (7.7)

Combining equations (7.6) and (7.7), we get

–�p1 u1 +
|∇u1|p1

u1 + δ1
≥ f1(·, u1, u2,∇u1,∇u2) in �. (7.8)

A similar argument yields

–�p2 u2 +
|∇u2|p2

u2 + δ2
≥ f2(·, u1, u2,∇u1,∇u2) in �. (7.9)

Now test equation (7.8), equation (7.9) with (ϕ1,ϕ2) ∈ W 1,p1
b (�) × W 1,p2

b (�), ϕ ≥ 0 a.e. in
�, and equation (6.13) yield

∫

�

|∇u1|p1–2∇u1∇ϕ1 dx +
∫

�

|∇u1|p1

u1 + δ1
ϕ1 dx –

〈
∂u

∂ηp1
,γ0(ϕ1)

〉

∂�

≥
∫

�

f1(·, u1, u2,∇u1,∇u2)ϕ1 dx,

∫

�

|∇u2|p2–2∇u2∇ϕ2 dx +
∫

�

|∇u2|p2

u2 + δ2
ϕ2 dx –

〈
∂u

∂ηp2
,γ0(ϕ2)

〉

∂�

≥
∫

�

f2(·, u1, u2,∇u1,∇u2)ϕ2 dx,

where γ0 is the trace operator on ∂�,

∂w
∂ηpi

:= |∇w|pi–2 ∂w
∂η

for every w ∈ W 1,pi (�) ∩ C1(�), (7.10)

and 〈·, ·〉∂� is the duality brackets for the pair

(
W 1/p′

i ,pi (∂�), W –1/p′
i ,p

′
i (∂�)

)
.

The proof of the claim is now completed.
Next, we show that equation (2.2) is satisfied by the pair of functions (u1, u2) given by

equation (6.7). A direct computation yields

–�p1 zω1
1,τ +

|∇z1, τω1 |p1

zω1
1,τ

= ω
p1–1
1

(

1 – (ω1 – 1)(p1 – 1)
|∇z1,τ |p1

z1,τ

)

z(ω1–1)(p1–1)
1,τ

+ ω
p1
1

z(ω1–1)p1
1,τ |∇z1,τ |p1

zω1
1,τ

= ω
p1–1
1

[

1 + ω1

(

1 –
(ω1 – 1)(p1 – 1)

ω1

) |∇z1,τ |p1

z1,τ

]

z(ω1–1)(p1–1)
1,τ
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in �\�τ . Similarly, it follows that

–�p1 zω1
1,τ +

|∇zω1
1,τ |p1

zω1
1,τ

= ω
p1–1
1

[

–1 + ω1

(

1 –
(ω1 – 1)(p1 – 1)

ω

) |∇z1,τ |p1

z1,τ

]

z(ω1–1)(p1–1)
1,τ

in �τ . In fact, by equations (6.7) and (6.9) we have

–�p1 u1 +
|∇u1|p1

u1 + δ1
= τ

1
p′

1

(

–�p1 zω1
1,τ +

|∇zω1
1,τ |p1

zω1
1,τ

)

≤
⎧
⎨

⎩

τ
1

p′
1 ω

p1–1
1 z(ω1–1)(p1–1)

1,τ in �\�τ ,

0 in �τ .
(7.11)

In view of equations (6.2)–(6.5), choosing an appropriate constant m1 in (H2), we have

m1 > τ
1

p′
1 ω

p1–1
1 L(ω1–1)(p1–1) for τ > 0 small enough. (7.12)

Combining equations (7.11) and (7.12), we arrive at

–�p1 u1 +
|∇u1|p1

u1 + δ1
≤ f1(·, u1, u2,∇u1,∇u2). (7.13)

Using a similar argument, we obtain

–�p2 u2 +
|∇u2|p2

u2 + δ2
≤ f2(·, u1, u2,∇u1, u2). (7.14)

Finally, by test equations (7.13) and (7.14) with (ϕ1,ϕ2) ∈ W 1,p1
b (�) × W 1,p2

b (�), where
ϕ1,ϕ2 ≥ 0 a.e. in �, equation (6.13), and the Green formula [6] we obtain

∫

�

|∇u1|p1–2∇u1∇ϕ1 dx +
∫

�

|∇u1|p1

u1 + δ1
ϕ1 dx

≤
∫

�

|∇u1|p1–2∇u1∇ϕ1 dx –
〈

∂u1
∂ηp1

,γ0(ϕ1)
〉

∂�

+
∫

�

|∇u1|p1

u1 + δ1
ϕ1 dx

=
∫

�

(

–�p1 u1 +
|∇u1|p1

u1 + δ1

)

ϕ1 dx

≤
∫

�

f1(·, u1, u2,∇u1,∇u2)ϕ1 dx,
∫

�

|∇u2|p2–2∇u2∇ϕ2 dx +
∫

�

|∇u2|p2

u2 + δ2
ϕ2 dx

≤
∫

�

|∇u2|p2–2∇u2∇ϕ2 dx –
〈

∂u2
∂ηp2

,γ0(ϕ2)
〉

∂�

+
∫

�

|∇u2|p2

u2 + δ2
ϕ2 dx

=
∫

�

(

–�p2 u2 +
|∇u2|p2

u2 + δ2

)

ϕ2 dx

≤
∫

�

f2(·, u1u2,∇u1,∇u2)ϕ2 dx,
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since γ0(ϕ1),γ0(ϕ2) ≥ 0 whenever (ϕ1,ϕ2) ∈ W 1,p1 (�)×W 1,p2 (�) (for more detail, see Carl
et al. [4, p. 35]).

Consequently, (u1, u2) and (u1, u2) satisfy equations (2.4) and (2.5). Therefore we can
apply Theorem 5.1 to obtain the existence of a solution (u0, u′

0) ∈ C1,γ (�) × C1,γ (�) of
system (S) satisfying

u1 ≤ u0 ≤ u1, u2 ≤ u′
0 ≤ u2. (7.15)

Furthermore, (u0, u′
0) is a nodal solution. Indeed, combining equations (6.3), (6.7), and

(6.8), we arrive at

u1 = τ–p1 zω1 – τ ≤ τ–p1
(
Ld(x)

)ω1 – τ ,

u2 = τ–p2 zω2 – τ ≤ τ–p2
(
Ld(x)

)ω2 – τ ,

which implies that

max
{

u1(x), u2(x)
}

< 0, provided that d(x) < L–1τ
pi+1
ωi (7.16)

for i = 1, 2. Combining equations (6.3), (6.7), and (6.8) yields

u1 = τ
1

p1 zω1
1,τ – τ ≥ τ

1
p1

(
ld(x)

)ω1 – τ ,

u2 = τ
1

p2 zω2
2,τ – τ ≥ τ

1
p2

(
ld(x)

)ω2 – τ ,

and hence

min
{

u1(x), u2(x)
}

> 0 when d(x) > lτ
1

ωip′
i (7.17)

for i = 1, 2. The conclusion now follows from equations (7.16) and (7.17). This completes
the proof of Theorem 1.1. �

Proof of Theorem 1.2 First, using the same notation as in equations (6.7) and (6.8) and
applying the same argument as in the proof of Theorem 1.1, we can ensure that (u+, u+)
and (u+, u+) satisfy equations (2.4) and (2.5). Therefore, invoking Theorem 5.1, we obtain
the existence of a solution (u+, u+) ∈ C1,γ (�) × C1,γ (�) with the following properties:

u0 ≤ u+ ≤ u+ and u+ ≥ 0 on �,

u′
0 ≤ u+ ≤ u+ and u+ ≥ 0 on �.

Finally, using equation (6.8), we can easily deduce that u+(x) and u+(x) are zero as d(x) → 0.
This completes the proof of Theorem 1.2. �
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