Manufacturing Technology 2023, 23(2):241-246 | DOI: 10.21062/mft.2023.025

Material Properties of High-strength High Chromium TWIP Steel with Increased Corrosion Resistance

Pavel Podaný ORCID...1, Tomáš Studecký ORCID...1, Aleksandra Kocijan ORCID...2
1 COMTES FHT a.s., Průmyslová 995, 334 41, Dobřany, Czech Republic
2 IMT - Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia

Twinning induced plasticity (TWIP) steels are a class of high-strength steels that have been devel-oped for their outstanding ductility and strength properties. TWIP refers to the fact that these steels display an unusually high degree of deformation before fracture due to the formation of twins during deformation. TWIP steels could be used in a variety of industries for structural applications or com-ponents that need to withstand high levels of stress and deformation. This article deals with the de-velopment of high strength with fully austenitic microstructure and high chromium content. Micro-structure, mechanichal and corrosion properties of this steel were studied.

Keywords: TWIP, Steels, Microstructure, Mechanical properties, Corrosion
Grants and funding:

The paper was supported from ERDF: Research of advanced steels with unique properties, No. CZ02.1.01/0.0/0.0/16_019/0000836. This research was also funded by SLOVENIAN RESEARCH AGENCY, grant number P2-0132 and L2-4445

Received: December 27, 2022; Revised: April 13, 2023; Accepted: April 17, 2023; Prepublished online: April 25, 2023; Published: May 4, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Podaný P, Studecký T, Kocijan A. Material Properties of High-strength High Chromium TWIP Steel with Increased Corrosion Resistance. Manufacturing Technology. 2023;23(2):241-246. doi: 10.21062/mft.2023.025.
Download citation

References

  1. HOFMANN, H., MATTISSEN, D., SCHAUMANN, T. W. (2006). Advanced cold rolled steels for automotive applications. In: Materwiss. Werksttech., vol. 37, no. 9, pp. 716-723, doi: 10.1002/mawe.200600057. Go to original source...
  2. CORNETTE, D., CUGY., P., HILDENBRAND, A., BOUZEKRI, M., LOVATO G., (2005). Ultra High Strength FeMn TWIP Steels for automotive safety parts. In: Rev. Métallurgie, doi: 10.1051/metal:2005151. Go to original source...
  3. DE COOMAN, B. C., ESTRIN, Y., KIM, S. K. (2018). Twinning-induced plasticity (TWIP) steels. In: Acta Mater., vol. 142, pp. 283-362, doi: 10.1016/j.actamat.2017.06.046. Go to original source...
  4. JOOST, W. J. (2012). Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering,. In: Journal of Metals vol. 64, no. 9, pp. 1032-1038, doi: 10.1007/s11837-012-0424-z. Go to original source...
  5. BOUAZIZ, O., GUELTON, N. (2001). Modelling of TWIP effect on work-hardening,. In: Mater. Sci. Eng. A, vol. 319-321, pp. 246-249, doi: 10.1016/S0921-5093(00)02019-0. Go to original source...
  6. CHUN, Y. S., KIM, J. S., PARK, K. T., LEE, Y. K., LEE, C. S. (2012). Role of ɛ martensite in tensile properties and hydrogen degradation of high-Mn steels. In: Mater. Sci. Eng. A, vol. 533, pp. 87-95, doi: 10.1016/j.msea.2011.11.039. Go to original source...
  7. ESSOUSSI, H., ETTAQI, S., ESSADIQI, E. (2018). The effect of alloying elements on the stacking fault energy of a TWIP steel, In: Procedia Manufacturing, vol. 22, pp. 129-134, doi: 10.1016/j.promfg.2018. Go to original source...
  8. YUAN, X., ZHAO, Y., LI, X., CHEN, L. (2017). Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels. In: J. Mater. Sci. Technol., vol. 33, no. 12, pp. 1555-1560, doi: 10.1016/j.jmst.2017.08.004. Go to original source...
  9. JUNG, Y-S., KANG, S., JEONG, K., JUNG, J-G., LEE, Y-K. (2013). The effects of N on the microstructures and tensile properties of Fe-15Mn-0.6C-2Cr-xN twinning-induced plasticity steels, In: Acta Materialia, vol 61, Issue 17, pp. 6541-6548, doi:10.1016/j.actamat.2013.07.036. Go to original source...
  10. SEUNG-JOON, L., HIDETOSHI, F., KOHSAKU, U. (2018). Thermodynamic calculation of the stacking fault energy in Fe-Cr-Mn-C-N steels. In: Journal of Alloys and Compounds, pp. 749-776, doi: 10.1016/j.jallcom.2018.03.296. Go to original source...
  11. WAN, H., CAI, Y., SONG, D., CHEN, C. (2020) Effect of Cr/Mo carbides on corrosion behaviour of Fe_Mn_C twinning induced plasticity steel, in Corrosion Science, vol. 167, doi:10.1016/j.corsci.2020.108518 Go to original source...
  12. LI, D. G., WANG, J. D., CHEN, D. R., LIANG, P. (2015). Molybdenum addition enhancing the corrosion behaviors of 316 L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell. In: Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2015.01.165. Go to original source...
  13. WANG, X., SUN, X., SONG, C., CHEN, H., TONG, S., HAN, W., PAN, F. (2018) Evolution of microstructures and mechanical properties during solution treatment of a Ti-V-Mo-containing high‑manganese cryogenic steel, in: Materials Characterization, vol. 135, pp 287-294, doi:10.1016/j.matchar.2017.11.054. Go to original source...
  14. YUAN, X., ZHAO, Y., LI, X., CHEN, L. (2017) Effect of Cr on mechanical properties and corrosion behaviors of Fe-Mn-C-Al-Cr-N TWIP steels, in: Journal of Materials Science & Technology, vol. 33, Issue 12, pp 1555-1560, doi: 10.1016/j.jmst.2017.08.004. Go to original source...
  15. TSAY, G., LIN, C., CHAO, C., LIU, T., (2010). A new austenitic FeMnAlCrC alloy with high-strength, high-ductility, and moderate corrosion resistance, in: Materials Transactions, doi: 10.2320/matertrans.M2010199. Go to original source...
  16. TSUCHIYAMA, T., ITO, H., KATAOKA, K., TAKAKI, S. (2003) Fabrication of Ultrahigh Nitrogen Austenitic Steels by Nitrogen Gas Absorption into Solid Solution, in: Metallurgical and Materials Trasactions A, vol 34A, pp 2591 - 2599 Go to original source...
  17. YUAN, X., CHEN, L., ZHAO, Y., DI, H, ZHU, F. (2015) Influence of annealing temperature on mechanical properties and microstructures of a high manganese austenitic steel, in: Journal of Materials Processing Technology, vol. 217, pp 278-285 Go to original source...
  18. MUJICA, L. WEBER, S., HUNOLD, G. THEISEN, W. (2011) Development and characterization of novel corrosion-resistant TWIP steels, in: Steel Research International, doi:10.1002/srin.201000219. Go to original source...
  19. ÖZTÜRK, E., ARIKAN, H. (2023) Investigation of mechanical properties of laser welded dual-phase steels at macro and micro levels, Optics & Laser Technology, vol. 157, 108713, doi:10.1016/j.optlastec.2022.108713 Go to original source...
  20. KUČEROVÁ, L., TICHÁ, I., STEHLÍK, A. (2021) Effect of Various Heat and Thermo-mechanical Treatments on Low Alloyed CMnAlNb High Strength Steel, in: Manufacturing Technology, Vol. 21, No. 6, pp. 824-828, doi: 10.21062/mft.2021.094 Go to original source...
  21. KOREČEK, D., SOLFRONK, P., SOBOTKA, J. (2022) Analysis of the Dual-phase Steel DP500 Stress-strain Characteristics During the Plane Shear Test, in: Manufacturing Technology, Vol. 22, No. 1, doi:10.21062/mft.2022.015 Go to original source...
  22. WANG, X.J., SUN, X.J., SONG, C., CHEN, H., HAN, W., PAN, F. (2017) Enhancement of yield strength by chromium/nitrogen alloying in high-manganese cryogenic steel, in. Materials Science and Engineering: A, vil. 698, pp 110-116, doi:10.1016/j.msea.2017.05.023. Go to original source...
  23. PODANY, P., GREGOR, T., STUDECKY, T., DONIK, C. (2022). High Manganese TWIP Steel with Increased Corrosion Resistance. In: Metals (Basel)., vol. 12, no. 10, p. 1765, doi: 10.3390/met12101765. Go to original source...
  24. KANNAN, M. B., RAMAN, R. K. S., KHODDAM, S., LIYANAARACHCHI, S. (2013). Corrosion behavior of twinning-induced plasticity (TWIP) steel. In: Mater. Corros., vol. 64, no. 3, pp. 231-235, doi: 10.1002/maco.201106356. Go to original source...
  25. BOSCH, J., MARTIN, U., APERADOR, W., BASTIDAS, J. M., RESS, J., BASTIDAS, D. M. (2021). Corrosion behavior of high-Mn austenitic Fe-Mn-Al-Cr-C steels in NaCl and NaOH solutions. In: Materials (Basel)., doi: 10.3390/ma14020425. Go to original source...
  26. FAJARDO, S., LLORENTE, I., JIMÉNEZ, J. A., CALDERÓN, N., HERRÁN-MEDINA, D., BASTIDAS, J. S., RESS, J. (2020). Influence of chromium on the passivity of thermo-mechanically processed high-Mn TWIP steels, In: Appl. Surf. Sci., doi: 10.1016/j.apsusc.2020.145852. Go to original source...
  27. LI, D. G., WANG, J. D., CHEN, D. R., LIANG, P. (2015). Molybdenum addition enhancing the corrosion behaviors of 316 L stainless steel in the simulated cathodic environment of proton exchange membrane fuel cell. In: Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2015.01.165. Go to original source...

This is an open access article distributed under the terms of the Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.