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Abstract. A common step in autonomous robotic disassembly (recy-
cling) of electronics is levering, which allows the robot to apply greater
forces when removing parts of the devices. In practical applications, the
robot should be able to adapt a levering action to different device types
without an operator specifically recording a trajectory for each device. A
method to generalize the existing levering actions to new devices is thus
needed. In this paper we present a parameterized algorithm for perform-
ing robotic levering using feedback-based control to determine contact
points and a sinusoidal pattern to realize adaptive levering motion. The
algorithm can deal with devices of different shapes. After the initial adap-
tation process, the subsequent executions of the learnt levering action can
be sped up to improve performance.

Keywords: Robotic disassembly · Levering · Force control.

1 Introduction

Recycling faces the problem of small batch sizes and large variety of recycled
items [1,2]. In such circumstances, the effort of robot programming to perform
autonomous disassembly of generic electronics is one of the main reasons for the
slow deployment of robotic-based solutions.

During the disassembly of electronics and other items, various robotic skills
are needed, one of which is levering. Levering is a process whereby mechanical
advantage can be gained using a rigid beam (lever) and a fixed hinge (fulcrum),
which allows a greater force to be exerted on the load (the levered object). Some
operations where levering is needed include removing pins and nails or separating
different device parts. While this is often an easy task for humans as they can
rely on vision, force, and pressure sensing supported by previous experience and
generalisation capabilities, robotic disassembly applications still commonly use
pre-recorded trajectories obtained by learning from demonstration (LfD) [3].
These trajectories, however, cannot be applied to different different electronic
devices without a properly implemented adaptation process.

To perform a generalized levering action, we encode it with a sinusoidal pat-
tern. The execution is controlled by monitoring the external forces and torques
acting on the end-effector. One of the benefits of the proposed framework is
that adaptation can be performed even with noisy vision information, which can
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occur due to the poor lighting conditions and occlusions often encountered in
recycling processes [4]. The proposed algorithm for adaptive levering was imple-
mented on a collaborative Franka Emika Panda robot within a modular robotic
workcell [5] and applied to disassembling heat cost allocators (electronic devices
shown in Fig. 2).

The paper is organized as follows: in Section 2.1, the levering setup is pre-
sented. Section 2.2 describes a search algorithm for automatically detecting con-
tact points which must be known in order to perform a levering action. In Section
2.3 we discuss the application of the sinusoidal pattern to encode a levering ac-
tion. An algorithm for detecting the completion of the levering task based on
force-torque measurements is also presented. In Section 2.4, the adaptation of the
levering movement is explained. The experimental evaluation of our approach
is presented in Section 3. We conclude with a critical discussion and plans to
improve the proposed algorithm.

2 Methodology

The proposed adaptive levering procedure is based on our knowledge about the
geometry of the task.

2.1 Levering setup

Fig. 1a shows a typical levering setup, where the lever is attached to the robot’s
flange. In the following the terms lever and tool are used interchangeably. In
our system, the tool is integrated into qbRobotics Variable Stiffness Gripper.
Subsequently, we refer to the levered object (in our experiments a printed circuit
board) as part. To increase mechanical advantage, the lever is positioned against
the fulcrum.

In Fig. 1b, the object coordinate system (c.s.) (x, y, z axes), the robot flange
c.s. (x0, y0, z0), the tool end c.s. (x1, y1, z1) and the fulcrum c.s. (x2, y2, z2) are
shown. The Tool Center Point (TCP) coincides with the origin of tool end c.s.
The fulcrum c.s. is estimated once the lever establishes a contact with the edge of
the device housing. In our work, we make use of force-torque (FT) measurements
(Fx0, Fy0, Fz0, Mx0, My0, Mz0), which are calculated in the robot flange c.s.
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(a) Elements of the levering process.

x

z
object c. s.

z0

y0

z1

y1

robot flange
coordinate
 system tool end c. s.

z2

y2

fulcrum c. s.

-α 

(b) Coordinate systems used during the
levering process.
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To transform the forces from the flange to the object coordinate system, we
define the rotational matrix between flange and object c.s. as seen in Eq. (24).
The vector of forces fobj = [Fx, Fy, Fz] in object c.s. can be estimated as follows

fobj = Rflange to obj fflange, (1)

Rflange to obj = R⊤
flangeRobj , (2)

where R ∈ R3x3 is a rotation matrix. The torques are not transformed to the
object c.s. since the Mx,0 measurements are used, which are calculated in the
robot flange c.s. To map the robot movements from the robot base c.s. to the
object c.s., we define the rotational transformation between them as

ṗbase = Rbase to obj ṗobj , (3)

Rbase to obj = R⊤
baseRobj . (4)

pbase = pbase to obj +Rbase to objbase
p
obj . (5)

Tbase
obj . (6)

τdesired = τtask + τnullspace + τcoriolis + τadded FT (7)

τtask = J⊤(−Kepos −Develocity) (8)

τadded FT = J⊤fadded (9)

(10)

Tobj
pcb = T−1

objTpcb (11)

Tpcb
final = T−1

pcbTfinal (12)

(13)

Tbase
pcb (14)

(15)

Tbase
final (16)

(17)

(18)

fobj = Rflange
obj fflange, (19)

Rflange
obj = R⊤

flangeRobj , ṗbase = Rbase to obj ṗobj ,(20)

Rbase to obj = R⊤
baseRobj . (21)

pbase = pbase to obj +Rbase to objpobj , (22)

Tbase
obj . (23)

p(t+ tsamp) = p(t) + vtsampRbase to objdp
T (24)

2.2 Fulcrum and part contact point search algorithm

To perform a levering action, the robot must first place the lever into the gap
between the object and the fulcrum. A safe initial position is in the middle of the
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gap. We detect the gap by using 3-D vision. Examples of devices and the gaps
for levering are shown in Fig. 2, where the gaps are marked with a red line. For
some devices, the gaps are quite large, while for others, the gap is very narrow
and challenging to detect.

While vision is sufficiently accurate to approximately position the tool in
the middle of the gap, it is not possible to place the lever at the object based
on vision results only. To establish contact, the robot first moves to a fixed
height above the middle of the gap and then starts moving in the negative z
direction until it hits the bottom of the device housing. The motion is stopped
once the measured force Fz at the tool center point in vertical direction exceeds
a predefined threshold Fmax. The force-torque estimation is performed by the
Franka Emika robot control system using internal joint torque sensors. Based on
the half length of the gap, we determine also the initial inclination of the lever. A
minimal threshold distance dz,min is set beforehand. If it is not exceeded before
detecting contact, we consider that the initial position for levering (the gap)
was incorrectly determined. In this case, we select another initial position with
stochastic search. It is implemented by adding a small random vector ε to the
previous starting point [

x
y

]
=

[
x0

y0

]
+

[
εx
εy

]
, (25)

where the mean of the random vector is set to zero, while the standard deviation
is determined as a fraction of the half gap width of a particular device type (the
red line in Fig. 2).

In the next step, the robot moves along the positive x axis in the object c.s.
until the horizontal force Fx exceeds the force threshold Fmax. At this point the
lever (tool) is in contact with the PCB to be levered out of the device. Next the
robot determines the fulcrum position by performing a rotational motion around
the x axis of the tool end c.s. (positioned at the tip of the lever). The motion is
stopped once the torque Mx,0 exceeds the threshold Mmax, which signifies that
the contact between the lever and the fulcrum has been established.

Fig. 2: Example electronic devices that need to be dismantled. Levering is used
to remove the PCB from the housing.
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2.3 Adaptive levering algorithm

The robot can now proceed with levering out the PCB. However, it is not easy
to manually program a general levering action because the required forces and
amplitude of motion that need to be applied to pry out the PCB cannot be
analytically determined in advance because they depend on the geometry of
the device and its current state of damage. We have therefore developed an
adaptation algorithm that modifies the generic levering action so that it becomes
suitable for the current device that needs to be dismantled.

Humans often use periodic movements when levering, especially when they
do not know the force required to dislodge an object with the lever. In doing so,
they slightly increase the force on the lever in each period.

We generate a single degree-of-freedom (DOF) sinusoidal cycle with an am-
plitude A and cycle time tc, which represents the angle of the end-effector relative
to the initial angle α at which the robot is in contact with the fulcrum and part.
This results in the following trajectory around the x-axis of the fulcrum c.s.

φx,2(t) = g(t) +A sin

(
2πt

tc

)
. (26)

The other two angles around fulcrum coordinate axes are set to φy,2(t) =
φz,2(t) = 0. The levering algorithm is parameterized with the following pa-
rameters:

– initial amplitude of the sinusoidal cycle, set to A = 10◦ in our experiments.
– duration of the sinusoidal cycle, set to tc = 3 s.
– offset increment, set to g(t) = 0.1At/tc.

When the lever is in the initial position, touching both the PCB and the
fulcrum, the execution of the sinusoidal pattern begins. An example of a three
period sinusoidal pattern with a constant amplitude is shown in Fig. 3.
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Fig. 3: Three periods of a sinusoid with an increasing offset g.

During levering, the lever must remain in contact with the part. Velocity-
resolved control is used to ensure that a desired constant force on the part
is maintained [6]. While the angle of the tool is determined by the sinusoidal
pattern, the commanded velocity in the xobj direction is determined based on a
desired preset contact force Fd, the actual current contact force Fx(t) and the
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coefficient kF . The commanded position in the x direction of the object c.s. is
computed by integration

ẋ(t) = kF (Fd − Fx(t)), (27)

x(t+∆t) = x0 + ẋ(t)∆t. (28)

The other two coordinates remain constant during the execution of the levering
movement, i.e. y = y0, z = z0.

The goal of levering is to pry out the PCB out of the device housing. We
therefore let the levering out trajectory (3) running until the success signal (29)
reaches the threshold. Given the time t at which the levering action was success-
ful, we record the amplitude as g(t)+A. Thus next time we can start the levering
action using this amplitude instead of starting from A and gradually increasing
the amplitude. Note that we cannot just start with a very large amplitude as this
could cause unsafe robot movements or uncontrolled motion of the PCB being
levered out. The above adaptation procedure has turned out to be sufficient for
our application. If needed more advanced learning algorithms [7] could be used
to optimize the learnt levering out behavior.

We can use force-torque measurements [Fx,0, Fy,0, Fz,0,Mx,0,My,0,Mz,0]
⊤ at

the robot’s flange to detect when the levering action succeeded at prying out
the PCB. To determine when the PCB (part) has been pried out, we monitor
the torque Mx,0 measured at the robot’s flange. During levering the torque
increases, while a sharp torque drop-off is observed at the moment when the PCB
is dislodged. The levering is successful if the difference between the maximum
and minimum torque value within the width of the signal observation window is
greater than a prespecified threshold Mmax

max
t∈W

{Mx,0(t)} −min
t∈W

{Mx,0(t)} > Mmax, (29)

where W = {tk − tw, . . . , tk}, tk denotes the current sample time, and tw = 1.5s
is the size of the sliding window. This condition can only be triggered while the
lever angle α is decreasing, meaning it’s applying a force to the part. The size
of the sliding window is constant for all device types. The value of the threshold
Mmax is constant for all devices on which we tested the algorithm, however for
novel device types it might require tuning.

When recycling old electronics, devices can be in various states of damage.
It can sometimes happen that the part that needs to be levered out is very
loose and does not provide a large resistance force, so a drop in Mx,0 will not
be detected. Therefore, the secondary condition for levering success is when the
lever angle α becomes higher than a prespecified angle αmax. In our case, shown
in Fig. 1a, the contact point with the part is always lower than the fulcrum in
the object z axis. Thus the levering action is stopped if the lever angle is greater
than the horizontal tool placement (αmax = 0°).

2.4 Levering after adaptation

The time required to perform an operation is particularly important in indus-
trial robotics, where fast cycle times are required to optimize the productivity
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of the robotic workcell. The knowledge about the performed operations can be
used to accelerate the performance. To improve the execution time when the
levering operation is performed several times, we record the robot’s joint trajec-
tory performed during the initial adaptation of the generic levering action. If the
device of the same type is encountered for the second time, we can achieve the
necessary contacts without searching. In addition, the levering trajectory can be
sped up.

To speed up the levering process, we record the initial position at the start
of the levering action and the robot pose reached after establishing the contact
of the tool with the levered part (in our case, the PCB) and the fulcrum (edge
of the device housing), both in object c.s. The highest amplitude of the adapted
levering operation is also recorded. During execution of the adapted levering
operation, the robot can directly move from the initial position to the posture
where the tool establishes contact with the PCB and the fulcrum. Thus we
perform only one movement at a higher speed instead of two. Next the recorded
levering operation defined by Eq. (26) is executed at the maximum recorded
amplitude and at a higher speed, i.e. by decreasing tc. The position trajectory
defined by Eq. (28) is sped up in the same way. The success signal is monitored
as per Section 2.3. When success is not detected, the adaptive levering procedure
defined in Section 2.3 is performed. However, here the search process can start
at the highest previously recorded amplitude.

3 Experimental evaluation

To test the robustness of the algorithm, we tested altogether 5 exemplars of two
different device types and performed the levering for each of them. Some selected
devices are in good condition and require a higher levering force, while some are
already worn out and require less force.

Figs. 4a and 4b show the average Mx,0 torques (which we use as a feedback
signal) observed during the trials of each device type in various states. Initially
the robot is only touching the fulcrum, so the torque values are negative. Upon
contacting the PCB, the torque values rise. It can be seen that particularly for
devices of type 1, the required levering torque differs significantly depending on
the particular device. A torque drop-off is observed at around normalized time
t = 0.8 in Fig. 4a and around t = 0.95 in Fig. 4b, which indicates successful
levering completion.

A comparison of the adaptation (initial) trajectory and the adapted trajec-
tory is shown in Figs. 5a and 5b. Instead of searching for contact, the robot
immediately moves to the previously learned contact point. Fig. 5c shows the
comparison of average execution duration, as well as the standard deviation of
this duration, both for the case of the initial search and after adaptation, for
each of the two device types. It can be seen that after adaptation, the levering
is faster and the duration is deterministic.



8 B. Kuster et al.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time [/]

1

0

1

2

3

4

5

M
x,

0 [
Nm

]

(a) Avg. torque and the standard de-
viation during 5 experiments - device
type 1

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time [/]

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

M
x,

0 [
Nm

]

(b) Avg. torque and the standard de-
viation during 5 experiments - device
type 2

Fig. 4: The torques measured while performing the levering operations.
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Fig. 5: Comparison of initial and adapted trajectories for two device types (a,b)
and duration comparison of initial and adapted levering for both types (c).

4 Conclusion and further work

We presented a parameterized levering algorithm, composed of two sub-tasks,
searching and levering. The search algorithm automatically detects contact points
after the device pose is estimated by vision. Force control is then used to first
establish contact between the tool and the device housing and then position the
tool so that it establishes contact with the part to be pried out and the fulcrum.
Levering is performed using a sinusoidal motion pattern and force-torque feed-
back. After the initial learning step, subsequent executions can be sped-up. We
have demonstrated the algorithm’s robustness to different device types.

With the applied robot, end-effector forces and torques acting are calculated
from internal joint torque measurements, which can be noisy, particularly in
or near singular joint configurations. This can be solved by using a dedicated
force-torque sensor mounted on the end-effector. However, even precise force
measurement cannot assure totally reliable classification of the levering process
outcome. Additional modalities, such as the gripper encoder feedback signal,
could be used to more reliably determine the outcome.
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