
Robotics and Computer–Integrated Manufacturing 86 (2024) 102657

A
0
n

Contents lists available at ScienceDirect

Robotics and Computer-Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

Full length article

Hierarchical learning of robotic contact policies
Mihael Simonič a,b, Aleš Ude a,b, Bojan Nemec a,∗

a Dept. of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Jamova c. 39, Ljubljana, 1000, Slovenia
b Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, Ljubljana, 1000, Slovenia

A R T I C L E I N F O

Keywords:
Autonomous robot learning
Learning from experience
Compliance and impedance control
Perception-action coupling
Compliant assembly

A B S T R A C T

The paper addresses the issue of learning tasks where a robot maintains permanent contact with the
environment. We propose a new methodology based on a hierarchical learning scheme coupled with task
representation through directed graphs. These graphs are constituted of nodes and branches that correspond to
the states and robotic actions, respectively. The upper level of the hierarchy essentially operates as a decision-
making algorithm. It leverages reinforcement learning (RL) techniques to facilitate optimal decision-making.
The actions are generated by a constraint-space following (CSF) controller that autonomously identifies feasible
directions for motion. The controller generates robot motion by adjusting its stiffness in the direction defined
by the Frenet–Serret frame, which is aligned with the robot path. The proposed framework was experimentally
verified through a series of challenging robotic tasks such as maze learning, door opening, learning to shift
the manual car gear, and learning car license plate light assembly by disassembly.
1. Introduction

Many robot tasks require tight contact with the environment. Such
tasks are common in industrial environments, e.g. in assembly opera-
tions and in domestic environments, where the robot has to perform
operations like opening doors and drawers to access different rooms
or objects. They are generally considered hard to learn, as the robot
needs to learn a policy composed of poses and wrenches while inter-
acting with an unknown and possibly changing environment. Imitation
learning is a widely used paradigm to effectively specify tasks in contact
with the environment [1]. However, involving a human teacher in the
learning process is not always desirable. Especially for robots operating
in unstructured environments, it is often beneficial if they can learn
new contact skills by themselves. This requires lengthy task adaptation
procedures, which are usually realized based on reinforcement learning
(RL) [2] or iterative learning control (ILC) [3].

While user-friendly programming approaches and hardware recon-
figurability capabilities have long been used to enhance the capabilities
of industrial applications [4,5], autonomous learning is still considered
too time-consuming for such settings. Lengthy policy learning and
refinement processes hinder the practical application of autonomous
learning algorithms and the deployment of robots in unstructured and
complex industrial environments. For applications in flexible, small-
scale production, characterized by a wide variety of assembly tasks,
it is very important to reduce the programming effort and the required
skill level of the operator. This problem is even more pronounced when

∗ Corresponding author.
E-mail addresses: mihael.simonic@ijs.si (M. Simonič), ales.ude@ijs.si (A. Ude), bojan.nemec@ijs.si (B. Nemec).

introducing robots into inherently unstructured home environments,
where we cannot expect the help of experienced operators.

The aim of this paper is to introduce a new methodology that
enables a robot to quickly and autonomously acquire new contact skills,
even without previous imitation learning. To this end, we propose a
new approach to learning robotic tasks where physical contact with
the environment contributes to faster learning. The proposed approach
is based on the observation that learning physically constrained tasks,
can be structured more efficiently than learning tasks where a robot
moves freely in space. The reason for this is that the environment
constrains the admissible movement directions, thereby limiting the
search space. Consequently, the number of parameters that need to be
learned is significantly reduced. To implement this type of learning, we
need to allow the environmental constraints to determine the robot’s
motion. The concept of compliant robot control provides a suitable
framework for implementing such a strategy. The early stage of this
concept was applied in our previous work, where we demonstrated how
robots could learn tasks with physical constraints, e.g., opening doors
and drawers [6], and how to learn assembly tasks by disassembly [7].

The main contribution of this paper is a comprehensive framework
for autonomous learning of complex skills where the robot maintains
contact with the environment. The key components of this framework
are:

• Graph-based task representation: We propose a graph-based rep-
resentation that enables hierarchical decomposition of complex
vailable online 18 September 2023
736-5845/© 2023 The Authors. Published by Elsevier Ltd. This is an open access
c/4.0/).

https://doi.org/10.1016/j.rcim.2023.102657
Received 12 September 2022; Received in revised form 7 June 2023; Accepted 8 S
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

eptember 2023

https://www.elsevier.com/locate/rcim
http://www.elsevier.com/locate/rcim
mailto:mihael.simonic@ijs.si
mailto:ales.ude@ijs.si
mailto:bojan.nemec@ijs.si
https://doi.org/10.1016/j.rcim.2023.102657
https://doi.org/10.1016/j.rcim.2023.102657
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.

I
b
b
o
k
o
s
t
d
l

e
i
R
e
i
g
T

2

l
c
t
r

e
t
1
p
a
s
a
a
t
l
a
s
R
a
I

contact policies. This representation allows for efficient and fully
autonomous learning of these skills.

• Constraint-space following (CSF) controller: The paper introduces
a CSF controller that facilitates autonomous exploration within
constrained spaces. This controller relies on robust estimation of
the tangential direction of motion and utilizes the Frenet–Serret
(FS) formulas to specify variable compliance along the robot’s
motion trajectory.

• Graph topology determination algorithm: The paper presents a
novel algorithm that autonomously discovers the graph topology
of the task representation. This algorithm surpasses the previous
approach [7] in terms of execution speed, allowing for faster
learning.

• Learning the optimal sequence of movements: The framework
includes RL algorithm for learning the optimal sequence of move-
ments within the graph representation of the task. This way, the
robot can efficiently perform complex contact tasks.

n summary, the paper contributes to the field of autonomous robotics
y presenting a comprehensive framework that combines a graph-
ased task representation, an algorithm for graph topology discovery,
ptimal control policy learning, and a CSF controller. To the best of our
nowledge, the proposed methodology is the first framework capable
f entirely autonomous learning of tasks where the environment con-
trains the robot’s motion. Moreover, the learning speed is comparable
o that of humans. The validity of the proposed approach has been
emonstrated by learning four challenging tasks taken from everyday
ife and industrial environments.

This paper consists of five sections. In Section 2, we briefly review
xisting approaches to learning contact policies. Our main contribution
s a new scheme for learning such policies based on a Hierarchical
einforcement Learning (HRL), which is presented in Section 3. The
xperimental evaluation presented in Section 4 considers four challeng-
ng tasks: maze learning, door opening, learning to shift a manual car
earbox, and learning to assemble a car license plate by disassembly.
he discussion and final conclusions are provided in Section 5.

. Related work

A lot of research on learning tasks that involve contact-rich manipu-
ation in unstructured environments has been performed in the past. A
omprehensive survey paper on robots performing manipulation tasks
hat require varying contact with the environment has been published
ecently [8]. This section focuses on learning-based approaches [9].

The most basic and straightforward approaches are based on the It-
rative Learning Control paradigm (ILC), which has been used to adapt
he trajectory of tasks involving contact with the environment [10,
1]. These approaches minimize force tracking errors but cannot im-
rove the desired force–torque contact profile. More general are the
pproaches based on reinforcement learning (RL), which has been
uccessfully applied for learning tasks such as door opening and picking

pen from the table [12]. However, this type of learning requires
pproximately a hundred trials to learn the policy and is slow compared
o humans. Learning of contact-rich tasks is closely related to the
earning of impedance parameters, as proven in [13], where the authors
ddressed deep learning in action space. Imitation can increase learning
peed, as demonstrated in the wood planing experiment [14], where
L enhanced the skill transfer from humans to robots. In [15], the
uthors proposed Guided Policy Search to handle contact-rich tasks.
nitialized by demonstration and optimized by 𝑃𝐼2 RL algorithm, the

local policies were used to generate a global policy using deep neural
networks (DNN) and robot joint torques directly from the visual input.
A DNN was also applied for learning a peg-in-hole (PiH) task without
prior demonstration [16], where a robot learned the desired search and
insertion policy using the deep Q-learning algorithm. After 100–200 tri-
2

als, the robot learned a robust search and insertion policy. To increase
the data efficiency and learning speed, a hierarchical RL scheme was
proposed and applied to a dual PiH task [17]. PiH was also addressed
in [18], where the authors applied movement primitives encoded as a
neural network and a deep deterministic policy gradient algorithm for
learning neural network parameters. The learning efficiency was also
pursued in [19], where the authors proposed learning meta-parameters
to encode a specific skill in combination with an adaptive impedance
controller. Another recent approach to autonomous learning of contact
tasks is based on observing time-reversed visual cues, enabling one to
learn the policy without previous demonstration or exploration [20].
Very similar objectives were also pursued in the recent study [21],
where the aim was to learn a shape descriptor that establishes geomet-
ric correspondences between object surfaces and their target locations
directly from the visual stream.

In this paper, we propose a new approach to learning contact-rich
tasks based on a hierarchical learning scheme. In this respect, our
approach is related to the approach described in [17], except that in our
case, the highest hierarchical level is decision learning, and the lowest
level includes a variable compliance controller to move along the
physical constraints of the environment. It is also partly related to the
approaches proposed in [20,21], as we also learn the reverse policies
of assembly tasks [7]. There are also some similarities between our
research and [19], where they also used a directed graph to represent
the learned policy. However, there is a significant difference between
the two approaches in the purpose and construction of the graph.

One of the main advantages of our approach is its high learning
speed, which exceeds the performance of reinforcement and deep re-
inforcement learning methods that do not exploit the constraints of
contact tasks. The high learning speed is achieved by a meaningful
decomposition of the task into the determination of environmental
constraints and the decision level, which is implemented by a hier-
archical learning scheme. In addition, the proposed graph-based task
representation provides a better insight into the nature of the problem.
The proposed algorithm does not require prior knowledge of this graph
but builds it autonomously through exploration.

3. Learning of contact policies with hierarchical learning

Our approach to learning contact tasks exploits the configurations
that allow only partial freedom of motion, both in terms of position and
orientation. The boundary between the region where the robot’s motion
is constrained by the environment and the region where the motion is
free is called a C-surface [22]. Motion is possible along the tangential
directions of the C-surface and constrained along the orthogonal direc-
tions. The dimension of the C-surface determines the number of degrees
of freedom of a physically feasible robot motion. Our research considers
tasks with one dimensional C-surface, which is typical for assembly
tasks. We further assume that the task consists of different motion
primitives that can be combined to form a longer action sequence. Each
motion primitive is associated with a one-dimensional C-surface. The
sequence of motion primitives can be such that we have more choices
on how to proceed with the task. For example, consider the shifting
of car gears, as discussed in Section 4.3. When moving the gear lever
from neutral to the left, we have two options: turn up to the first gear
or turn down to the second gear. Such a sequence with branches can
be represented with a graph, where nodes represent various key states
of the task and edges represent motion primitives constrained by the
environment [7].

An example of such a graph is shown in Fig. 1. The nodes represent
the key states and the edges represent the robot movements between
the key states of the task. The start node (colored yellow) can be
anywhere in the graph and denotes the initial state of the task. The node
is characterized by how many branches start from each node, called the
degree of the node. In a node of degree 2 or more (colored orange),
the robot must decide how to proceed. In a node of degree 1 (colored
blue), we do not have multiple options of how to continue the task, but



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Fig. 1. The proposed graph-based representation of contact tasks in a general form.

to continue we must choose a completely different direction or type of
motion; for example, a translational motion changes to a rotational or
vice versa. A node of degree zero (colored white) represents stages of
the task where the motion can only be continued by turning back. The
goal is to reach the target node (colored green).

Graphs are often used to represent sequences of assembly and
disassembly motions [23–25]. In general, a graph, possibly directed, is
a conceptual representation of a sequence of activities. In our approach,
a graph represents a single, optimal policy for the execution of a contact
task. By joining multiple such graphs, more complex tasks that consist
of several contact tasks can be represented (as shown in Fig. 12, where
a human demonstrated the necessary movement between two contact
tasks).

Let us now assume that we do not know how to execute a contact
task in advance, but we do know the starting point of the task and
what the target state is. Consequently, we do not know the topology of
the graph, the intermediate nodes, and the actions for the transition
between individual nodes. Thus the robot should learn this through
autonomous exploration. Furthermore, it has to learn the optimal policy
from the start node to the target node, i.e. the optimal sequence of
movement primitives to accomplish the given task.

3.1. Hierarchical reinforcement learning

The complexity of learning problems can sometimes be reduced by
hierarchical learning schemes, which split the learning problem into
sub-tasks with multiple levels of hierarchy. In this section, we explain
our hierarchical scheme (see Fig. 2) on the example of maze learning,
where the goal is to move from the start to the target node (see Fig. 5
and Fig. 6). Note that the maze constrains the possible robot motion.
It is natural to use a graph representation to represent the points in
the maze where there are multiple directions in which the robot can
continue its motion or where the robot can only continue its motion by
turning back.

The graph representation of the task is not known in advance
but must be learned. We initialize the learning process with a graph
that has only one node, i.e. the start node. Each node is associated
with the robot pose in this state (and, in some cases, several pre-
ceding poses). The initial node is associated with the robot pose at
the beginning of the task execution. Using the proposed approach,
the robot autonomously explores the environment along its constraints
(lowest level) and identifies new states (nodes) and actions (edges) that
cause a transition between the states (middle level). The actions are
represented by the motion trajectories that specify the robot motion
between the connected nodes. The reinforcement learning algorithm
at the top of the hierarchical scheme learns the optimal movement
sequence from the start to the target node.

On the shortcomings of traditional shortest path searching algorithms. The
design of the search algorithm at the highest hierarchical level depends
on the complexity of the problem. In less complex cases, it is sufficient
to find the shortest path from the start node to the target node. In
general, however, this is not sufficient; the robot must learn that it may
be necessary to visit a specific node in the graph to reach the target
node successfully or even that it may have to pass through a certain
node more than once. Consider, for example, the previously mentioned
3

Fig. 2. The proposed hierarchical scheme for learning contact policies represented with
graphs.

gear shifting case, addressed in detail in Section 4.3. The robot must not
shift from the first gear directly to the fifth, which would be the shortest
path in the graph, but must learn to shift continuously from a lower
gear to a higher gear. To address such tasks, we chose reinforcement
learning (RL) to guide the search at the highest hierarchical level.
In some cases, however, it makes sense to use computationally more
efficient graph search algorithms [26].

3.2. Lowest level: Constraint-space following controller

The detailed presentation of our hierarchical scheme starts from
the bottom up by introducing the Constraint-Space Following (CSF)
controller, which is used to move the robot’s end-effector along the
environmental constraints. At the lowest level, the controller is given
a direction (selected by the algorithm at the highest level described in
Section 3.4) in which the robot can start exploring the environment
from the current node (state). Here the focus is on how to control the
robot motion in the selected direction while exploring whether motion
in any other direction is possible, which indicates the existence of the
next node in the graph.

For this purpose, we developed an impedance controller that is stiff
in the current direction of movement and compliant in the orthogonal
directions. A similar approach was proposed in [22,27], where they
introduced the concept of Compliant frame and Task frame. In our
framework, we formalize this motion control by utilizing the Frenet–
Serret (FS) frame [28,29], which is attached to the robot tool center
point (TCP). A sequence of FS frames is illustrated in Fig. 3. An FS frame
at position 𝒕𝑝 is defined by a rotation matrix 𝐑𝑝 with the first column
aligned with the tangential direction of motion, i.e. 𝒑̇, and the other two
columns orthogonal to it. They are referred to as normal and binormal
vectors. 𝐑𝑝 and the corresponding coordinate axes can be computed as
follows

𝐑𝑝 =
[

𝒕𝑝 𝒏𝑝 𝒃𝑝
]

, (1)

𝒕𝑝 =
𝒑̇

‖𝒑̇‖
, 𝒃𝑝 =

𝒑̇ × 𝒑̈
‖𝒑̇ × 𝒑̈‖

, 𝒏𝑝 = 𝒃𝑝 × 𝒕𝑝,

where 𝒑 ∈ R3 are the measured robot TCP positions. For the rotational
part of motion, the FS frame is defined as

𝐑𝑜 =
[

𝒕𝑜 𝒏𝑜 𝒃𝑜
]

, (2)

𝒕𝑜 =
𝝎

‖𝝎‖
, 𝒃𝑜 =

𝝎 × 𝝎̇
‖𝝎 × 𝝎̇‖

, 𝒏𝑜 = 𝒃𝑜 × 𝒕𝑜,

where 𝝎 = 2𝒒̄ ∗ 𝒒̇ is the angular velocity. Here 𝒒̄ denotes the conjugate
quaternion and we exploit the fact that the product of a conjugate of
unit quaternion with its own derivative results in a quaternion with
zero scalar part, which can be interpreted as a vector.



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Fig. 3. Frenet–Serret frames 𝐑𝑝(𝑡𝑘) for the positional path. The tangential direction is
in red, the normal in green, and the binormal in blue.

The above equations require accelerations, which are usually low
and therefore very noisy during operations like assembly and disassem-
bly. Different measures were proposed to provide for a robust FS frame
estimation, such as using Kalman filtering [30], Bishop frames [31],
and an optimization-based calculation [32]. All these methods require
knowledge of the entire trajectory before processing and thus cannot
be used for a real-time FS frame calculation, as it is required by our
approach. On the other hand, our policy learning algorithm requires a
controller stiff in the tangential direction of motion and compliant in
the normal and binormal direction of the corresponding FS frame. In
most practical cases it is best to assume equal compliance in the normal
and binormal direction. In such cases (see the lemma in the Appendix),
the robot control torques are independent of the direction of the normal
and binormal vector. Hence, given the tangential direction, the other
two columns of the coordinate frame can be selected arbitrarily in the
plane orthogonal to the tangential direction of motion. In our approach,
we take the second and third columns of the coordinate frame from
the previous sample and then apply a Gram–Schmidt orthogonalization
procedure to obtain an orthonormal basis for the current coordinate
frame. We call the resulting coordinate frames modified FS frames. The
initial modified FS frame is computed with an arbitrary selection of
vectors 𝒏 and 𝒃 that are further orthogonalized.

The remaining concern is how to estimate the tangential direction
of motion in a robust way. Niemeyer and Slotine [33] proposed a
spatial filter, which does not affect the normalization of the velocity
vector. The spatial filter extended for the rotational movement was used
for the tangent estimation in our previous research [6,7]. However,
since the spatial filter is a first-order filter, it introduced a lag. In
our experiments, it turned out that the main problem for tangent
estimation is not the sensor noise but the compliance of the tool and
the tolerances of the environment, which allow small motions in other
directions, although the robot’s motion is primarily constrained to
only one direction. Therefore we applied a filter with a variable rate,
inspired by the approach proposed in [34]. For the positional part of
the motion, the tangent is estimated using

𝒕𝑝(𝑡𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−𝑤)
‖𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−𝑤)‖

, 𝛿𝑝(𝑡𝑘−1) ≤ 𝜖𝑝

𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−1)
‖𝒑(𝑡𝑘) − 𝒑(𝑡𝑘−1)‖

, otherwise
, (3)

where 𝑡𝑘 is the current time, 𝑤 a suitably chosen delay factor that
determines the smoothing of the digital filter, 𝛿𝑝(𝑡𝑘−1) is the distance
between the line [𝒑(𝑡𝑘),𝒑(𝑡𝑘−𝑤)] and position 𝒑(𝑡𝑘−1), and 𝜖𝑝 a constant
that determines the switching between the filtered and non-filtered
estimation of the tangent. To prevent filter chattering, a small hysteresis
is usually applied to 𝜖𝑝. The filtering of sampled points 𝒑(𝑡𝑘) is illus-
trated in Fig. 4. For a rotational motion represented by a quaternion
trajectory, the filter takes the form

𝒕𝑜(𝑡𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

2 log(𝒒(𝑡𝑘) ∗ 𝒒̄(𝑡𝑘−𝑤))
‖2 log(𝒒(𝑡𝑘) ∗ 𝒒̄(𝑡𝑘−𝑤))‖

, 𝛿𝑜(𝑡𝑘−1) ≤ 𝜖𝑞

2 log(𝒒(𝑡𝑘) ∗ 𝒒̄(𝑡𝑘−1))
‖2 log(𝒒(𝑡𝑘) ∗ 𝒒̄(𝑡𝑘−1))‖

, otherwise
, (4)
4

⎩

Fig. 4. Tangent estimation with the proposed variable rate filter. Solid dots represent
the measured robot positions. The dotted line shows the candidate tangent at time 𝑡𝑘+2
that was discarded because it does not meet the condition 𝛿(𝑡𝑘+2) ≤ 𝜖𝑝.

where log is the quaternion logarithm.
Given the FS frame, we need a control law that enables the appli-

cation of arbitrary compliance along the FS frame axes. Our approach
is based on the passivity-based variant of impedance control for ma-
nipulators with flexible joints [35]. We implemented a modification to
set the compliance along the Cartesian space trajectory with FS frames
attached. The commanded torque 𝝆𝒄 ∈ R𝑁 , which is passed to the robot
motors, is calculated as

𝝆𝒄 = 𝐁𝐁−1
𝛩 𝒖 + (𝐈 − 𝐁𝐁−1

𝛩 )𝝆, (5)

𝒖 = 𝐉T(𝜽)
([

𝒇𝑐
𝒎𝑐

]

+
[

𝒇𝑠
𝒎𝑠

])

+ 𝐠(𝜽) + 𝐍(𝜽)𝝆̇0, (6)

where 𝑁 is the number of robot joints, 𝜽 ∈ R𝑁 is the vector of joint
angles computed from the motor angles 𝛩 ∈ R𝑁 [35], 𝐉 ∈ R𝑁×6 is
the manipulator Jacobian, while 𝐁, 𝐁𝛩 ∈ R6×6 denote the positive
definite diagonal matrices of the actual and the desired joint inertia,
respectively. The aim of the term 𝐁𝐁−1

𝛩 is to reduce the joint inertia.
𝝆 is the vector consisting of the measured joint torques and 𝐠(𝜽) is
the gravity vector [36]. To control the configuration of the robot, a
nullspace term is added [37], where 𝐍(𝜽) = 𝐈−𝐉T(𝜽)𝐉+𝑇 (𝜽) ∈ R𝑛×𝑛 is the
null space projection operator, 𝐉+(𝜽) denotes Moore–Penrose pseudo-
inverse of the Jacobian and 𝝆̇0 ∈ R𝑛 is the null space joint torque vector.
𝒇𝑠 and 𝒎𝑠 are additional forces and torque vectors in task coordinates,
which are used for searching for a feasible motion direction. The
selection of the probing forces 𝒇𝑠 and torques 𝒎𝑠 depends on a task. It
is discussed in Section 3.3 for planar maze learning and in Section 4 for
other tasks. The motor torque controller (5) reduces the motor inertia
and compensates for the robot’s non-linear dynamics, while Eq. (6)
provides for the desired impedance and damping, additional task force,
gravity compensation, and null space motion. The task command input
[𝒇T𝑐 ,𝒎

T
𝑐 ]

T is computed as

𝒇𝑐 = −𝐑𝑝𝐃𝑝𝐑T
𝑝 𝒑̇ + 𝐑𝑝𝐊𝑝𝐑T

𝑝 𝒆𝑝, (7)

𝒎𝑐 = −𝐑𝑜𝐃𝑜𝐑T
𝑜𝝎 + 𝐑𝑜𝐊𝑜𝐑T

𝑜 𝒆𝑞 , (8)

where position and orientation tracking errors are defined as 𝒆𝑝 = 𝒑𝑑−𝒑
and 𝒆𝑜 = 2 log(𝒒 ∗ 𝒒𝑑 ). 𝐊𝑝 and 𝐊𝑜 ∈ R3×3 are the diagonal matrices
defining the positional and rotational stiffness along and around co-
ordinate axes, respectively. 𝐃𝑝 and 𝐃𝑜 ∈ R3×3 are diagonal damping
matrices, which are set as diagonal elements of the block diagonal
matrix1

𝐃 = 2

√

𝐁𝛩 +
[

𝐊𝑝 0
0 𝐊𝑜

]

. (9)

With the proposed approach, the robot is able to move along the
environmental boundaries while probing for possible movements in

1 In [35] the authors proposed double-diagonalization method to shape
the damping. However, the resulting damping matrix is not diagonal, as our
approach requires. Our experiments showed that the performance degradation
due to diagonal damping matrices was negligible.



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.

T
s
i
w
h
t
t

g
a
s
s
o
r
d
s
T

r

𝑎

w
t

3
w

l
c
F
d

n
n
m
d

u
a
b
d

u
p
A

3

m
g
a
c
r
t

t

s
c
d
t

other directions, given that we apply high stiffness in the direction of
motion and low gains in the orthogonal directions.

3.3. Middle level: Graph topology determination

The CSF controller described above enables the robot to move
along the environmental constraints while applying probing wrenches
that indicate the possibility of moving in directions other than the
commanded tangential direction. The next task in our hierarchical
learning scheme is to determine when the robot has arrived to the
next node in the graph. When the robot arrives to the next node for
the first time, the newly identified node should be added to the graph.
In this section, we first define the representation of nodes and edges,
outline the criteria for node detection, and present the algorithm that
systematically explores the graph topology.

3.3.1. Representation of nodes and edges
Each node in the graph is characterized by the current robot pose

and possibly some previous poses that the robot has reached in the
nodes immediately preceding the current node. Such a sequence of
poses defines a state 𝑠𝑘 associated with the 𝑘-th node of the graph:

𝑠𝑘 = {𝒑𝑘, 𝒒𝑘,𝒑𝑘−1, 𝒒𝑘−1,… ,𝒑𝑘−𝜅 , 𝒒𝑘−𝜅}, (10)

where 𝒑𝑘 ∈ 𝐑3 is the position and 𝒒𝑘 ∈ R4 a unit quaternion represent-
ing the orientation. 0 ≤ 𝜅 < 𝑘, i.e. the number of poses in 𝑠𝑘, is chosen
so that 𝑠𝑘 satisfies the Markov decision property, i.e. each transition
is determined only by the current node and the action selected in
that node. To ensure the Markov decision property, it is sometimes
necessary to include previous poses in the state description, i.e. 𝜅 ≥ 1.

his effectively means that some parts of the graph are explored again,
ince this results in the creation of new states (see Fig. 8). This way
t becomes possible to solve problems such as opening locked doors,
here some states only become reachable after a certain other state
as been visited. In practice, the parameter 𝜅 is chosen manually by
he user. In most of the experiments described in Section 4, 𝜅 was set
o 0.

The transition from one node to another defines an edge in the
raph. In the proposed system, a robot motion trajectory starting in one
nd ending in another node is encoded with a speed-scaled Cartesian
pace dynamic movement primitive (CDMP), which handles Cartesian
pace policies [38] and non-uniform velocity scaling [39]. The benefit
f such encoding is twofold: it allows a compact, smooth, and scalable
epresentation of the learned policy, and it removes the explicit time
ependence of the trajectory. This enables the robot to slow down or
peed up the execution of the learned assembly policy if needed [39].
he CDMPs starting in 𝑘-th node are stored in a set (𝑠𝑘) = {𝑎𝑖𝑘}

𝑑
𝑖=0,

where 𝑑 is the degree of the node. The 𝑖-th CDMP in state 𝑠𝑘 is
epresented as 𝑎𝑖𝑘:

𝑖
𝑘 = {𝒘𝑖

𝑘 , 𝒈
𝑖
𝑘, 𝜏

𝑖
𝑘}, (11)

here 𝒘𝑖 are the CDMP weights, 𝒈𝑖 is the CDMP goal, and 𝜏𝑖 is the
emporal scaling factor of the CDMP. See [38] for more details.

.3.2. Node discovery by examining each branch with different probing
renches

We explain our search algorithm on the example of the planar maze
earning problem, where there are at most two possible directions to
ontinue at each node, other than turning back (see the graphs in
ig. 5). In the graph representation of such a maze, the maximum node
egree is 2.

In our previous paper [7] we proposed an algorithm that discovers
ew graph nodes by probing for the possible crossings that indicate the
odes in small steps. However, this approach is slow because the robot
ust constantly stop to make probes with search wrenches in different
5

irections. In the approach proposed in this paper, the maze is explored d
sing a method inspired by the wall following algorithm [40]. In this
pproach, each possible motion (branch in the graph) is examined twice
y adding a constant probing force in either the positive or negative
irection of the normal.2 Next, we compare the robot paths executed

during the two passes. If the path splits, we have found a new node
of degree 2. If there is no split but the robot cannot continue in the
same tangential direction, we have found the node of either degree 0
(where the robot can only turn back) or degree 1 (where the robot can
continue only by changing the type of motion). The robot continues
until it reaches the target node. To prevent the robot from entering a
loop, we check that the robot has not already visited the same segment
with the same probing force.

As explained above, the example shown in Fig. 5 treats maze
learning as a planar problem. Therefore we only applied probing forces
along the normal axis of the FS frame. An extension of the proposed
algorithm to the 3D case, rotational motion, or nodes of a higher degree
is straightforward. Depending on the problem, probing wrenches in
all relevant directions must be given as input to the node discovery
algorithm. For each additional probing wrench, additional searches
from the currently visited node are necessary, which increases the
search time. In a practical implementation, it is, therefore, advisable
to consider only those search directions that are really necessary. For
most problems, these can be defined by a user in advance. We provide
some examples in Section 4.

3.3.3. Exploring the entire graph
The approach described above explores the selected branch with all

possible probing forces. To ensure that the entire graph is explored, it is
necessary to examine each node 𝑠𝑘 and examine all possible directions
𝑑𝑖𝑘.

Initially, the problem description contains only the start node de-
fined by the initial robot pose. The motion can be initiated by moving
the robot in one of the four orthogonal directions aligned with the
coordinates of the maze.3 In the proposed system, this is characterized
as (𝑠𝑘) = {𝑑𝑖𝑘}

𝑛
𝑖=0, where 𝑑𝑖𝑘 denotes the possible directions to continue

the motion and 𝑛 is the maximum number of them. In the case of the
maze learning 𝑛 = 3. In all our experiments, the initial set of search
directions was the same for all nodes.

Starting from the first node, we search in all possible directions with
all probing wrenches [𝐟T𝑠 ,𝐦

T
𝑠 ]

T to find other nodes in the graph. If the
robot cannot move in the given direction, 𝑑𝑖𝑘 is removed from the set
𝑘(𝑠𝑘). The process repeats until all nodes have been fully examined.

At this stage, we can uniquely construct all edges 𝑎𝑖𝑘 in the graph
sing the trajectories stored during the search process. The developed
rocedure for the discovery of new nodes and edges is summarized in
lgorithm 1.

.4. Highest level: Reinforcement learning

The algorithm at the highest level learns the optimal sequence of
ovements from the start to the target node. Nodes and edges in the

raph-based representation of the task are closely related to the states
nd actions in RL algorithms (see Section 3.3.1). In RL, an action
auses a transition from one state to another. In our graph-based task
epresentation, this corresponds to following the CDMP associated with
he chosen edge from the current node to the next node.

2 In the maze exploration literature, this type of search procedure is referred
o as the left-hand and right-hand rule.

3 As the robot is compliant, we can apply a suitable wrench at the robot’s tip
o that the robot attempts to move in the given direction. If the applied motor
ommand results in motion, we can continue the motion using the approach
escribed in Section 3.2. Note that due to robot compliance, the direction of
he applied force or torque does not need to be perfectly aligned with the

irection of the free motion.



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Fig. 5. Key steps in the search process to explore a planar maze. (a) The robot starts in node 1 and selects a direction to explore (down) after trying two other directions before.
It applies a positive force and continues until it reaches the target node (marked green). The route is marked with a black line. (b) The robot examines the same branch again with
a negative force. Doing so the robot must also turn back and discovers node 4. As the path diverges from the previous (blue dashed line), the algorithm discovers new nodes 3, 5
and 6. The edges between nodes 1 and 3, 4 and 5 and 6 and 2 have been explored with both probing forces and do not need to be examined anymore. (d) The robot continues
with the closest node with unexamined branches. It goes up in node 3 and applies a positive force, which leads to the discovery of further nodes and edges. The arrow emblems
indicate continuation directions (gray for unexamined, black for selected, blue for examined, and red for impossible).
Algorithm 1: Graph topology determination algorithm for 𝜅 =
0. The algorithm identifies all nodes and edges in the graph
by making sure that at every node, the robot searches in all
possible continuation directions with all probing wrenches. The
algorithm terminates when all nodes are fully examined.

Input: Initial robot pose, probing wrenches [𝐟T𝑠 ,𝐦
T
𝑠 ]

T, search
directions set {𝑑𝑖}𝑛𝑖=0

Output: Graph representation of the problem

1 initialize the graph with start node 𝑠1 at the initial robot pose, 𝐾 = 1
2 assign the possible search directions (𝑠1) = {𝑑𝑖}𝑛𝑖=0
3 while ∃𝑘 ≤ 𝐾 so that 𝑑𝑖 ∈ (𝑠𝑘) and not all probing wrenches have been

applied yet in direction 𝑑𝑖 do
4 select node 𝑠𝑘 closest to the start node that fulfills the above

condition
5 select a not yet fully examined direction 𝑑𝑖 ∈ (𝑠𝑘)
6 select probing wrench [𝐟T𝑠 ,𝐦

T
𝑠 ]

T that has not yet been applied
while examining the direction 𝑑𝑖

7 if motion in the selected direction possible then
8 while not in target node and not in loop do
9 apply probing wrench [𝐟T𝑠 ,𝐦

T
𝑠 ]

T while following the
environmental constraints (see Section 3.2)

10 record trajectory
11 if not reached existing node then
12 if motion cannot be continued in any other way but

turning back then
13 𝐾 = 𝐾 + 1, create node 𝑠𝐾 at the current robot

pose, (𝑠𝐾 ) = {𝑑𝑖}𝑛𝑖=0
14 if motion diverged from a path explored in one of the

previous iterations or rejoins an existing path then
15 𝐾 = 𝐾 + 1, create node 𝑠𝐾 at the current robot

pose, (𝑠𝐾 ) = {𝑑𝑖}𝑛𝑖=0

16 mark 𝑑𝑖 ∈ (𝑠𝑘) as examined with the selected probing
wrench

17 else
18 remove 𝑑𝑖 from (𝑠𝑘)

19 identify the graph edges associated with search directions 𝑑𝑖 ∈ (𝑠𝑘)
by analyzing the stored search trajectories

20 encode trajectories associated with the identified edges as CDMP 𝑎𝑖𝑘

In our approach, the selection of the next action to be explored is
guided by 𝜖-greedy strategy, which is defined as follows

𝜋(𝑠) =

⎧

⎪

⎨

argmax
𝑎

𝑄(𝑠, 𝑎), with probability 1 − 𝜖
(12)
6

⎪

⎩

random action, with probability 𝜖,
where parameter 𝜖 is the ratio between the exploration and exploita-
tion [41].

Since finding optimal paths in a graph is a finite horizon discrete
problem [42], we can apply any classical RL algorithm. In our ex-
periments, we used off-policy Q-learning [41]. We assign a positive
reward when the robot reaches the goal state. No intermediate rewards
are assigned before reaching the goal state. In every state 𝑠𝑘, the
action-value function (𝑠𝑘, 𝑎𝑘) is updated according to the Q-learning
algorithm

(𝑠𝑘, 𝑎𝑘) ← (𝑠𝑘, 𝑎𝑘) + 𝛼(𝑟𝑘 + 𝛾 max{𝑄(𝑠𝑘+1, 𝑎𝑘+1)} −(𝑠𝑘, 𝑎𝑘)), (13)

where 𝑠𝑘 is the 𝑘-th state, 𝑎𝑘 denotes the action taken in 𝑠𝑘, 𝑟𝑘 is the
reward obtained in state 𝑠𝑘, 0 < 𝛼 < 1 is the learning gain, and 0 < 𝛾 < 1
is the discount factor, which gives recent rewards higher importance.

The algorithm at the highest level returns a walk from the start node
to the end node, which defines the learned sequence of CDMPs.

The learned CDMPs can be further improved with various robot
policy refinement methods such as ILC [10].

4. Experimental evaluation

This section experimentally verifies the proposed hierarchical learn-
ing of contact policies. All experiments were performed with a seven-
degrees-of-freedom collaborative robot Franka Emika Panda. For this
purpose, we implemented the CSF controller using the libfranka library
and the ros_control framework in C++. The highest hierarchical level
with the Q-learning RL algorithm and the middle level with the graph
topology detection algorithm were implemented in Matlab and commu-
nicated with the CSF controller using ROS at 100 Hz. The Q learning
and CSF controller parameters were the same for all experiments. They
were set to 𝛼 = 0.9, 𝛾 = 0.92 and 𝜖 = 0.8. The delay factor 𝑤 used in
the filtering was chosen by trial and error to be 𝑤 = 5. The reward
assignment was also the same in all cases. When the robot reached
the desired state, we assigned a reward of 𝑟 = 20∕𝑘, where 𝑘 is the
number of steps in Eq. (13) to reach the desired state. The gain of
the CSF controller was set to 2000 N/m and 60 N/rd in the tangential
component and to zero in the normal and binormal of the FS frame.
The probing force and torque magnitudes 𝑓0 and 𝑚0 were set to 7 N and
0.1 N m, respectively. An anthropomorphic qb SoftHand [43] was used
in the door opening and gear shifting experiments. In the remaining
experiments, the original Panda’s two-finger gripper was used.

4.1. Maze learning

In the first experiment, we applied our approach to the maze

learning problem (see Fig. 6). We already studied maze learning in our



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Fig. 6. Panda robot during the maze learning process. The start and the goal states
are shown in yellow and green, respectively.

previous research [7], where we demonstrated the greatly improved ef-
ficiency of hierarchical learning compared to a single-level RL scheme.
In this research, we additionally improved the efficiency of learning,
because the proposed approach does not need to stop in small steps to
check for the existence of new nodes (see Section 3.3). To initiate the
graph search, we manually guided the robot to the start node, denoted
with 1 in Fig. 6. This was the starting point in all subsequent search
iterations. The normal direction of the modified FS frame was aligned
with the global 𝑧 axis, which is orthogonal to the maze. As the robot
motion during maze exploration is planar, the tangent to the robot
motion is guaranteed to lie in the plane defined by the maze. The third
orthogonal axis (binormal) can thus be easily computed as the vector
product of the tangent and the 𝑧 axis.

Once all branches are investigated, the algorithm cannot find new
nodes. The key stages of the search procedure are explained in Fig. 5.
The algorithm at the highest level has all the necessary information
and can continue learning without the robot having to perform the
movements in the maze. In the case of our maze, the CSF controller
at the lowest and the search algorithm at the middle level needed
three iterations to find all eight nodes, and two more to ensure no
further nodes exist. The Q-learning needed five or fewer episodes to
discover an optimal sequence of nodes on average. The convergence of
the Q-learning is shown in Fig. 7 left.

The selection of the algorithm for discovering new nodes does not
affect the learned policy. However, it affects how fast the robot moves
along the corridor during learning. The total learning time with the
proposed search strategy was approx. ten times shorter than in our
previous experiment [7]. This difference is not due to the greater or
lesser efficiency of the individual algorithm but rather due to the robot
movements generated by the individual algorithm. In the previous
algorithm, the robot advances in small steps as it searches for path
forks. In contrast, the new algorithm generates continuous paths where
branch points are sought by applying a force perpendicular to the
robot’s direction of motion. The video of the experiment is accessible
in supplementary materials as Maze Learning video.

We repeated the learning algorithm for a more complex case where
the maze exit is locked. To unlock it, the robot must first visit state
four. The Q-learning convergence for this example is shown in Fig. 7
right. Note also that an algorithm for finding the shortest path in
graphs at the highest hierarchical level could not solve this problem.
We considered this problem as many mechanisms require a specific
sequence of states to be visited before reaching the desired state. An
example from everyday life is a retractable ballpoint pen. Another
such example, door opening, where the doors are equipped with a
multi-point locking mechanism, is discussed next.
7

4.2. Door opening learning

In order to demonstrate the limitations of traditional graph algo-
rithms for searching the shortest path, an experiment was conducted in
which a door opening task was performed, as depicted in Fig. 8 left. The
results of this experiment reveal why not all nodes can be discovered
by these methods, as new nodes might become reachable only after
some others have been visited. The door was equipped with mechanical
locking for lever-handle-operated doors. To open the locked door, it
was first necessary to turn the hook up to unlock it before proceeding
with the ordinary door-opening procedure (see Fig. 8). The robot’s task
was to learn the policy for door opening autonomously. The door hook
pose was defined with kinesthetic teaching.

After the robot grabbed the hook, it generated forces and torques in
random directions. When a randomly selected force caused a motion,
it continued in that direction as described in the 3.2 section. This way,
it tested all possible combinations of actions and learned the optimal
sequence of movements to open the door, regardless of whether it was
unlocked or locked. Moreover, it autonomously learned a general policy
for opening unlocked and locked doors in approx. seven episodes. Due
to the limited workspace, the robot could not fully open the door.
Therefore, we assigned a positive reward when the door opening angle
exceeded 20 deg. The exploration algorithm autonomously discovered
the graph which describes the above learning process, presented in
Fig. 8. Since learning to open a door with multi-point locking is more
complex than a standard locking system and requires knowledge of
previous actions to fulfill the MDP property, the graph states were
determined with 𝜅 = 1 in Eq. (10). The learned policy starts in state
1 and continues visiting states denoted by 2 and 3, the final state
describing the door open state. If the door is locked, we set 𝜅 = 1
as explained in Section 3.3.1. The robot can initially not proceed to
state 6. Instead, it moves to states 3, 4, 5, 6, and 7 to unlock and
open the door. The algorithm finds all possible actions autonomously
and encodes them as DMPs in the set (𝑠𝑖). State 3 deserves attention
since the system applying action 1 remains in the same position B. This
way, the algorithm recognizes that the door is locked. Note again that
the state labeling depends on the initial robot motion and the initial
state of the door. However, state labeling does not affect the learned
policy. Fig. 8 right shows the case where the robot started to turn the
hook down on the initially unknown state (locked/unlocked) of the
doors. The convergence of the RL algorithm at the top of the proposed
hierarchical scheme, which learns the appropriate action sequences for
the door opening, is shown in Fig. 9. In this experiment, the Q-learning
algorithm (13) was enhanced with eligibility traces [41]. On average,
the algorithm took six episodes to learn the policy.

Previous research has often discussed learning to open doors, al-
lowing us to compare the effectiveness of these approaches. First, we
mention that none of the studies addressed the mechanical door-locking
mechanism and limited themselves to the problem of learning to open
a standard door. With our graph-based approach, we can immediately
notice that no decision is required when opening a standard door.
Consequently, the CSF controller can discover the required sequence
of moves in a single trial. In contrast, standard door opening learning
by PI2 algorithm required more than 300 trials to learn the policy [44].
In [45], authors investigate accelerated learning of door opening with
two robot agents. They learned the final policy across 20 consecutive
trials while learning with one agent was much slower. The approach
proposed in [6], which combines PI2 learning and compliant controller,
required 9 roll-outs on average. Another approach [46] proposed policy
learning in the simulated environment and application of learned policy
in a real environment. Learning in a simulated environment took ap-
prox 300 trials. Although compared approaches also perused additional
objectives, such as end-to-end learning, the comparison demonstrates
the efficiency of the proposed framework.

Learning to open doors and execution of the learned policy is shown

in the Door Opening video in the supplementary materials.

https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/PPNZaAH6tP0
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag
https://youtu.be/6lIZUnckFag


Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Fig. 7. Convergence of the RL for maze learning shows learning cost vs. episodes. Learning cost is the path length for escaping the maze. The shaded region denotes a 70%
confidence interval of 20 epochs of learning.
Fig. 8. Different stages of door opening are shown in scheme (a). If the door is locked, it is first necessary to unlock the mechanism by going to position D before proceeding
with the ordinary opening procedure (going from A through B in position C). The graph in subfigure (b) corresponds to the situation when the locking mechanism is disabled.
The graph shows that no learning is required at the top level of the hierarchy in this case. The graph in subfigure (c) shows the resulting graph from an episode of the learning
procedure when the door is initially locked. Note that multiple nodes are created as the nodes also contain information about the previously visited nodes. The action labels
describe the semantic meaning of the action: 1 - pushing down, 2 - pushing up, and 3 - pulling the hook.
Fig. 9. Convergence of the RL for door opening learning shows learning cost vs. episodes. The cost is the number of states the robot visits before opening the door. Due to the
different costs for opening unlocked and locked doors, the learning convergence is shown in two plots for unlocked and locked doors, respectively. Note also that the aim is to
learn the general policy regardless of whether the doors are locked or unlocked. However, if we knew the door’s state in advance, the cost of opening the locked door would be
4. During the learning, the algorithm occasionally finds this policy but rejects it as it does not fit the general case of the unknown door’s state.
4.3. Learning to shift car gears

In this experiment, the robot autonomously learns to shift manual
car gear transmissions (See Fig. 10). The goal was to learn how to
shift from the neutral position to gears 1, 2, 3, 4, and 5 and from the
neutral position to the reverse gear. First, we show the robot how to
grip the gear lever with kinesthetic guidance. As the initial pose for
learning, we chose third gear, but any other position could be chosen.
The robot autonomously tests all possible ways to move the gear lever
8

in all Cartesian axes. We instructed the robot not to test the gear lever
orientations. Therefore, the robot was all the time compliant in all
orientational d.o.f. The semantic mapping between the robot pose and
the gear numbers is given in advance. The goal was to learn the policies
of how to shift into any gear from any position.

Learning began with exploiting additional force in the positive
normal axis of the FS frame. The resulting robot trajectory is denoted
with red in Fig. 10(d) Given that choice, the search algorithm labeled
states as shown in Fig. 10(b). Note again that a new node is added



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Fig. 10. (a) Standard gear lever. (b) Graph with states during the learning to shift manual transmission, as discovered and labeled by the search algorithm. Circles in two different
colors represent states that can be considered target states, depending on the task requirements. (c) Robot shifts a mockup manual transmission. (d) The trajectory discovered with
additional force in the normal direction and search force in the binormal direction of the FS frame are denoted with red and blue, respectively.
Fig. 11. Convergence of the RL for gear shifting learning shows learning cost (i.e. number of states visited) vs. episodes for two shifting sequences.
whenever the robot has to search in a completely new direction and
whenever there are multiple ways to continue the motion. We set the
fifth gear as a target node. Search with additional force in a negative
normal direction did not discover any new nodes. Next, we repeated
the search with an additional force in the negative binormal direction.
The binormal axis of the FS frame in this experiment almost always
coincides with the global 𝑧 coordinate. The robot found new nodes this
time and ended in the reverse gear. The resulting robot trajectory is
denoted with blue in Fig. 10(d). After the robot discovered all possible
nodes, it also learned how to shift from the neutral to the first, second,
fourth, and fifth gear. The exception is shifting from the second to the
third gear and from the third to the fourth gear because the robot
did not encounter this combination while discovering new nodes. Q
learning at the top of the hierarchical scheme was assigned to discover
two missing aforementioned policies. The algorithm learns them in 6
to 7 cycles, as shown in Fig. 11.

A demonstration can be found in the Gear Shift video in the supple-
mentary materials.

4.4. Car licence plate light disassembly and assembly

With this experiment, we intended to show how to learn the assem-
bly/disassembly of an object which consists of multiple parts, such as
a car license plate light. It consists of a base part with the bulb case,
bayonet bulb, and transparent cover. The base of the light is firmly
attached to the base plate, as shown in Fig. 12 left and center. Again,
we start the disassembly process with a manual guide to the suitably
chosen pose, where the robot gripper can firmly grasp the cover of the
light. The cover is attached to the base with two side pins. To release
them, it is necessary to apply a force in the 𝑧 direction and a torque
around the 𝑦 axis. The CSF controller finds the appropriate direction
by exploration as described in Section 3.2. The corresponding graph is
9

trivial in this case. For the bayonet bulb disassembly, the actions are
more complex, as it is necessary to push the bulb down in 𝑧 axis, rotate
it around 𝑧 axis, and pull it in 𝑧 axis. At this stage, it is also possible to
push the bulb in the 𝑧 axis, but in this case, the robot arrives at a node
of degree 0 and has to turn back. The corresponding graph is shown in
Fig. 12 right. Note that this graph differs from the others presented in
this work as it also includes actions demonstrated by a human. State
1 describes the manual guidance of the robot to the light cover. State
4, on the other hand, describes the actions where the human operator
guides the robot to the place where he releases the cover and, after that,
to the place where he grabs the light bulb. The robot could also perform
these actions autonomously using robotic vision. However, this was not
the subject of our research. The role of RL at the highest hierarchical
level, in this case, is minor since the graph has a single decision state,
and the learning algorithm finds the final solution in two steps in the
worst-case scenario.

During disassembly, the applied forces and torques inherently align
the bulb to slide along the casing, as the center of compliance is in the
robot gripper. During assembly, however, the situation is reversed, and
it is necessary to actively control the bulb orientation to align it with
the casing. In robotics, this is the well-known PiH problem, where it
is necessary to obtain the remote center of compliance using an ap-
propriate force control strategy [47] or apply additional learning [19].
This is also one of the reasons why the disassembly is easier than the
corresponding assembly. This makes it easier to learn the assembly
semantics through disassembly easier, as already suggested in [7]. The
robot generates the corresponding force and torque with an impedance
controller by applying a displacement in 𝑧 coordinate and a rotation
around the 𝑧 coordinate. This experiment is also demonstrated with the
corresponding Licence Plate video in the supplementary materials.

https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Ws6M81v8LqY
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM
https://youtu.be/Hfhjj2UpgOM


Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Fig. 12. Panda robot during the license car plate light disassembly and assembly. (a) removal of the transparent cover. (b) disassembly of the bayonet bulb. (c) disassembly graph.
The states in violet color represent human demonstration.
5. Conclusion

Autonomous learning of robotic tasks in close contact with the
environment is one of the still open challenges in modern robotics.
This paper presents a novel approach based on a task representation
with directed graphs. Based on this formulation, we propose a three-
level hierarchical learning scheme to solve the learning problem. The
highest hierarchical level makes decisions based on exploratory move-
ments generated by the newly developed CSF controller at the lowest
level. The distinguishing feature of the CSF controller is that it allows
the specification of variable compliance along the robot motion. The
middle level is dedicated to the discovery of new nodes and edges
in the task graph. The main advantage of the hierarchical scheme is
accelerated learning, which requires only a few learning roll-outs for
typical tasks encountered in everyday life and industrial plants. Another
advantage is that it generates continuous-time control policies using
classical discrete-time RL methods such as Q-learning or SARSA.

We also considered the possibility of using alternative algorithms
to find the optimal sequence of transitions at the highest hierarchical
level of the proposed framework. Some problems can be successfully
solved by finding the shortest paths between the nodes in a graph.
These methods are generally faster than RL algorithms but less general.
For example, learning to assemble a car license plate light, gear shifting,
and the first maze learning problem could also be solved using graph
exploration methods (breadth-first search or depth-first search) and
Dijkstra’s algorithm [48]. On the other hand, graph searching with RL
can solve more complex problems where finding the shortest paths
in the graph fails. Two of them were considered in our research,
i.e., opening the door equipped with a lever-handle-locking mechanism
and the second example of maze learning. A truly autonomous robot
should be able to solve various problems regardless of their complexity.
Thus RL is a more reasonable choice for finding the optimal path
through the graph in our hierarchical scheme.

Our framework for autonomous learning of contact policies was
verified in four experiments. In the first experiment, we chose the well-
known maze learning problem because it nicely illustrates the essence
of our approach based on directed graphs and algorithms for finding
paths through such graphs. Next, we performed two experiments from
everyday life: opening the door and shifting the car gearbox. Finally,
we provide an example of learning assembly tasks by autonomous
disassembly.

Our experiments focused on tasks where movement is allowed in a
single, constantly changing direction. There are many such tasks in our
daily lives and in industrial production processes. In addition to the
discussed and numerous other assembly and disassembly tasks, there
are tasks such as screwing, connecting BNC connectors, handling valves
10
and levers, opening drawers and cabinets, etc. The proposed approach
is directly applicable to such tasks. Moreover, it can be extended to
tasks that allow movement in several degrees of freedom, which will
be the subject of our future research.

CRediT authorship contribution statement

Mihael Simonič: Methodology, Software, Visualization, Writing.
Aleš Ude: Conceptualization, Methodology, Writing. Bojan Nemec:
Conceptualization, Methodology, Software, Supervision, Visualization,
Writing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The research leading to these results has received funding from
the EU Horizon 2020 Research and Innovation Action ReconCycle, GA
no. 871352, and program group P2-0076 Automation, Robotics, and
Biocybernetics supported by the Slovenian Research and Innovation
Agency.

Appendix A

Lemma 1. Let the robot be controlled using impedance control law defined
by Eqs. (5)–(8), with diagonal stiffness and damping matrices specified in
Frenet–Serret (FS) coordinate frames (1) distributed along the robot path. If
we choose equal stiffness and damping constants in the normal and binormal
direction of motion, then the commanded torque (5) and thus the robot
motion is independent of the direction of the normal and binormal vector
that defines the FS frame.

Proof. As a first step, let us recall that the control accelerations are
computed according to Eq. (7). Assuming that stiffness and damping
in the directions orthogonal to the tangential direction are equal,
i.e., 𝑘𝑦𝑧 = 𝑘𝑦 = 𝑘𝑧, 𝑑𝑦𝑧 = 𝑑𝑦 = 𝑑𝑧, we have

𝐊𝑝 =
⎡

⎢

⎢

𝑘𝑥 0 0
0 𝑘𝑦𝑧 0

⎤

⎥

⎥

, 𝐃𝑝 =
⎡

⎢

⎢

𝑑𝑥 0 0
0 𝑑𝑦𝑧 0

⎤

⎥

⎥

. (14)

⎣ 0 0 𝑘𝑦𝑧⎦ ⎣ 0 0 𝑑𝑦𝑧⎦



Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
Next we rewrite Eq. (7) with the above stiffness and damping matrices

𝒑̈𝑐 =
[

𝒕 𝒏 𝒃
]

⎡

⎢

⎢

⎣

𝑘𝑥 0 0
0 𝑘𝑦𝑧 0
0 0 𝑘𝑦𝑧

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝒕T
𝒏T
𝒃T

⎤

⎥

⎥

⎦

𝒆𝑝

+
[

𝒕 𝒏 𝒃
]

⎡

⎢

⎢

⎣

𝑑𝑥 0 0
0 𝑑𝑦𝑧 0
0 0 𝑑𝑦𝑧

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝒕T
𝒏T
𝒃T

⎤

⎥

⎥

⎦

𝒑̇

= (𝑘𝑥𝒕𝒕T + 𝑘𝑦𝑧(𝒏𝒏T + 𝒃𝒃T))𝒆𝑝 + (𝑑𝑥𝒕𝒕T + 𝑑𝑦𝑧(𝒏𝒏T + 𝒃𝒃T))𝒑̇. (15)

Let us now define another coordinate frame 𝐑′
𝑝 =

[

𝒕′ 𝒏′ 𝒃′
]

, with
the first column defined by the tangent of robot motion, i.e., 𝒕′ = 𝒕, but
with the other two orthogonal axes 𝒏′ and 𝒃′ chosen arbitrarily. If the
diagonal stiffness and damping matrices (14) are defined in this frame
and with equal stiffness and damping in the direction of 𝒏′ and 𝒃′, then
the corresponding control acceleration (7) in the robot base coordinate
frame is given by

𝒑̈′𝑐 = (𝑘𝑥𝒕𝒕T + 𝑘𝑥𝑦(𝒏′𝒏′
T + 𝒃′𝒃′T))𝒆𝑝 + (𝑑𝑥𝒕𝒕T + 𝑑𝑦𝑧(𝒏′𝒏′

T + 𝒃′𝒃′T))𝒑̇. (16)

For any rotational matrix 𝐑 it holds 𝐑𝐑T = 𝐈, hence

𝐈 = 𝒕𝒕T + 𝒏𝒏T + 𝒃𝒃T = 𝒕𝒕T + 𝒏′𝒏′T + 𝒃′𝒃′T. (17)

As the tangential components are equal in the above equation, it follows
that 𝒏𝒏T + 𝒃𝒃T = 𝒏′𝒏′T + 𝒃′𝒃′T, hence 𝒑̈𝑐 = 𝒑̈′𝑐 . In the same way,
we can prove that also for the commanded angular velocities (8) the
relation 𝝎̇𝑐 = 𝝎̇′

𝑐 holds. Thus under the assumptions of the lemma, the
commanded torque (5) is independent of the direction of normal and
binormal vectors that defines the FS frame. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.rcim.2023.102657.

References

[1] A. Hussein, M.M. Gaber, E. Elyan, C. Jayne, Imitation learning: A survey of
learning methods, ACM Comput. Surv. 50 (2) (2017).

[2] J. Kober, J. Peters, Reinforcement learning in robotics: A survey, in: Learning
Motor Skills, in: Springer Tracts in Advanced Robotics, vol. 97, Springer, Cham,
2014, pp. 9–67.

[3] D. Bristow, M. Tharayil, A. Alleyne, A survey of iterative learning control, IEEE
Control Syst. Mag. 26 (3) (2006) 96–114.

[4] T. Gašpar, M. Deniša, P. Radanovič, B. Ridge, T.R. Savarimuthu, A. Kram-
berger, M. Priggemeyer, J. Roßmann, F. Wörgötter, T. Ivanovska, S. Parizi,
Ž. Gosar, I. Kovač, A. Ude, Smart hardware integration with advanced robot
programming technologies for efficient reconfiguration of robot workcells, Robot.
Comput.-Integr. Manuf. 66 (2020) 101979.

[5] Z. Liu, Q. Liu, W. Xu, L. Wang, Z. Zhou, Robot learning towards smart robotic
manufacturing: A review, Robot. Comput.-Integr. Manuf. 77 (2022) 102360.

[6] B. Nemec, L. Žlajpah, A. Ude, Door opening by joining reinforcement learning
and intelligent control, in: 18th International Conference on Advanced Robotics
(ICAR), Hong Kong, 2017, pp. 222–228.

[7] M. Simonič, L. Žlajpah, A. Ude, B. Nemec, Autonomous learning of assembly
tasks from the corresponding disassembly tasks, in: IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids), Toronto, Canada, 2019, pp.
230–236.

[8] M. Suomalainen, Y. Karayiannidis, V. Kyrki, A survey of robot manipulation in
contact, Robot. Auton. Syst. 156 (2022) 104224.

[9] I. Elguea-Aguinaco, A. Serrano-Muñoz, D. Chrysostomou, I. Inziarte-Hidalgo, S.
Bøgh, N. Arana-Arexolaleiba, A review on reinforcement learning for contact-rich
robotic manipulation tasks, Robot. Comput.-Integr. Manuf. 81 (2023) 102517.

[10] F.J. Abu-Dakka, B. Nemec, J.A. Jørgensen, T.R. Savarimuthu, N. Krüger, A. Ude,
Adaptation of manipulation skills in physical contact with the environment to
reference force profiles, Auton. Robots 39 (2) (2015) 199–217.

[11] B. Nemec, T. Petrič, A. Ude, Force adaptation with recursive regression iterative
learning controller, in: IEEE/RSJ International Conference on Intelligent Robots
11

and Systems (IROS), Hamburg, Germany, 2015, pp. 2835–2841.
[12] M. Kalakrishnan, L. Righetti, P. Pastor, S. Schaal, Learning force control policies
for compliant manipulation, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Francisco, CA, 2011, pp. 4639–4644.

[13] R. Martín-Martín, M.A. Lee, R. Gardner, S. Savarese, J. Bohg, A. Garg, Variable
impedance control in end-effector space: An action space for reinforcement learn-
ing in contact-rich tasks, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macao, China, 2019, pp. 1010–1017.

[14] M. Hazara, V. Kyrki, Reinforcement learning for improving imitated in-
contact skills, in: IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), Cancun, Mexico, 2016, pp. 194–201.

[15] Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, S. Levine, Path
integral guided policy search, in: IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 2017, pp. 3381–3388.

[16] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, R. Tachibana, Deep rein-
forcement learning for high precision assembly tasks, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017,
pp. 819–825.

[17] Z. Hou, J. Fei, Y. Deng, J. Xu, Data-efficient hierarchical reinforcement learning
for robotic assembly control applications, IEEE Trans. Ind. Electron. 68 (11)
(2021) 11565–11575.

[18] Y.-L. Kim, K.-H. Ahn, J.-B. Song, Reinforcement learning based on movement
primitives for contact tasks, Robot. Comput.-Integr. Manuf. 62 (2020) 101863.

[19] L. Johannsmeier, M. Gerchow, S. Haddadin, A framework for robot manipulation:
Skill formalism, meta learning and adaptive control, in: 2019 International
Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019.

[20] S. Nair, M. Babaeizadeh, C. Finn, S. Levine, V. Kumar, TRASS: Time reversal as
self-supervision, in: IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 115–121.

[21] K. Zakka, A. Zeng, J. Lee, S. Song, Form2Fit: Learning shape priors for
generalizable assembly from disassembly, in: IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 9404–9410.

[22] M.T. Mason, Compliance and force control for computer controlled manipulators,
IEEE Trans. Syst. Man Cybern. 11 (6) (1981) 418–432.

[23] A.J.D. Lambert, Disassembly sequencing: A survey, Int. J. Prod. Res. 41 (16)
(2003) 3721–3759.

[24] J. Aleotti, S. Caselli, Physics-based virtual reality for task learning and intelligent
disassembly planning, Virtual Real. 15 (1) (2011) 41–54.

[25] E. Tuncel, A. Zeid, S. Kamarthi, Solving large scale disassembly line balancing
problem with uncertainty using reinforcement learning, J. Intell. Manuf. 25 (4)
(2014) 647–659.

[26] K. Erciyes, Distributed Graph Algorithms for Computer Networks, Springer,
London, 2013.

[27] H. Bruyninckx, J. De Schutter, Where does the task frame go? in: Y. Shirai, S.
Hirose (Eds.), Robotics Research, Springer London, London, 1998, pp. 55–65.

[28] R. Ravani, A. Meghdari, Velocity distribution profile for robot arm motion using
rational frenet-serret curves, Informatica 17 (1) (2006) 69–84.

[29] B. Nemec, N. Likar, A. Gams, A. Ude, Human robot cooperation with compliance
adaptation along the motion trajectory, Auton. Robots 42 (5) (2018) 1023–1035.

[30] M. Pilté, S. Bonnabel, F. Barbaresco, Tracking the frenet-serret frame associated
to a highly maneuvering target in 3D, in: IEEE 56th Annual Conference on
Decision and Control (CDC), Melbourne, Australia, 2017, pp. 1969–1974.

[31] D. Carroll, E. Köse, I. Sterling, Improving frenet’s frame using bishop’s frame, J.
Math. Res. 5 (4) (2013) 97–106.

[32] M. Vochten, T. De Laet, J. De Schutter, Robust optimization-based calculation of
invariant trajectory representations for point and rigid-body motion, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 2018, pp. 5598–5605.

[33] G. Niemeyer, J.-J.E. Slotine, A simple strategy for opening an unknown door, in:
IEEE International Conference on Robotics and Automation (ICRA), Albuquerque,
NM, 1997, pp. 1448–1453.

[34] J.-O. Lachaud, A. Vialard, F. de Vieilleville, Analysis and comparative evalu-
ation of discrete tangent estimators, in: Proceedings of the 12th International
Conference on Discrete Geometry for Computer Imagery, Springer-Verlag, Berlin,
Heidelberg, 2005, pp. 240–251.

[35] A. Albu-Schaffer, C. Ott, G. Hirzinger, A unified passivity-based control frame-
work for position, torque and impedance control of flexible joint robots, Int. J.
Robot. Res. 26 (1) (2007) 23–39.

[36] C. Ott, A. Albu-Schaffer, A. Kugi, S. Stramigioli, G. Hirzinger, A passivity based
cartesian impedance controller for flexible joint robots - part I: torque feedback
and gravity compensation, in: IEEE International Conference on Robotics and

Automation (ICRA), New Orleans, LA, 2004, pp. 2659–2665.

https://doi.org/10.1016/j.rcim.2023.102657
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb1
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb1
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb1
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb2
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb2
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb2
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb2
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb2
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb3
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb3
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb3
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb4
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb5
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb5
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb5
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb6
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb6
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb6
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb6
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb6
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb7
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb7
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb7
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb7
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb7
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb7
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb7
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb8
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb8
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb8
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb9
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb9
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb9
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb9
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb9
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb10
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb10
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb10
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb10
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb10
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb11
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb11
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb11
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb11
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb11
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb12
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb12
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb12
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb12
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb12
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb13
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb13
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb13
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb13
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb13
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb13
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb13
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb14
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb14
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb14
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb14
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb14
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb15
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb15
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb15
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb15
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb15
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb16
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb16
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb16
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb16
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb16
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb16
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb16
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb17
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb17
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb17
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb17
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb17
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb18
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb18
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb18
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb19
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb19
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb19
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb19
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb19
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb20
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb20
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb20
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb20
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb20
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb21
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb21
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb21
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb21
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb21
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb22
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb22
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb22
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb23
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb23
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb23
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb24
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb24
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb24
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb25
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb25
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb25
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb25
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb25
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb26
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb26
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb26
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb27
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb27
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb27
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb28
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb28
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb28
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb29
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb29
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb29
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb30
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb30
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb30
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb30
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb30
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb31
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb31
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb31
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb32
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb32
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb32
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb32
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb32
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb32
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb32
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb33
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb33
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb33
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb33
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb33
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb34
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb34
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb34
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb34
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb34
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb34
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb34
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb35
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb35
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb35
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb35
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb35
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb36
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb36
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb36
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb36
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb36
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb36
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb36


Robotics and Computer-Integrated Manufacturing 86 (2024) 102657M. Simonič et al.
[37] A. Dietrich, A. Albu-Schäffer, G. Hirzinger, On continuous null space pro-
jections for torque-based, hierarchical, multi-objective manipulation, in: IEEE
International Conference on Robotics and Automation (ICRA), IEEE, Saint Paul,
Minnesota, 2012, pp. 2978–2985.

[38] A. Ude, B. Nemec, T. Petrič, J. Morimoto, Orientation in Cartesian space
dynamic movement primitives, in: IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, 2014, pp. 2997–3004.

[39] R. Vuga, B. Nemec, A. Ude, Speed adaptation for self-improvement of skills
learned from user demonstrations, Robotica 34 (12) (2016) 2806–2822.

[40] A.M. Sadik, M.A. Dhali, H.M. Farid, T.U. Rashid, A. Syeed, A comprehensive
and comparative study of maze-solving techniques by implementing graph
theory, in: International Conference on Artificial Intelligence and Computational
Intelligence, 2010, pp. 52–56.

[41] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, Second
Edition, The MIT Press, Cambridge, MA, 2015.

[42] S. Russell, P. Norvig, Artificial Intelligence, fourth ed., Pearson, Upper Saddle
River, NJ, 2020, p. 648.

[43] C.D. Santina, G. Grioli, M.G. Catalano, A. Brando, A. Bicchi, Dexterity aug-
mentation on a synergistic hand: The pisa/IIT SoftHand+, in: IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids), Seoul, Korea, 2015,
pp. 497–503.

[44] E. Theodorou, F. Stulp, J. Buchli, S. Schaal, An iterative path integral stochastic
optimal control approach for learning robotic tasks, IFAC Proc. Vol. 44 (1) (2011)
11594–11601.

[45] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates, in: 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 3389–3396.

[46] Y. Wang, L. Wang, Y. Zhao, Research on door opening operation of mobile
robotic arm based on reinforcement learning, Appl. Sci. 12 (10) (2022).

[47] J. Jiang, Z. Huang, Z. Bi, X. Ma, G. Yu, State-of-the-art control strategies for
robotic PiH assembly, Robot. Comput.-Integr. Manuf. 65 (2020) 1–26.

[48] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
second ed., The MIT Press, Cambridge, MA, 2001.
12
Mihael Simonič received B.Sc. and M.Sc. degrees in cog-
nitive science from the University of Tübingen, Germany
and the doctoral degree from the Faculty of Electrical
Engineering of the University of Ljubljana, Slovenia in 2023.
He works at the Department of Automatics, Biocybernetics
and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia. His
current research focuses on the intersection between robot
learning and human–robot collaboration.

Aleš Ude received the diploma degree in applied mathe-
matics from the University of Ljubljana, Ljubljana, Slovenia,
and the Dr.Eng. degree from the University of Karlsruhe,
Karlsruhe, Germany, in 1990 and 1995, respectively. He
is currently the Head of the Department of Automatics,
Biocybernetics, and Robotics, Jožef Stefan Institute, and a
professor at the Faculty of Electrical Engineering, Ljubljana.
He is also associated with the ATR Computational Neu-
roscience Laboratory, Kyoto, Japan. His research interests
include robot learning, programming by demonstration,
reconfigurable robotic systems, and humanoid robotics.

Bojan Nemec received B.Sc and M.Sc. degrees in electrical
engineering and Ph.D. degree in robotics from the University
of Ljubljana, Slovenia. He is currently the head of the
Humanoid and Cognitive Robotics Lab and Research Coun-
cillor with the Department of Automatics, Biocybernetics,
and Robotics, Jožef Stefan Institute, and a professor at
Jožef Stefan International Postgraduate School, Ljubljana.
His research interests include robot control, robot learning,
service robotics, and sports biomechanics.

http://refhub.elsevier.com/S0736-5845(23)00132-1/sb37
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb37
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb37
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb37
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb37
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb37
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb37
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb38
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb38
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb38
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb38
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb38
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb39
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb39
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb39
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb40
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb40
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb40
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb40
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb40
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb40
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb40
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb41
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb41
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb41
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb42
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb42
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb42
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb43
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb43
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb43
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb43
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb43
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb43
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb43
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb44
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb44
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb44
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb44
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb44
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb45
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb45
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb45
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb45
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb45
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb46
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb46
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb46
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb47
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb47
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb47
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb48
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb48
http://refhub.elsevier.com/S0736-5845(23)00132-1/sb48

	Hierarchical learning of robotic contact policies
	Introduction
	Related work
	Learning of contact policies with hierarchical learning
	Hierarchical reinforcement learning
	Lowest level: Constraint-space following controller
	Middle level: Graph topology determination
	Representation of nodes and edges
	Node discovery by examining each branch with different probing wrenches
	Exploring the entire graph

	Highest level: Reinforcement learning

	Experimental evaluation
	Maze Learning
	Door Opening Learning
	Learning to Shift Car Gears
	Car Licence Plate Light Disassembly and Assembly

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A
	Appendix B. Supplementary data
	References


