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Per-instance automated algorithm configuration and selection are gaining significant moments in evolutionary
computation in recent years. Two crucial, sometimes implicit, ingredients for these automatedmachine learning
(AutoML) methods are 1) feature-based representations of the problem instances and 2) performance prediction
methods that take the features as input to estimate how well a specific algorithm instance will perform on
a given problem instance. Non-surprisingly, common machine learning models fail to make predictions for
instances whose feature-based representation is underrepresented or not covered in the training data, resulting
in poor generalization ability of the models for problems not seen during training. In this work, we study
leave-one-problem-out (LOPO) performance prediction. We analyze whether standard random forest (RF)
model predictions can be improved by calibrating them with a weighted average of performance values
obtained by the algorithm on problem instances that are sufficiently similar to the problem for which a
performance prediction is sought, measured by cosine similarity in feature space. While our RF+clust approach
obtains more accurate performance prediction for several problems, its predictive power crucially depends on
the chosen similarity threshold as well as on the feature portfolio for which the cosine similarity is measured,
thereby opening a new angle for feature selection in a zero-shot learning setting, as LOPO is termed in machine
learning.

CCS Concepts: • Algorithm Performance Prediction; • AutoML; • Zero-Shot Learning; • Single-
Objective Black-Box Optimization;

1 INTRODUCTION
Various algorithms for continuous single-objective optimization (SOO) have already been developed
and their performance investigated through statistical analyses, in most cases reporting the average
performance across a selected set of benchmark problem instances [26]. However, the algorithm
instance behavior varies substantially depending on the problem instance that is being solved. For
this purpose, there is a predictive task known as automated algorithm selection, where the main
goal is selecting the best-performing algorithm from a set of algorithm instances for a given problem
instance [1, 5, 11, 17]. To achieve it, automated algorithm performance prediction is a crucial step
that should be done. The automated algorithm performance prediction is tackled as a supervised
machine learning problem, such as classification (i.e., predicts whether or not the algorithm solves
the instance given some precision) or a regression (i.e., predicts the performance of the algorithm as
a real value). To train a supervised machine learning algorithm a set of examples, problem instances
described by their landscape features used as input data (i.e., benchmark suite) and algorithm
performance achieved on them used as target (i.e., solution precision) are required. Nowadays, if
we want to generalize a supervised prediction model to another benchmark suite, whose problems
were not involved in the training data, the predictive model performance decreases greatly. This
occurs because the training data does not cover some regions of the landscape space involved
in the test data, or the model is biased toward some over-represented landscape regions that are
present in the training data. This is the reason why most of the studies focus on the Black-box
Optimization Benchmarking (BBOB) benchmark suite [9] since it involves several instances from
the same problem class involved in the training data which makes it a suitable resource for training
an ML-supervised model. However, if we remove the instances from the same problem class from
the training data (leave all instances from a single problem out for testing), the performance of
the model for automated algorithm performance prediction decreases significantly [25]. This issue

1

HTTPS://ORCID.ORG/0000-0002-6983-9627
HTTPS://ORCID.ORG/0000-0002-4981-3227
HTTPS://ORCID.ORG/0000-0002-6983-9627


EvoStar 2023, April 12–14, 2023, Brno, Czech Republic A. Nikolikj et al.

makes all approaches for automated algorithm performance prediction that are developed based
on the BBOB benchmark suite difficult to generalize on other benchmark suites such as CEC [16],
Nevergrad [23], etc. since in their definition there is only a single instance per each problem class.
In practice, an application such as algorithm performance prediction requires making predictions
for problem instances whose problem class (i.e., landscape properties) has not been seen previously
by the underlying model or we have a leave-one-problem-out (LOPO) learning scenario.
Our contribution. In this study, we propose an approach for LOPO automated algorithm

performance prediction. Our RF+clust approach calibrates a classic random forest (RF) predictive
model with a prediction obtained by a similarity relationship method that aggregates the ground
algorithm instance performance for the most similar problem instances from the training data. In
contrast to a classic KNN approach, we use a similarity threshold to decide which problems are
taken into account for the calibration. The number of considered ‘neighbors’ can therefore differ
between problems. We evaluate our approach on performance data of three differential evolution
(DE) variants on the CEC 2014 and the BBOB benchmark suite of the COmparing Continuous
Optimizers (COCO) environment [10]. We observe better results for RF+clust than for stand-alone
RF performance prediction in a number of cases. However, there are also cases when similar
landscape representations can lead to different performances of the algorithm, which can affect the
prediction of the RF+clust approach. This further points out that in the future we need to focus on
finding problem feature representations with sufficient discriminate power that will be also able to
capture the performance of the algorithm.
Outline. The remainder of the paper is organized as follows: Section 2 surveys past work on

automated algorithm performance prediction. The proposed LOPO regression method is introduced
in Section 3. Section 4 details the benchmark problem suites and algorithms used for the validation
of the proposed approach, the problem landscape features, as well as the machine learning algorithm
tuning and evaluation. The results and discussion are provided in Section 5. Finally, the conclusions
are drawn in Section 6.

2 RELATEDWORK
Next, we point out some of the works which are addressing the critical issue of generalization over
new problem classes.
Bischl et al. [3] consider automated algorithm selection as a cost-sensitive classification task

using one-sided Support Vector Machines. Problem instance-specific miss-classification costs are
defined, unlike standard classification where all the errors in classification are penalized the same
by the algorithm. The predefined miss-classification costs represent external information to aid the
learning process. The approach was tested on problem instance feature representations consisting
of “cheap” and “expensive” ELA features [18], with respect to the sample size required for their
calculation. It was shown that the model is able to generalize over new instances, however, the
prediction error gets worse for new problem classes, when the prediction is based only on the
“cheap” ELA features representation. To discover the source of the larger model errors, analysis of
the feature space is performed based on the euclidean distances between the problem instances
representations. They conclude that the degree of classification performance tends to correlate
with the proximity in feature space for the case of using the entire feature set, however, this was
not that straightforward for the “cheap” features.

The work [7] brings to attention the possibility to personalize regression models (Decision Tree,
Random Forest, and Bagging Tree Regression) to specific optimization problem classes. Instead
of aiming for a single model that works well across a whole set of possibly diverse problems, the
personalized regression approach acknowledges that different models may suit different problem
types.
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In [25] a classification-based algorithm selection approach is evaluated on the COCO benchmark
suite [9] and artificially generated problems [6]. The results show that such a model has low
generalization power between datasets and in the leave-one problem-out cross-validation procedure
where each problem class was removed one at a time from the same dataset. However, a model
trained and tested in a leave-instance-out scenario achieves much higher accuracy. A correlation
analysis using the Pearson correlation coefficient was performed for the problem representations
based on the “cheap” ELA features, showing that a large number of both, the COCO and the artificial
problems are highly correlated within their own set of problems. i.e., the poor generalization is due
to the differences between the two data sets in feature space.
The feasibility of a “per-run” algorithm selection scheme is investigated in [14], based on ELA

features that are calculated from the observed trajectory of the algorithm (i.e., the samples the
algorithm visits during the optimization procedure). This avoids the usually required additional
evaluation of (quasi-)random samples implemented by classic per-instance algorithm selection
schemes. Results for the COCO benchmark suite show performance comparable to the per-function
virtual best solver. However, these results did not directly generalize to the other benchmark suites
used in the experiments, namely the YABBOB suite from the Nevergrad platform [23].

3 LOPO ALGORITHM PERFORMANCE PREDICTION
Let us assume a set of benchmark problem instances 𝑃𝑖𝑡 , 𝑖 = 1, . . . , 𝑛, which are grouped into training
problem classes 𝑃𝑡 , 𝑡 = 1, . . . ,𝑚, and performance data for an algorithm instance 𝐴 on the selected
set of benchmark problem instances. To predict the performance 𝑦𝑖𝑞 of the algorithm instance 𝐴 on
a problem instance 𝑃𝑖𝑞 from a new problem class 𝑃𝑞 that is not involved in the training data, we
have proposed the following LOPO approach:
1) Represent the selected benchmark problem instances from the𝑚 problem classes by calculating
the ELA features and linking them to the performance of the algorithm instance after a certain
number of function evaluations.
2) Train a supervised regression model that uses the ELA features as input data and predicts the
algorithm instance performance.
3) For a new problem instance 𝑃𝑖𝑞 from a new problem class 𝑃𝑞 that is not involved in the training
data, use its ELA features as input data into the learned model to make the prediction 𝑦𝑖𝑞 .
4) Select the 𝑘-nearest problem instances from the training set that are the most similar to the new
problem instance based on their landscape features representation. The similarity is measured by a
similarity metric 𝑠 , and the selection is done by defining a prior similarity threshold. We selected
cosine similarity as a similarity measure. Finally, all problem instances from the training data that
have a similarity greater or equal to the predefined threshold are selected, from which the ground
truth algorithm performance is retrieved 𝑝1, 𝑝2, . . . , 𝑝𝑘 . We need to point out here that the number
of the nearest problem instances 𝑘 , differs for different problem instances, so it is found by the
selection rule and the predefined threshold.
5) The final prediction of the algorithm instance performance on the new problem instance is made
by calibrating the prediction obtained by the learned model 𝑦𝑖𝑞 with the ground truth algorithm
instance performance retrieved for the selected nearest problem instances from the training data.
This is performed as an aggregation procedure as follows: 𝑦𝑖𝑞 =

(
𝑦𝑖𝑞 + 𝐹 (𝑝1, 𝑝2, . . . , 𝑝𝑘 )

)
/2, where

𝐹 (𝑝1, 𝑝2, . . . , 𝑝𝑘 ) is an aggregation function, which can be for example weighted mean. 6) If there
are no problem instances in the training data to which the new problem instance is similar above
the threshold, only the prediction of the model is considered, 𝑦𝑞 .
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4 EXPERIMENTAL DESIGN
Here, we are going to present all experimental details starting from the data that is involved and
the techniques used for the ML learning process.
Problem Benchmark Suites. We evaluate the proposed method by using two of the most

currently used benchmark problem suites in the field of numeric single-objective optimization. The
first benchmark suite involved in the experiments is the 2014 CEC Special Sessions & Competitions
(CEC 2014) suite. The suite consists of 30 problems where only one instance per problem is available.
The problems are provided in dimension 10. The full problem list and descriptions of all the problems
are available at [16]. The second problem set is the 24 noiseless single-objective optimization
problems from the BBOB collection of the COCO benchmarking platform [10]. Different problem
instances can be derived by transforming the base problem with predefined transformations to both
its domain and its objective space, resulting in a set of different instances for each base problem
class, that have the same global characteristics. We consider the first five instances of each BBOB
problem, resulting in a dataset of 120 problem instances. In coherence with the CEC problem suite,
the problem dimension 𝐷 was set to 10.

Algorithm Performance Data. Performance data is collected for three different randomly se-
lected Differential Evolution (DE) [27] configurations, on both the CEC 2014 and BBOB benchmark
suites. The DE hyper-parameters are as presented in Table 1. We indexed the algorithm configura-
tions starting from DE1 to DE3 for easier notation of the results. DE is an iterative population-based
meta-heuristic. The population size of DE is set to equal the problem dimension 𝐷 (𝐷 = 10 in our
study). The three DE configurations were run 30 times on each problem instance, and we extracted
the precision after a budget of 500𝐷 = 5000 function evaluations. In our study, we consider the
median target precision achieved in these 30 runs. Following the approach suggested in [11], we
also consider the logarithm (log10) of the median solution precision. This algorithm performance
measure estimates the order of magnitude of the distance of the reached solution to the optimum.
Figure 1 presents DE1 performance (log-scale) obtained per benchmark problem on the CEC 2014
and Figure 2 on the BBOB benchmark suite (aggregated for all problem instances).

Table 1. Differential Evolution (DE) configurations.

𝑖𝑛𝑑𝑒𝑥 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝐹 𝐶𝑟

DE1 Best/3/Bin 0.533 0.809
DE2 Best/1/Bin 0.617 0.514
DE3 Rand/Rand/Bin 0.516 0.686

Fig. 1. DE1 solution precision (log-scale) per problem instance on the CEC 2014 suite.
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Fig. 2. DE1 solution precision (log-scale) on the first instance of each problem in the BBOB suite.

Exploratory Landscape Analysis (ELA). To create a feature representation that encodes
problem properties, the static Exploratory Landscape Analysis (ELA) [18] features are used. The
features are calculated by the evaluation of a sample of candidate solutions generated by systematic
sampling of the decision space of the problem. The corresponding fitness values are then fed to
different statistical and mathematical methods to calculate the feature values. The Improved Latin
Hypercube Sampling (ILHS) [28] was used as a sampling technique, with a sample size of 800𝐷
(8000). In reality, this is a really big sample size, however, we are interested in whether the approach
works, so wewant to reduce the randomness from the feature computation [15]. For each benchmark
problem instance, the calculation of the features was repeated 30 times, as it is a stochastic process
and the median value was taken as the final feature value that numerically quantifies some property
of the problem. The R package “flacco” [13] was utilized for their calculation. We selected all the
ELA features which are cheap to calculate with regard to sample size, and do not require additional
sampling. This way, a total of 64 features were calculated. The selected features are coming from
the following groups: classical ELA (y-distribution measures, level-set, meta-model), Dispersion,
Information Content, Nearest Better Clustering, and Principal Component Analysis.
Regression Models for Algorithm Performance Prediction. For the learning process, we

considered random forest (RF) regression [2], as it provides promising results for algorithm perfor-
mance prediction [12] and is one of the most commonly used algorithms for algorithm performance
prediction studies in evolutionary computation. The RF algorithm was used as implemented by the
scikit-learn package [21] in Python. We have trained single-target regression (STR) models. That is,
we have a separate model for predicting the performance of each of the three DE algorithms.

ML Model Evaluation. When splitting the data as described in Section 3 the evaluation of the
automated algorithm performance prediction results in leave-one-problem-out fold validation. At
each fold, a model was trained using one problem class (including all of its instances) left out for
testing, while the remaining are used for training. In order to assess the accuracy of the models, we
compute the Mean Absolute Error (MAE). The prediction errors are the absolute distances of the
prediction to the true algorithm precision value on the new problem class.

Hyper-parameter Tuning for theRegressionModels.The best hyper-parameters are selected
for each RF model from the training portion of the fold. The hyper-parameters selected for tuning
are 𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 - the number of trees in the random forest;𝑚𝑎𝑥 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 - the number of features
used for making the best split;𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ - the maximum depth of the trees, and𝑚𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑠𝑝𝑙𝑖𝑡

- the minimum number of samples required for splitting an internal node in the tree. The ranges of
the hyper-parameters have been selected concerning the data set size and the guidelines available
in ML to avoid over-fitting. The best hyper-parameters for each problem class are presented in our
repository [20].
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Table 2. Mean Absolute Error (MAE) obtained by the RF models for predicting the performance of DE1 with
different feature portfolios on the CEC 2014 benchmark problems

top features aggregation mae_train mae_test
10 mean 0.504464 1.279261
10 median 0.536681 0.991274
30 mean 0.458142 1.318326
30 median 0.439434 0.770265
64 mean 0.498807 1.465239
64 median 0.480457 0.931685

Fig. 3. CEC 2014 Fig. 4. BBOB

Fig. 5. The ten most important ELA features for predicting the performance of DE1 on the CEC 2014 and
BBOB benchmark suites.

Feature Selection. Taking into consideration the size of the datasets, in a scenario where 30
data instances (CEC 2014 benchmark suite) are available, and 64 features to describe them, we
run the risk of overfitting our model. Therefore, we have performed feature selection. Since we
have a LOPO scenario (i.e., leave all instances for a single problem out), in our case we ended with
30 ML predictive models. To select the top most important features for each model, the SHAP
method [19] was utilized. Finally, the importance of the features was summarized across all the
models, and the 10 and 30 most important features were used to train the models. These two sizes
of feature portfolios were tested in order to compare the decrease in ML model performance (if
any) when using different feature portfolios (Table 2). Also, the feature portfolio influences the
proposed approach as it is based on the pairwise similarity of the features. So different feature
portfolios can result in different instances retrieved as similar. Figure 5 shows the feature portfolio
of the 10 most important features for CEC 2014 and BBOB accordingly.

5 RESULTS
We apply the approach to three random DE configurations and two benchmark suites (CEC 2014
and COCO). Due to space limitations, however, we present here some selected results for algorithm
DE1 and the CEC 2014 benchmark suite, while other results where similar findings are noticed are
available at[20].
In Figure 6 we compare a classical supervised RF model and an RF+clust model in a leave-

one-problem-out scenario. Figure 6 shows the prediction errors obtained by a standard RF model
trained in the LOPO (corresponding to the "RF" denoted row on the heatmap) and errors of the
proposed RF+clust approach (for similarity thresholds of 0.5, 0.7, and 0.9, also with corresponding
rows on the heatmap). The predictions were obtained by using a feature portfolio of the ten most
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Fig. 6. The mean absolute error of the RF model and the RF+clust approach using a similarity threshold of .5,
.7, and .9, for each problem in the CEC 2014 benchmark suite, for DE1 and the feature portfolio of ten most
important ELA features.

important features. Each cell of the heatmap represents the absolute error obtained by the models.
The columns represent each problem instance separately, while the last column indicates on how
many instances the approach showed lower prediction error). The numbers under the model error
indicate the number of similar instances set above the corresponding threshold that were present
in the training of the model. The blank cells in the heatmap are places where the RF+clust approach
provides the equal result as the RF model because for those problems we could not find similar
problem instances from the training data using the predefined threshold.

The figure shows that there are problems (1, 3, 6, 11, 12, 13, 14, 16, 17, 23, 24, 28, 29, 30) for which
the RF+clust approach shows better predictive results than using a classically trained RF model.
We can see that for the high similarity threshold (0.9), calibrating the classical prediction with the
ground truth performance of the optimization algorithm of the retrieved similar problems from
the training data decreases the predictive error. To provide an explanation for why this happens,
Figure 7 presents the relation between the pairwise similarity of the ELA features representation

7



EvoStar 2023, April 12–14, 2023, Brno, Czech Republic A. Nikolikj et al.

Fig. 7. Pairwise similarity of the ELA
features representation (x-axis) and the
pairwise difference in the ground truth
performance of DE1 (y-axis) for the
third problem in CEC 2014.

Fig. 8. Pairwise similarity of the ELA
features representation (x-axis) and the
pairwise difference in the ground truth
performance of DE1 (y-axis) for the
ninth problem in CEC 2014.

(x-axis) and the pairwise difference in the ground truth performance of the optimization algorithm
(y-axis) for the third problem in the CEC 2014, with the other problems. The heatmap shows that
the third problem has four similar problem instances over 0.9 (17, 21, 29, 30), as visible in Figure 7.
In addition, we can see that the difference in ground algorithm performance of the problem and the
similar instances is low, so the algorithm has similar behavior on these problems (see also Figure 1),
and using them for the calibration helps to obtain better predictive errors.
There are also problems when the predictions are affected by the RF+clust approach, slightly

worse than the prediction obtained from the classical RF model. Figure 8 presents the relation
between the pairwise similarity of the ELA features representation (x-axis) and the pairwise
difference in the ground truth performance of the optimization algorithm (y-axis) for the ninth
problem in the CEC 2014. The heatmap shows that the ninth problem has three similar problem
instances (8, 13, 14) according to Figure 8. Here, we can see that one out of three problems is
similarly based on the ELA representation and the algorithm has similar behavior on it. However,
on the remaining two problems, we can see that even with high similarity in the landscape space,
the difference in algorithm performance is larger in reality (see Figure 1), so using the performance
to calibrate the prediction yields a larger error. A similar scenario happens for the 21st problems,
where the similarity is greater or equal to 0.9 but the difference in performance between them
is very large (see Figure 9). This indicates that there are problems for which the ELA features
representations are not expressive enough and they could not well describe the problems in such a
scenario (i.e., similar ELA landscape representation may not lead to similar algorithm behavior in
the performance space).
There are also problems such as the first and the second that are difficult to be solved by the

optimization algorithm (see Figure 1 for ground truth performance). Figure 10 presents the relation
between the pairwise similarity of the ELA features representation (x-axis) and the pairwise
difference in the ground truth performance of the optimization algorithm (y-axis) for the second
problem in the CEC 2014. It is visible that this problem has very few similar instances, does not
have similar instances over 0.9 at all, and also the difference in algorithm performance with similar
instances over 0.5 is very large. This is the case where the test problem class is not covered enough
by the train, however, even in such scenarios, we can be slightly better in the prediction results.
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Fig. 9. Pairwise similarity of the ELA
features representation (x-axis) and the
pairwise difference in the ground truth
in the ground truth performance of DE1
(y-axis) for the 21st problem in CEC
2014.

Fig. 10. Pairwise similarity of the ELA
features representation (x-axis) and the
pairwise difference in the ground truth
in the ground truth performance of DE1
(y-axis) for the second problem in CEC
2014.

Table 3. Number of times the RF+clust is better, equal, or worse than stand-alone RF for predicting the
performance of DE variants on the CEC 2014 benchmark suite.

algorithm name model # better # equal # worse
DE1 0.9 14.0 10.0 6.0
DE1 0.7 17.0 2.0 11.0
DE1 0.5 18.0 0.0 12.0
DE2 0.9 13.0 5.0 12.0
DE2 0.7 18.0 0.0 12.0
DE2 0.5 21.0 0.0 9.0
DE3 0.9 8.0 15.0 7.0
DE3 0.7 14.0 2.0 14.0
DE3 0.5 16.0 0.0 14.0

Looking back at the heatmap (Figure 6), we can see that when the similarity threshold decreases
(i.e., going to 0.5), some of the predictions are slightly worse. This was expected since having a
lower threshold in the landscape space does not guarantee to capture similar performance in the
performance space (see Figures 8, 9, and 10). The heatmaps presenting the results for the other two
DE algorithms lead to similar results and explanations.
In Table 3 we summarize how many out of the 30 problems the RF+clust approach provides

better, worse, or equal predictions (when similar instances are not found, the prediction is not
calibrated) than the classical (stand-alone) RF model on the CEC 2014 benchmark suite.

To investigate the sensitivity with a different feature portfolio, we repeated the experiments by
selecting the top 30 most important features for predicting the performance of DE1 on the CEC
2014 benchmark suite. Figure 11 presents the absolute errors of the RF and RF+clust approaches
obtained for each problem of the CEC 2014. Focusing on the similarity threshold of 0.9, the results
show that the RF+clust approach provides better predictions (i.e., improvements) than the classical
RF model for nine problems, worse predictions for five problems, and equal for 16 problems. We
need to point out here that increasing the number of the top most important features from 10 to 30,

9



EvoStar 2023, April 12–14, 2023, Brno, Czech Republic A. Nikolikj et al.

also affects the similarity of the problem instances. From the heatmap is visible that now we are not
able to detect similar problems for some of the problems (e.g., 1, 21, 23, 24, 28, 29, 30) for which we
were able to detect similar problems above 0.9 when the feature portfolio of the 10 most important
features is used. This further opens a new angle for feature selection that will have discriminate
power to capture also differences that happen in the performance space.

Fig. 11. The mean absolute error of the RF model and the RF+clust approach using a similarity threshold of
.5, .7, and .9, for each problem in the CEC 2014 benchmark suite, for DE1 and the feature portfolio of 30 most
important ELA features.

In addition to the results obtained on the CEC 2014 benchmark suite, Figure 12 presents the
prediction results obtained for the DE1 algorithm for the first instance of each COCO problem. We
selected only one instance here, for visualization purposes (our overall setting remains LOPO, i.e.,
we omit all instances of the left-out problem, and we use data from the five instances of the other
problems for training. This also explains why the number of similar problem instances is larger in
Figure 12 compared to those for the CEC benchmark presented in Figure 6). The results are in line
with those obtained for the CEC 2014 benchmark. We point out that the top 10 most important
features to train the prediction model differ from those selected on the CEC 2014 benchmark;
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see Figure 5 for details. An indirect outcome of this study is that these two benchmark suites are
different, which also supports previously published findings [24].

Fig. 12. The mean absolute error of the RF model and the RF+clust approach using a similarity threshold of
.5, .7, and .9, for the first instance of each problem in the BBOB benchmark suite, for DE1 and the feature
portfolio of ten most important ELA features.

6 CONCLUSIONS
In this study, we have proposed leave-one-problem-out (LOPO) for algorithm performance predic-
tion. The idea behind the approach is to predict the performance of an optimization algorithm by
using a supervised ML model on a problem that is not presented in the training data. First, a model
is learned from a feature landscape representation of the problem instances from the train problem
classes, and a prediction is made for an instance from a new problem class in a supervised manner.
Second, based on the similarity relationship between the problem classes based on their feature
landscape representation, the prediction for the new problem instance is calibrated by applying an
aggregation procedure over the algorithm performance of the 𝑘-nearest problem instances from
the training data.

11



EvoStar 2023, April 12–14, 2023, Brno, Czech Republic A. Nikolikj et al.

The results performed on the CEC 2014 benchmark suite showed promising results and explana-
tions about the strengths and weaknesses of the proposed approach. Better results are achieved for
problems for which their landscape feature representation is similar to other problems from the
training data and the algorithm behaves similarly on those problems. However, there are also prob-
lems for which the proposed approach can lead to slightly worse prediction results. This happens
for problems for which the landscape feature representation leads to finding similar problems from
the training data, however, the performance of the algorithm significantly differs. Such a result
indicates that we need to find an expressive enough landscape feature representation that correlates
with the algorithm’s performance. Also, there are problems for which there are no similar problems
in the training data, which further indicates that we need to enrich the data that is used in ML
setup with new problems (e.g., merging different benchmark suites or using artificially problem
generators [6]) by taking care that all landscape spaces approximate a uniform distribution in the
problem space.

In the future, we are planning to test the approach on a more comprehensive algorithm portfolio.
Next, instead of exploratory landscape features calculated by a global sampling, we are planning to
calculate them using the trajectory data that was observed by the algorithm during the run (i.e.,
to capture also information about the algorithm behavior) [14]. We are also going to try different
problem feature representations such as topological data analysis [22]. Last but not least, we are
planning to merge different benchmark suites to select representative problem instances [4, 8]
that will allow us to represent all possible landscape spaces from the problem space with the same
number of problems that will further help the LOPO approach to have better prediction results.
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