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Abstract

Physical inactivity represents a heavy burden for modern societies and is spread-
ing worldwide, it is a recognised pandemic and is the fourth cause of global mor-
tality. Not surprisingly, there is an increasing interest in longitudinal studies on
the impact of reduced physical activity on different physiological systems. This
narrative review focuses on the pathophysiological mechanisms of step reduction
(SR), an experimental paradigm that involves a sudden decrease in participants’
habitual daily steps to a lower level, mimicking the effects of a sedentary lifestyle.
Analogous animal models of reduced physical activity, namely, the “wheel-lock”
and the “cage reduction” models, which can provide the foundation for human
studies, are also discussed. The empirical evidence obtained thus far shows that
even brief periods of reduced physical activity can lead to substantial alterations
in skeletal muscle health and metabolic function. In particular, decrements in
lean/muscle mass, muscle function, muscle protein synthesis, cardiorespiratory
fitness, endothelial function and insulin sensitivity, together with an increased
fat mass and inflammation, have been observed. Exercise interventions seem par-
ticularly effective for counteracting these pathophysiological alterations induced
by periods of reduced physical activity. A direct comparison of SR with other
human models of unloading, such as bed rest and lower limb suspension/immo-
bilisation, is presented. In addition, we propose a conceptual framework aiming
to unravel the mechanisms of muscle atrophy and insulin resistance in the spe-
cific context of reduced ambulatory activity. Finally, methodological considera-
tions, knowledge gaps and future directions for both animal and human models

are also discussed in the review.
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1 | INTRODUCTION

Physical inactivity is a major cause of chronic diseases’
and has been recognised as the fourth cause of global
death,” representing a heavy economic burden for modern
society.>* Physical inactivity is considered a pandemic,>®
requiring global action for public health.” About 30% of
the population is estimated to be physically inactive, a
trend growing considerably in high-income countries.®
From an evolutionary perspective, physical inactivity
represents a strategy for energy-saving and reducing the
risk of predation, snake bites and musculoskeletal injury.’
However, our hunter-gatherer ancestors, due to the dom-
inant urge to collect food to eat, never experienced low
levels of physical activity that could be harmful to their
health. Thus, no corresponding mechanism for avoidance
of physical inactivity evolved.’

Since the seminal work of Morris et al. in the 1950s,°
showing a higher occurrence of coronary disease in bus
drivers (a sedentary work) compared with bus conductors
(a physically active work), most indirect evidence examin-
ing the detrimental effects of physical inactivity has been
derived from epidemiological (mainly cross-sectional)
studies. However, there is mounting interest in inactiv-
ity experimental (longitudinal) studies to investigate the
mechanisms by which physical inactivity impacts differ-
ent physiological systems. Most of the previous studies
investigating these aspects have been conducted in lab-
oratory settings employing extreme models of disuse/
unloading (e.g. bed rest, dry-immersion, unilateral limb
suspension, knee bracing)."™” Such unloading models
have provided essential knowledge in the understand-
ing of the remarkable skeletal muscle plasticity and how
physical inactivity leads to muscle wasting and metabolic
dysfunction in different populations."'™"” Bed rest and dry
immersion, by forcing volunteers to lay down for days or
weeks, represent excellent models for comprehending the
systemic effects of unloading,'”*® while single limb disuse
models (i.e. unilateral limb suspension, knee bracing) af-
ford the opportunity for investigating unloading mostly
at a local muscle level, although some effects at systemic
level are still observed.'®

More recently, an additional physical inactivity sys-
temic model, termed step reduction (SR), has been pro-
posed."? SR consists in inducing a sudden reduction in
participants’ habitual daily steps (generally assessed by a
pedometer and/or an accelerometer) to a lower maximal
steps limit, ranging from ~750 to ~4500 steps/day. When
compared with the traditional disuse models, SR is consid-
ered a less extreme form of physical inactivity, since par-
ticipants are still exposed to loading stimuli.”’ "> However,
SR represents an attractive model as it is closer to real-life
conditions and more appropriate to mimic the deleterious

effects of a sedentary lifestyle.”**** In fact, SR appears
well suited for mimicking a decrease in everyday life activ-
ities which supports most daily energy consumption and
has been shown to increase health risk.?®?” In addition, it
is important to consider that periods of reduced physical
activity occur more frequently than events of prolonged
bed rest or limb immobilisation,?! as for instance occurred
during the COVID-19 pandemic.?® Low number of daily
steps is also strongly associated with an increased risk of
all-cause mortality.*™!

This narrative review aims to examine the impact of
SR, focusing on skeletal muscle physiology and metabolic
impairment. As analogous models of reduced physical
activity used in rodents can provide the foundation for
human investigations, they are also discussed first. In ad-
dition, methodological considerations, knowledge gaps
and future directions for both animal and human models
are described.

2 | REDUCED PHYSICAL
ACTIVITY MODELS IN RODENTS

Physical inactivity is a serious threat to animals' health
and in particular to the skeletal muscle. Several models
have been proposed to study its effects in rodents, includ-
ing hindlimb unloading (also known as “tail suspension”)
and cast immobilisation.**** These models are considered
severe forms of unloading, therefore comparable with
human best rest, unilateral limb suspension and immo-
bilisation. In contrast, there are relatively few studies on
the effects of reduced daily ambulatory activity in ani-
mal models. These studies have typically used either the
“wheel-lock” model or the cage reduction model.

2.1 | Wheel-lock model
2.1.1 | Impact of wheel-lock on insulin
sensitivity

The wheel-lock model, sometimes also reported as ces-
sation of voluntary wheel running, was the first attempt
in the literature to mimic a sedentary lifestyle. Originally
developed by Rhodes et al.,**** the wheel-lock model was
then employed extensively to study the effects of acute
physical inactivity on metabolic dysfunction.*®*’ In this
model, rodents are provided with running wheels and al-
lowed to voluntarily run for several weeks (3-6weeks),
after which the wheels are locked, causing the cessation
of animals' normal activity and thus promoting physical
inactivity. Voluntary wheel running is an intermittent ac-
tivity, performed under non-stressed conditions and does
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not require the direct intervention of the researcher.*®
Therefore, wheel locking prevents animals' primary
source of physical activity, determining the transition
from the habitual level of locomotion to a lower daily
amount, simulating SR studies in humans.

Wheel-lock studies produced several novel findings
related to metabolic maladaptation to physical inactiv-
ity. In these studies, rats whose wheels were locked for
only 5h (WL5) constituted the control group, while rats
whose wheels were locked for longer periods, including
29h (WL29), 53h (WL53), and in some studies also 173 h
(WL173), represented the groups were inactivity was in-
duced. Rats that never had access to voluntary wheel run-
ning constituted the sedentary group. In their first WL
study,® insulin-stimulated 2-deoxyglucose uptake into
the epitrochlearis muscle was lower in WL53 and the sed-
entary rats compared with WL5, indicating a rapid reduc-
tion in insulin sensitivity induced by the intervention. In
addition, muscle insulin receptor ligation and signalling
alterations, associated with reduced GLUT4 protein lev-
els, were observed.*® Noteworthy, another study showed
higher plasma insulin and triglyceride concentrations in
WL53 rats when compared with animals that had contin-
uous running wheel access.” A recent investigation ex-
cluded the hypothesis that changes in muscle ceramides,
a family of waxy lipid molecules considered involved in
insulin sensitivity, are involved in this inactivity-induced
insulin resistance.”’ Differently, a decreased gene expres-
sion of two key mechanical stretch sensors (Ankrd2 and
Csrp3) that play a role in skeletal muscle metabolism and
hypertrophy was reported.**

2.1.2 | Impact of wheel-lock on fat mass and
inflammation

Adipose mass changes rapidly in response to wheel-
lock.>”**™ Fifty-three hours of wheel-lock increased
relative omental and epididymal fat masses as well as
triacylglycerol synthesis rates,”’” independently from food
intake/energy balance.* Rector et al.,* employing a rat
model of obesity, after 16 weeks of voluntary wheel run-
ning with subsequent wheel-lock, observed increased
omental and retroperitoneal fat pad masses, hepatic tri-
glycerides and protein markers of fatty acid synthesis in
the sedentary group with respect to WL5-, WL53- and
WL173-hour animals. Another study carried out in obese
rats observed higher lipid peroxidation levels in epitroch-
learis muscles of the sedentary group than WL5, WL53
and WL173 rats.*® An additional investigation from the
same group reported that the transition from high to low
physical activity levels caused a reduction in fatty acid oxi-
dative capacity in skeletal muscle, liver, and adipocytes,
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accompanied by fat pad mass increase, attenuated growth
of lean body mass and reduced PGC1-a« mRNA in both
skeletal muscle and liver.** Company et al. examined the
role of age (49-56 vs. 70-77 days of age) on the growth of
adipose tissue mass and adipocyte size following 7 days of
wheel-lock.* Compared with rats that always had wheel
access, 70- to 77-day-old animals had increased rates of
gain in fat mass, greater adipocyte number, more small
adipocytes and greater cyclin A1 mRNA in epididymal
and perirenal adipose tissue.

Alterations in mRNA and protein expression in the
iliac artery tissue of genes associated with inflamma-
tion (TNFR1 and ET-1) and oxidative stress (LOX-1) in
the WL173 group were also observed.” Another study,
besides reporting increases in fat mass and body fat per-
centage, observed 646 differentially expressed transcripts
in perirenal adipose tissue comparing rats with continued
wheel access and wheel-lock rats.*® These findings sug-
gest that reduced mobility promotes alterations of multi-
ple pathways related to extracellular matrix remodelling,
macrophage infiltration, immunity and pro-inflammatory
function, some of which may exacerbate the development
of obesity.

2.1.3 | Impact of wheel-lock on brain and
neural function

The wheel-lock model and other very similar models
have been employed by other research groups to study
the effects of physical inactivity on other factors of ani-
mal health, including the brain and neural function. For
instance, differential short-term changes in brain activity
(evaluated through Fos-positive cells) in numerous brain
regions were detected in mice blocked from reaching their
wheel compared with those always having access to the
wheel.*® Mice housed in a running wheel cage for 8 weeks
and subsequently moved to a standard cage were more anx-
ious and exhibited impaired hippocampal neurogenesis.49
Similarly, another report suggested that forced cessation of
voluntary wheel running increases anxiety-like behaviours
in rodents and exercise-induced stress resistance endured
following wheel-lock.® Furthermore, a study reported
a rapid decrease in BDNF mRNA in the hippocampus of
hypertensive rats after the cessation of long-term volun-
tary wheel running,”’ while conversely, a second study re-
ported an increase in BDNF protein in the hippocampus.>

2.2 | Cage reduction models

The cage reduction model represents an alternative ap-
proach for reducing physical activity in rodents. This
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model is based on the modification of rodents’ home cage
size and features, thereby reducing their voluntary ambu-
latory activity. Indeed, despite locomotor behaviour being
already limited in captivity, rodents do walk around and
lid climb in their cages.”® Although the use of small cages
is not new in rats,>* > this approach has been re-adapted
also in a few recent investigations in mice in the context of
muscle adaptations and insulin resistance.®*®* Employing
this model, reducing the living space by varying degrees,
muscle atrophy,>*”*%%* reduced muscle protein synthe-
sis (MPS)*® and reduction in local®®* and whole-body>***
insulin sensibility have been shown to occur.

In a study recently conducted,”® the authors placed a
plexiglass spacer in the middle of a standard type 2 mac-
rolon cage, thus reducing the available cage volume.®’ To
prevent lid climbing, a sheet of plastic having small holes
was positioned under the standard wire lid and fixed using
cable ties.” In addition, drinking bottles were placed so
that the nozzle did not stick out and a piece of plastic was
placed in all other wire lids to prevent possible licking or
gnawing on the plastic. In this study, mice were allocated
in six conditions: one for each of three different cage sizes
with lids that either allowed or prevented lid climbing.
Employing this model, the authors found that preventing
climbing reduced motor coordination, muscle strength
and muscle stamina after 5 and 10 weeks of intervention.®
In addition, a further reduction in cage size affected motor
coordination but not grip strength or muscle stamina.
Moreover, preventing climbing increased visceral fat mass
but did not induce muscle atrophy over 19 weeks.

2.3 | Methodological considerations and
future directions for animal studies

In summary, both the wheel-lock and cage reduction seem
appropriate models for studying the mechanisms by which
reduced physical activity impacts the function of different
physiological systems in animals (Figure 1). Blocking wheel
access or changing cage type (i.e. from a cage equipped with
a running wheel to a standard cage) should be preferred
to conventional wheel-lock because mice do climb in their
wheels also when they are locked.** Cage reduction vol-
ume should be selected carefully based on the study aim,
as an excessive reduction could almost abolish animals
movements, making this model more akin to an animal
physiological analogue for bed rest.”® A possible approach
for future studies to further exacerbate inactivity-induced
effects may be to apply both models in the same study de-
sign, reducing cage size after the cessation of daily volun-
tary wheel running.*® This has only been implemented in
a limited number of studies thus far.”>*' Individual hous-
ing could represent a more severe physical inactivity model

compared with partner or social housing.®*® For a better
quantification of ambulatory activity reduction, future
studies should evaluate in-cage habitual physical activity
levels. Individual voluntary wheel running activity can be
monitored via running wheels’ number of revolutions or
different commercially available systems.”>*® Moreover, in-
cage spontaneous physical activity can be recorded through
video-tracking or other wireless procedures.®”*® Finally,
using these models, very little attention has been paid to the
impact of reduced physical activity on neuromuscular and
cardiovascular systems; these aspects should be further in-
vestigated. Methodological considerations for animal mod-
els are summarised in Figure 2.

3 | STEP REDUCTION MODEL IN
HUMANS

In 2008, the SR model was originally designed to study
changes in insulin sensitivity and adiposity in response to
reduced physical activity in humans.'** Ever since this
model has been employed to investigate the impact of
reduced physical activity also on other physiological sys-
tems (Table 1 and Figure 1).

3.1 | Impact of SR on metabolic function,
body composition and inflammation

The seminal study by Olsen et al. was the first one to show
the pathophysiological consequences of SR."° Young healthy
participants reduced their habitual daily steps from ~10000
steps/day to ~1300 steps/day, simply through a change in
lifestyle behaviour (e.g. taking the elevator instead of stairs
and using cars instead of walking or cycling). After 3 weeks,
participants underwent metabolic changes indicative of de-
creased insulin sensitivity (assessed with the oral glucose
tolerance test) and attenuation of postprandial lipid me-
tabolism (evaluated with oral fat tolerance test), accompa-
nied by increased intra-abdominal fat and decreased total
fat-free mass.'® Alterations in insulin sensitivity and body
composition following periods of SR (ranging from 3days
to 2weeks) were confirmed also by later studies in young
subjects,zo’ﬁg_76 middle-aged men’’ and older adults,”®® in-
dependently from whether the SR interventions were car-
ried out in combination with overfeeding or not.
Investigating possible mechanisms behind these al-
terations, a recent study found a decline in maximal
citrate synthase activity (a marker of mitochondrial con-
tent) and an increase in the protein content of p-glycogen
synthase (P-GS***'; a marker of reduced glycogen syn-
thase activation) following 7days of SR (<1500 steps/
day) in the skeletal muscle.®’ Differently, these authors
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FIGURE 1 Deleterious effects of step reduction and analogous animal models (wheel-lock and cage reduction). Created with BioRe

nder.com. MPS, muscle protein synthesis.

reported no changes in total protein or phosphoryla-
tion content of markers of insulin-mediated signalling,
mitochondrial function (e.g. oxidative phosphoryla-
tion complex I-V), oxidative metabolism (e.g. PGC1-a,
AMPKa), or mitochondrial dynamics (e.g. FIS1, DRP1,
and MFN2), possibly due to the short duration of the
intervention. In addition, another study reported only
modest changes in ceramides content following reduced
activity and recovery.** In studies conducted in older
adults, a rise in inflammatory cytokines (levels of TNF-
o, IL-6 and CRP),78’79 associated with changes in mus-
cle inflammation cell signalling (JNK (Thr183/Tyr185),
IkBa, AKT (Ser473), TLR4 and SPT2)*® and increase in
muscle macrophages,®” were detected in response to
SR, contrary to what was observed in young®>’*’> and
middle-aged’”’ adults. It has been hypothesised* that
this difference in the inflammatory response could lead
to an impaired regenerative capacity that may explain
why younger individuals recover from SR,”"’* while
older individuals not always.”

Investigating potential countermeasures, one study
examined the effects of 45min of daily treadmill aerobic

training on young healthy subjects undergoing a week of
SR combined with overfeeding.”® The exercise interven-
tion was effective in counteracting most of the alterations
in metabolic function and adipose tissue metabolism that
were observed in the control group.” Despite this interest-
ing finding, it should be considered that background inac-
tivity (i.e. alow number of daily steps) can blunt metabolic
benefits in response to both acute®** and chronic®® exer-
cise (for a recent review on this topic we refer the reader to
Coyle et al.*”). An additional countermeasure that could
be potentially interesting for limiting the metabolic im-
pact of SR without actually increasing the number of the
daily steps would be to increase the non-exercise activity
thermogenesis (NEAT),”” employing standing worksta-
tions and gymnastic balls.®®

3.2 | Impact of SR on muscle
protein turnover

Skeletal muscle is highly malleable tissue that is very
sensitive to changes in mechanical loading. Loss of lean/
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FIGURE 2 Summary of the methodological considerations for animals and human models of reduced physical activity. Created with

BioRender.com. WL, wheel-lock.

muscle mass is evident and consistent both in young®>”!

and older adults’®**%% already with the mild unload-
ing stimulus induced from SR. Since declines in MPS
are considered one of the predominant mechanisms un-
derpinning the loss of muscle mass in human models
of disuse/unloading,”** leading experts in protein me-
tabolism have extensively investigated the changes in
integrated rates of MPS in response to SR in older popu-
lations.”®”*#%° After 2weeks of SR (750-1500 steps/day),
several studies found reductions in MPS,”®”* supporting
the concept of muscle disuse-induced “anabolic resist-
ance”.”>** Notably, one of these investigations observed
a failed recovery in MPS rates after 2weeks of resump-
tion to habitual activity in overweight pre-diabetic older
adults.” In the same cohort, the non-targeted metabolite
profile assessed from multisegment injection-capillary
electrophoresis-mass spectrometry on fasting plasma
samples highlighted changes in circulatory metabolites
associated with a decline in muscle energy metabolism
and protein degradation.”® This altered metabolite pro-
file was not fully restored after resuming normal am-
bulatory activity.”> Another recent SR study with ~80%

reduction in daily step number for 2 weeks, leveraging an
innovative combined RNA sequencing and ribosomal pro-
filing approach, showed decreased baseline and leucine-
stimulated translation of mRNAs encoding for ribosomal
proteins and alterations of circadian regulators which
may precede adaptations to muscle size and metabolic
function.” The rapid dysregulation of MPS in response to
reduced ambulatory activity has also been confirmed by a
recent study on young healthy adults following one-week
SR (<1500 steps/day).”” In this investigation, changes in
MPS were accompanied by altered insulin sensitivity and
expression of mRNA genes involved in muscle mass regu-
lation and oxidative metabolism. Indeed, myostatin and
MAFbx were upregulated after the intervention, whereas
mTOR, p53 and PDK4 were downregulated.”

A series of studies investigated the effects of exercise and
nutritional countermeasures on these aspects during peri-
ods of SR. In two different studies from the same SR cam-
paign conducted on older adults,® unilateral low-load
resistance exercise training (three sessions/week) has been
employed to counteract SR-induced muscle alterations.
This intervention increased leg lean mass, and muscle

85U01 SUOWWOD A1) 8|qeot dde au Aq peuseob sfe Sa e YO ‘8sh JO'Sa|n 1o} Ariqi8ulUO AB]1M UO (SUOIIPUOD-PUB-SWB)WO0" A3 1WA e.q| 18U JUO//SdNy) SUORIPUOD pue SWwis | 8U18eS *[£202/90/62] Uo AriqiTauljuo A1 eIueois aueiyood Aq 986€T eyde/TTTT 0T/I0p/wW0d Ao |im Areiq1jeuluo//sdny wo.j pepeojumod ‘€ ‘€202 ‘9TLT8YLT


http://biorender.com

SARTO ET AL.

function and maintained feeding-induced MPS rates in the
exercised vs. unexercised leg.* In addition, the training
protocol preserved type I and II fibre cross-sectional area,
Pax7+ positive cells content and capillarisation.’” The study
by Devries et al.** was the first one to examine whether dif-
ferent nutritional strategies (20g whey protein isolate plus
15g glycine or micellar-whey with 5g citrulline or 15g gly-
cin) could attenuate the SR-induced anabolic resistance.
However, the authors concluded that none of the proposed
supplements attenuated the reduction in MPS following
SR.® More recently, older participants were kept in energy
balance for one week, then underwent one week of energy
restriction, followed by a 2-week combination of energy
restriction and SR (<750 steps/day), before a recovery pe-
riod.”® A supplementation of whey protein or collagen pep-
tides was provided during the intervention. Despite these
nutritional strategies did not protect participants against
muscle mass loss, whey protein supplementation increased
leg lean mass and MPS rates during the recovery phase.”

3.3 | Impact of SR on muscle
function and physical performance

While changes in metabolic function, body composition,
muscle mass and MPS rates have been consistently ob-
served in response to SR, evidence regarding muscle and
physical function alterations is more controversial. Indeed,
in older adults, decreases in knee extensors maximum iso-
metric strength was found in some,?>*® but not all”®”¥
SR studies, despite all having the same duration (2weeks).
Inconsistencies among studies might be due to differences
in familiarisation procedures,” knee angle set during
maximum voluntary contraction and rest between trials.
Following 2weeks of combined energy restriction and SR,
another investigation® observed an unexpected increase in
maximum isometric tension in type IIA muscle fibres ac-
companied by augmented maximum power production in
type I and IIA vastus lateralis fibres, despite a reduction in
knee extensor maximum isometric strength at whole mus-
cle level. To date, no studies have examined changes in mus-
cle strength following SR periods in younger populations.
In addition, older adults generally presented unchanged
outcomes in physical performance tests (e.g. short physical
performance battery, time up and go, 6-meter walking test
and thirty seconds chair-to-stand) after 2weeks of reduced
ambulatory activity.”*** Differently, as presented above,
young adults showed considerable decreases in cardiorespi-
ratory fitness.”””"">""> This finding may be at least partially
due to endothelial dysfunction, reported in different SR
studies,73’99’100 similarly to what was observed with short-
term bed rest,'” and changes in mitochondrial content.®
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3.4 | Unexplored topic I: Does SR impact
neuromuscular function?

Integrity of the neuromuscular system represents a pillar
for muscle force production and motor control. However,
to date, no studies have investigated these aspects in SR
experiments. Recent evidence from severe models of un-
loading (bed rest, unilateral limb suspension) suggests
that disuse is associated with initial signs of myofibre
denervation,'*>!® impairment of excitation-contraction
coupling,”® neuromuscular junction instability’>'® and
downregulation of skeletal muscle ion channels genes.'®
From an electrophysiological perspective, changes in neu-
ral drive,'”! corticospinal excitability102 and motor unit
potential properties'®'%* are considerably affected by dis-
use. Overall these findings highlight remarkable plastic-
ity of the neuromuscular system in conditions of disuse.
Future SR studies are warranted in order to determine
whether these adaptations of the neuromuscular integrity
and function could also be detected with a less severe form
of inactivity, such as SR.

3.5 | Unexplored topic II: Does SR impact
brain activity, neurogenesis and cognitive
function?

A sedentary lifestyle has been associated with decreased
brain activity, cognitive function and brain structural re-
modelling, being also considered a risk factor for several
neurological disorders, including dementia.'**!%*1% This
may be due, in part, to a blunted release of myokines in-
volved in muscle-brain crosstalk (e.g. BDNF and IGF-1)'"
and impaired cerebrovascular perfusion'®® with physical
inactivity. The brain's adaptations in function and struc-
ture, as well as the physiological factors that contribute
to these changes, are largely unexplored in SR studies.
Thus, specific attention should be placed on these aspects,
especially after long-term SR. This seems particularly rel-
evant in light of the reductions in brain function and neu-
rogenesis observed in mice undergoing wheel-lock®>*!
(Section 2.1.3).

3.6 | Comparison of SR with other
human physical inactivity models

In order to fully appreciate the potential applications, pros
and cons of the SR model, we propose here a direct com-
parison with other traditional complete disuse models
with regards to both pathophysiological impact and tech-
nical/practical aspects.
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3.6.1 | Pathophysiological effects
As presented above, SR is accompanied by decreases in
lean and muscle mass. When compared with changes in
leg lean mass reported after two weeks of bed rest in a re-
cent meta-analysis (—8.5%),'* the reduction observed in
SR studies is about one-fourth: on average —2.1%, rang-
ing from —1.2%"" to —3.7%.”® In the only SR study that
evaluated muscle mass instead of lean mass, plantar
flexors cross-sectional area was reduced by 2.4% in two
weeks.* This is considerably lower than the 5.6%-8.4%
plantar flexors cross-sectional area loss that could be ex-
pected with unilateral lower limb suspension or immobi-
lisation after two weeks based on estimated median daily
change (unilateral lower limb suspension: —0.4%-day™";
unilateral lower limb immobilisation: —0.6%-day™")'** and
the 12% observed with longer 20-day bed rest studies.'®
Accordingly, MPS declines with SR are relevant (young
adults: —27%"% older adults: —12%—26%">7") but ap-
pear of lower magnitude compared with the ones induced
by traditional disuse models (~40-60%).21° Changes in
knee extensors isometric muscle force with 2-week SR are
trivial, ranging from +2.8% (non-significant increase)”” to
—7.1%.%° These conflicting results contrast with the well-
established marked loss of muscle strength with disuse,
which is estimated, following a 2-week intervention, to
be 13% for bed rest,'® 14% for unilateral lower limb sus-
pension,’™ and 23% for unilateral lower limb immobili-
sation."™ Cardiorespiratory fitness declines with 2-week
SR are 3.4%-6.4% in young adults®®’*"> and 6.5% in older
adults” and are contained compared with what was ob-
served in a bed rest study of the same duration (young
adults: —7.6%; older adults: —15.3%).""* Differently, de-
clines in insulin sensitivity assessed with the Matsuda
index seem similar between SR (—17.6% to 22%)"*"® and
bed rest (—19.8%)"2 in healthy older adults over 2weeks
of intervention. Similarly, a ~30% reduction in the same
parameter was observed in shorter SR (3-7days) in young
adults,®*’*"* which is comparable with the impact of bed
rest of similar durations (—24% to 31%).1'3114

The comparison between SR and other disuse mod-
els confirmed that SR is a mild physical inactivity model.
However, SR-induced alterations are consistent and
should not be neglected, particularly concerning insulin
sensitivity in which surprisingly SR might have an impact
similar to bed rest.

3.6.2 | Technical and practical aspects

The first relevant difference between SR and more extreme
models of physical inactivity resides in the context of ap-
plication. These latter are indeed often employed in the

ACTA PHYSIOLOGICA i

context of microgravity, as analogues of spaceflight.'**>

Despite differences between the effects of spaceflight and
ground-based models exist, these are useful to unravel the
mechanisms of muscle loss during mechanical unload-
ing.'® While the SR model represents probably a too mild
inactivity stimulus for being applied in this scenario, it is
instead very appealing for researchers interested in study-
ing the effects of sedentarism.

One clear advantage of SR is a relatively inexpensive
model compared for instance to bed rest. Moreover, SR has
a limited impact on volunteers' private/social life with no
particular health risks. Differently, during bed rest, symp-
toms such as musculoskeletal complaints (low back pain
in particular), signs of anxiety and depression, vertigo,
nausea, reduced appetite and gastroesophageal reflux can
be occasionally experienced. It should also be considered
that participants in BR studies are potentially exposed
to an increased risk of renal calculi, urinary tract infec-
tions and deep vein thrombosis, this latter also reported
in unilateral lower limb disuse models.""> One of the
most evident issues of the SR interventions is that compli-
ance cannot be completely monitored, a limitation that is
shared also with the unilateral lower limb suspension and
immobilisation models, differently from full-time super-
vised bed rest campaigns. Procedures to ensure and assess
compliance are hence needed (Section 3.9).

3.7 | Conceptual framework of the
mechanisms involved in SR-induced
muscle atrophy and insulin resistance

Despite some mechanisms remain poorly understood,
we developed a conceptual framework in order to un-
ravel the drivers leading to inactivity-induced muscle
atrophy and insulin resistance, based on the evidence
specifically obtained from SR studies and animals ana-
logues (Figure 3). It is well known that the maintenance
of muscle mass is regulated by the balance between rates
of MPS and muscle protein breakdown.''>!” Differently
from what originally believed,**''® recent evidence sug-
gests that muscle protein breakdown has no or little
influence in the context of “uncomplicated” disuse (i.e.
inactivity in absence of diseases or other catabolic pro-
cesses)."'%"” Thus, it seems very unlikely to play a role
in models with lower atrophic stimulus, as in the con-
text of SR. Declines in MPS are therefore considered the
primary driver of skeletal muscle disuse atrophy'!®!’
and are indeed observed in several SR studies’®’**%
(Section 3.2). However, molecular mechanisms regu-
lating this process are still partially unknown in this
scenario. Some alterations of the Akt/mTOR/p70S6K
signalling cascade were found with SR in young adults,”

85U01 SUOWWOD A1) 8|qeot dde au Aq peuseob sfe Sa e YO ‘8sh JO'Sa|n 1o} Ariqi8ulUO AB]1M UO (SUOIIPUOD-PUB-SWB)WO0" A3 1WA e.q| 18U JUO//SdNy) SUORIPUOD pue SWwis | 8U18eS *[£202/90/62] Uo AriqiTauljuo A1 eIueois aueiyood Aq 986€T eyde/TTTT 0T/I0p/wW0d Ao |im Areiq1jeuluo//sdny wo.j pepeojumod ‘€ ‘€202 ‘9TLT8YLT



SARTO ET AL.

SR BE A\ ~TA PHYSIOLOGICA

|

Mitochondrial alterations

IR AN

Oxidative stress

Intramyocellular Endothelial
ceramides and

lipids -

Insulin signal cascade
IRS1/PI3K/Akt

1 INSR content
1 Akt phosphorylation GLUT-4

T Akt nitrosylation
NG

1 GLUT4
/ traslocation
Insulin
resistance

S

w\m \\\\\\\\»\

NMJ instability and
Denervation ?

Inflammation

=1 Akt/mTOR/p70S6K
T TNFa-IKK-NFkB

Muscle
Atrophy

FIGURE 3 Conceptual framework of the mechanisms leading to muscle atrophy and insulin resistance with reduced ambulatory
activity. Dotted lines express mechanisms that theoretically have an impact, but seem to not occur in the specific context of step reduction.
Denervation could play a role both in the development of muscle atrophy and insulin resistance, but it is still unknown whether initial signs
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but another study reported opposite results in older
adults,”® as also observed in more extreme models of
disuse.''” Molecular pathways such as TNFa-IKK-NFkB
and IL6-JAK-Stat3 may be involved in SR-induced mus-
cle atrophy as inflammation is commonly observed in
SR studies,”® 882 at least in older adults (Section 3.1).
Changes in mitochondrial content® and gene expres-
sion (e.g. COX7A2, ATPSE and MRPS36)"° occur quickly
with reduced ambulatory activity and could contribute
to the atrophic program via increased oxidative stress, in-
ducing calpain and caspase-3 activation and increasing
expression of the ubiquitin-proteasome system.''® MPS
decreases could be also partially attributed to altered ri-
bosome biogenesis and increased ribosome degradation
that have been observed to regulate translational capac-
ity in skeletal muscle during periods of disuse.** This
hypothesis seems supported by recent evidence show-
ing SR-induced deficits in ribosome production.’® While

it is still unknown whether initial signs of neuromus-
cular junction instability and denervation occur with
SR (Section 3.4), they could ultimately have an influ-
ence on reducing MPS,'" affecting the expression of a
group of atrophy-related genes, such as Runx1, Trimé63,
Fbxo32 and Elk4'* and causing expansion of the fibro-
adipogenic precursor cells which induce an inflamma-
tory response via the IL6-JAK-Stat3 pathway.'*
Inflammation, mitochondrial alterations, oxidative
stress and denervation could also trigger impairments
in insulin sensitivity with SR.'** In addition, endothe-
lial dysfunction, reported in different cage reduction
and SR”>%19 gtudies, may also contribute in part to
peripheral insulin resistance due to reduced blood
flow.”? Differently, ceramides accumulation seems to
not have a great influence on early changes in insu-
lin sensitivity caused by reduced physical activity.***
Intramyocellular lipids, another well-established player
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in insulin resistance,'?? seem also unaffected by wheel-
lock*® and SR”® interventions. It is well established that
the two main molecular mechanisms that regulate glu-
cose transport in skeletal muscle are the insulin sig-
nal transduction cascade and GLUT4 translocation.'*
Pooling together evidence from animal and human
studies, it seems overall supported that skeletal muscle
GLUT4 content and/or translocation may be affected by
reduced ambulatory activity,****¢*7¢ although not all
studies are in agreement.®"'*® Findings regarding insu-
lin signalling are more complex to interpret. Two weeks
of SR decreased insulin-simulated skeletal muscle Akt
phosphorylation,” while 7days of SR were sufficient
to increase the protein content of P-GS>**, a marker of
reduced glycogen synthase.®’ Wheel-lock studies seem
also to support this finding showing reductions in the
protein level of insulin receptor p-subunit® and increase
in 4-hydroxynonenal, known to induce Akt nitrosyla-
tion.*® However, other evidence points towards the ab-
sence of a marked involvement of the insulin signalling,
highlighting unchanged protein content and/or phos-
phorylation state of insulin receptor,®’ IRS1,***" PI3K™
and Akt 4081123

3.8 | Do the SR studies support the
findings of “theoretical” epidemiological
studies?

Population-based epidemiological research is essential for
investigating the associations between physical activity/
inactivity and health-related outcomes. A rapidly emerg-
ing area in this field, called time-use research,'* has been
recently applied in the context of physical activity/inactiv-
ity. These studies employ novel statistical approaches such
as compositional data analysis and isotemporal modelling
to study the impact of reallocation of a movement behav-
iour (e.g. sedentary behaviours, sitting, stepping, low and
moderate intensity physical activity) to another one.'*>'*
SR model essentially follows the same principle (i.e. real-
locating stepping with sedentary behaviours) but tests this
relationship experimentally. Thus, time-use research pro-
vides estimates that could theoretically align with the find-
ings from SR experimental studies (and vice versa).

A recent interesting study used a compositional data
analysis approach to model the association between phys-
ical behaviour and markers of metabolic health (includ-
ing fasting glucose, two-hour glucose, Matsuda index
and HOMA index) in individuals at high risk of devel-
oping diabetes, as well as evaluating the impact of time
reallocation.'”’ Interestingly, a SR study conducted in a
similar population of prediabetic older adults (HBAlc:
5.90+0.30 vs. 5.7+0.5%) with comparable age (69 +4 vs.

ACTA PHYSIOLOGICA Bk

66+7.4years old) investigated the same outcomes mea-
sures.”” Considering that in this study a reduction on
average of ~6400 steps/day was induced and assuming
a stepping cadence in this population of 70 steps/min,'*®
we can estimate that the SR intervention reduced daily
stepping by approximately 1 h and 30 min in favour of sed-
entary behaviours. In the same study,”® the alterations re-
ported in circulating metabolic biomarkers were as follow:
glucose fasting: 4.5% difference, two-hour glucose: 7.5%,
Matsuda index: 35% and HOMA index: 23%. Interestingly,
based on the study leveraging the compositional data
analysis approach,'?’ reallocating stepping with sitting
for 1h and 30min would result in comparable changes
of 3%, 19%, 44% and 20% for glucose fasting, 2-h glucose,
Matsuda index and HOMA index, respectively.

Direct comparison of other SR and epidemiological stud-
ies is complex because most of the time-use investigations
in the literature report only the reallocation from sedentary
behaviours to stepping but not the opposite.'*** This is
a relevant issue as the reallocation from one behaviour to
another does not necessarily result in the same association
as the inverse reallocation.'?”'*! However, some further
insights can be obtained from time-use studies using ac-
celerometers to measure physical activity levels, assuming
that most of the low-intensity physical activity levels derive
from stepping. In these epidemiological studies, replacing
low-intensity physical activity with sedentary time leads to
increases in fat mass,'*® in agreement with SR experimental
observations.”! Conversely, this reallocation seems to not
impact lean mass'* and cardiorespiratory fitness,"** differ-
ently from what reported in SR literature. However, it has
to be considered that during SR interventions, participants
are generally asked to refrain also from structured physical
activities. Thus, SR studies are likely to induce a reduction
also in moderate-to-vigorous physical activity levels, which
reallocation to sedentary behaviours is instead associated
with alterations of the aforementioned parameters in epi-
demiological studies.'**'*?

To the best of the authors’ knowledge, this is the first
article to link time-use epidemiological research with ex-
perimental SR studies. Overall, similarities in the findings
of these two closely related topics are observed. Our article
may pave the way for future studies leveraging this mul-
tidisciplinary epidemiological and physiological approach
to further investigate associations between physical inac-
tivity and health markers.

3.9 | Methodological considerations and
future directions for SR studies

In summary, the SR model has been successfully em-
ployed to study the effects of reduced physical activity
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on various physiological systems. Habitual physical ac-
tivity levels of the participants should be monitored for
at least 3-7days before the intervention via pedometers
and accelerometers; in addition, a detailed description of
their habitual exercise routine should be recorded. The
maximal daily step limit (ranging from ~750 to ~4500
steps/day) in these interventions should be chosen care-
fully based on the population and research outcomes of
interest. Interestingly, daily steps performed by hospi-
talised patients are on average ~740,"** thus in line with
the lower end of daily step count (~750 steps/day) used
in steps SR studies.”®*® An alternative approach may be
to ask participants to reduce their daily step counts by a
predetermined percentage of their baseline habitual steps
activity level, ranging from 65% to 90%.”%%° Selection
of the participants and monitoring their compliance are
other crucial issues that should not be underestimated.
Volunteers should be recruited only after a careful evalu-
ation regarding their ability to incorporate a SR interven-
tion considering their daily routines and responsibilities.
Strategies for reducing daily steps should be planned and
discussed with the investigators before the beginning of
the SR study. In order to facilitate adherence to the se-
lected daily steps limit, investigators should consider
providing participants with public transportation tickets,
transport assistance or other appropriate transportation
options, such as electric scooters. In addition, in order to
promote compliance, it is advisable to foster a sense of ca-
maraderie and collaboration among participants and in-
vestigators through the organisation of social events and
gatherings, as previously proposed for other physical in-
activity models.'"® Daily calls and messages to maintain
contact with the participants are also encouraged. One
potential strategy to evaluate retrospectively participants’
compliance could be to instruct the participants to wear
continuously the accelerometers and then, at the end of
the intervention, apply algorithms'* to differentiate non-
wear time and inactivity time from the data obtained from
the accelerometers. Methodological considerations for the
SR model are summarised in Figure 2.

Future studies should focus on the effects of SR on
other aspects that to date are largely unexplored, such
as the neuromuscular (Section 3.4) and brain/cognitive
(Section 3.5) functions. Molecular mechanisms regulating
declines in muscle mass and insulin sensitivity with SR
are only partially understood (Section 3.7). Most of the
SR studies lasted 1-2weeks; studies of longer duration
would be more relevant for deeper insights into the effects
of sedentarism, given its chronic nature.?® In addition,
the time course of alterations is still poorly investigated.
Some populations are significantly underrepresented as
yet using this model. Females represent only ~24% of the
participants included in SR studies (Table 1), despite a

strong rationale for potential sex differences in the context
of disuses-related muscle metabolism impairment and at-
rophy exists.''*'3¢ Moreover, only one SR study’’ was con-
ducted in middle-aged adults, a population of particular
interest as commonly subjected to periods of sedentarism
due to work and family responsibilities peculiar to this pe-
riod of life. The effects of different types of countermea-
sures (e.g. comparison of different types of training, NEAT
and diet interventions) should be further investigated.
Lastly, all the exercise countermeasures studies were per-
formed exclusively during periods of SR, but none have
investigated the effects of training programs following SR
(i.e. during recovery from such inactivity periods). This is
an important gap in this research field.

4 | CONCLUSIONS

Human body quickly develops adaptive responses to
altered environmental conditions, such as physical in-
activity. The SR model represents a unique opportunity
to mimic the effects of a sedentary lifestyle and to study
the pathophysiological mechanisms by which reduced
physical activity impacts different physiological sys-
tems. Analogous models in rodents, which can provide
the foundation for human studies, have been developed
(Figure 1). Despite SR represents a less severe form of
disuse compared with traditional severe unloading
models, brief periods of reduced ambulatory activity
have been shown to induce marked alterations in skele-
tal muscle health and metabolic function. These include
reductions in lean mass, muscle function and protein
synthesis, impairments in cardiorespiratory fitness, en-
dothelial function and insulin sensitivity, accompanied
by increased fat mass and inflammation (Table 1 and
Figure 1). Exercise, NEAT-increasing and nutritional
interventions ought to be developed for counteracting
the deleterious alterations induced by periods of re-
duced physical activity.
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