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Abstract

Named Entity Recognition (NER) and Named Entity Linking (NEL)
are key Information Extraction tasks, tackling the identification and nor-
malization of entity mentions from raw text. In the domain of food and
nutrition, there have been several NER methods already developed, how-
ever, when applied to scientific text, they fail to generalize and produce
large performance degradation. This introduces the need for new food
NER and NEL models, developed specifically for extracting food entities
from scientific text. In this paper, we present a scientific food NER and
NEL model, SciFoodNER, obtained by fine-tuning transformer models on
a corpus of scientific abstracts annotated with food entities. The models
can identify mentions of food entites from raw text, and link the food
entities to the Hansard Taxonomy, the FoodOn ontology and the Sys-
tematised Nomenclature of Medicine Clinical Terms (SNOMEDCT). Out
of the evaluated models, the BioBERT model achieves the best results,
reaching a median macro-averaged F1 score of 0.90 for the NER task, 0.66
for the NEL task linking to the Hansard Taxonomy, 0.43 for the NEL task
linking to the FoodOn ontology and 0.58 for the NEL task linking to the
SNOMEDCT ontology.

food, named entity recognition, named entity linking, information extraction

1 Introduction

The interactions of food with other health-related entities such as chemicals,
diseases, treatments, and drugs are a commonly studied topic in food science.
However, the sheer volume and the unstructured form of the produced scien-
tific publications introduces challenges with following the latest discoveries. In
order to alleviate the process of following newly published knowledge, Informa-
tion Extraction (IE) methods are needed to extract meaningful findings from
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unstructured scientific text. Named Entity Recognition (NER) is one of the key
subtasks of IE, which involves the identification of entities of a specific type in
raw textual data. The related task of Named Entity Linking (NEL) addresses
the linking to the extracted entities to concepts in existing semantic resources.

Existing NERmethods can be broadly distinguished into four groups: dictionary-
based, rule-based, corpus-based methods and methods based on active learn-
ing [1].

Dictionary-based methods [2] look for entities that have been defined in
domain dictionaries, while rule-based systems [3–5] use dictionaries in combi-
nation with rules that describe the characteristics of the domain entities. The
performance of these methods is largely dependant on the quality of the used
dictionaries, since the methods can only extract entities which are present in
the resources they rely on.

On the other hand, corpus-based methods [6, 7], train supervised machine
learning models on data annotated for the presence of the entities in question.
Methods based on active learning can be used in the event when large annotated
corpora are not available. In this case, a domain expert is needed to interactively
provide new annotations to the models to iteratively improve the performance.

In the domain of food and nutrition, until very recently, there existed only
one corpus which could be used to train such models, namely, the FoodBase
corpus [8], which contains recipe texts annotated with mentions of food entities.
Although two corpus-based methods have already been trained on this corpus,
as we show further on in this paper, these methods fail to generalize to scientific
text.

For this reason, in this paper, we target the development of a food NER
and NEL model for scientific text, accomplished by fine-tuning transformer-
based representation models on a recently created corpus of scientific texts
annotated with food entities. The BERT (Bidirectional Encoder Represen-
tations from Transformers) [9], RoBERTa (Robustly Optimized BERT Ap-
proach) [10], BioBERT (Bidirectional Encoder Representations from Transform-
ers for Biomedical Text Mining) [9], and SciBERT [11] models are fine-tuned for
the NER task, i.e. the recognition of food entities from raw text, as well as the
NEL task, where the extracted entities are linked to the Hansard taxonomy [12],
the FoodOn ontology and the Systematised Nomenclature of Medicine Clinical
Terms (SNOMEDCT). Each task is treated separately, i.e. different models are
trained for NER and each of the NEL tasks. The evaluation results show that
BioBERT achieves the best results, with a median macro-averaged F1 score of
0.90 for the NER task, 0.66 for the NEL task linking the entities to the Hansard
Taxonomy, 0.43 for the linking to the FoodOn ontology and 0.58 for the linking
to the SNOMEDCT ontology.

The remainder of the paper is organized as follows. In Section 2, we in-
troduce the knowledge bases to which the proposed NEL models can link the
entities, as well as the existing NER and NEL models in the domain of food and
nutrition. In Section 3, we evaluate the existing models on a scientific food NER
corpus, which serve as baselines for the proposed NER models. In Section 4, we
present our methodology, while the results are presented in Section 5. Section
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6 concludes the paper.
Reproducibility: The code is available on Github 1. The trained models

are available at 2.

2 Related Work

2.1 Knowledge Bases in the Food Domain

In this subsection, we introduce the Knowledge Bases in the food domain, to
which the proposed method can link the extracted food entities.

FoodOn [13] is a food ontology developed with the aim of solving the issues
of incompatibility and ambiguity of food references by acting as a hub that
links specialized ontologies. It provides schemes for food and food product
categorization and covers animal and plant food sources, in addition to terms
related to packaging, cooking and preservation.

The Hansard taxonomy [12] is a hierarchical organization of more than 8,000
different semantic categories, where Food and Drink is one of the top-level cat-
egories.

SNOMEDCT [14] is a healthcare terminology used for the representation of
electronic healthcare records. Apart from clinical concepts, such as body struc-
tures, organisms, substances, pharmaceutical products, specimens, symptoms,
drugs, and clinical procedures, it also contains food entities.

2.2 Named Entity Recognition in the Food Domain

In the domain of food and nutrition, several NER methods have already been
proposed.

2.2.1 Rule-Based Named Entity Recognition

Due to the lack of annotated data required to train corpus-based methods, the
first food NER methods were rule-based [4,5] or were using semantic information
from various resources [15, 16]. DrNER [4] is a rule-based NER, which is ca-
pable of extracting food entities from evidence-based dietary recommendations,
among other entities of interest. However, drNER extracts several food enti-
ties as one. This was improved by developing the rule-based NER FoodIE [5],
where the rules incorporate computational linguistics information in combina-
tion with food semantic annotations from the Hansard taxonomy [12]. FoodIE
achieved promising results on different independent evaluation datasets and has
been used to create the FoodBase corpus [8], which is the first NER corpus
in the food domain. The main weakness of the FoodIE method is its depen-
dency on external resources, which have become inaccessible in the time after
its publication, rendering the method currently unusable.

1https://github.com/gjorgjinac/SciFoodNER
2https://portal.ijs.si/nextcloud/s/C3jCDq84TBoE8gY
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2.2.2 Corpus-Based Named Entity Recognition

The FoodBase corpus is annotated for the existence of food entities and their
corresponding Hansard [12] semantic tags. The gold standard of the FoodBase
corpus consists of 1,000 recipes from 5 recipe categories.

The annotation of the FoodBase corpus enabled the development of two
corpus-based NERmethods for the food domain. BuTTER [1] is the first corpus-
based food NER method, which leverages a neural network architecture based
on Bidirectional Long Short-Term Memory and Conditional Random Fields.
The word embeddings GloVe [17], Word2Vec [18] and FastText [19] are used
to represent the recipe data from the FoodBase corpus, on which the neural
network architecture is trained.

The second corpus-based NER method for the food domain, FoodNER [20],
performs finetuning of BERT [21] and BioBERT [9] for the NER task using the
annotations from the FoodBase corpus. Apart from identifying the mentions of
food entities from the text, the FoodNER model is also capable of performing
NEL, i.e. linking the entity mentions to concepts in the Hansard taxonomy, and
the FoodOn and SNOMEDCT ontologies.

When evaluated using cross-fold validation on the FoodBase corpus, BuT-
TER and FoodNER achieve comparable results, with a macro averaged F1 score
of 0.94. However, since these models are trained on recipe texts, their applica-
tion on scientific text introduces challenges due to the domain-specific vocabu-
lary and the difference in writing style.

3 The Need For A Scientific Food Named Entity
Recognition Model

For a long time, the generalization of the BuTTER and FoodNER models could
not be evaluated due to a lack of annotated scientific corpus with food entities.
In order to demonstrate the need for a food NERmodel developed specifically for
scientific text, we use a recently annotated scientific corpus with food entities in
order to evaluate the generalization of BuTTER, FoodNER and two dictionary-
based NER models using dictionaries from the FooDB (http://foodb.ca/)
database.

3.1 Dictionary-based Baselines

We propose two dictionary-based models, which we refer to the FooDB non-
scientific and FooDB scientific models. The FooDB non-scientific model per-
forms simple string matching using the common names of 992 foods from the
FooDB database. Similarly, the FooDB scientific performs string matching us-
ing the 675 scientific names of foods available in the FooDB database, due to the
fact that biomedical texts commonly refer to food entities using their scientific
names which are not extracted by the other models.
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Figure 1: Voting scheme for the food NER task.

3.2 Corpus-based Baselines

We use the FoodViz platform [22] to apply the FoodNER models based on
the original BERT model, to both extract the food entities and link them to
Hansard, FoodOn and SNOMEDCT. We use the lexical lemmatized BuTTER
model without character embeddings, which achieved the best results in terms
of the averaged macro F1 score in [1].

3.3 Ensemble-based Baseline

In order to benefit from both dictionary-based and corpus-based models, we
propose an ensemble-based baseline which combines the annotations of the pre-
viously proposed baselines. We refer to this baseline as the Food Voting Scheme.
A voting strategy is used to combine the entities extracted using BuTTER,
FoodNER and FooDB non-scientific. A token extracted by any of these models
is considered to be a valid food entity if at least two of the models nominate the
exact same token without any missing or additional words, or if the FoodNER
method is able to link it to an external resource. The tokens extracted by the
FooDB scientific method are always considered to be valid entities, since no
other models are capable of identifying foods using their scientific names. This
voting scheme is visually depicted in Figure 1, where p1, p2, p3 and p4 are binary
indicators of whether each of the food NER annotators (FoodNER, BuTTER,
FooDB non-scientific and FooDB scientific) extracted the particular token as
a food entity, while l1, l2, l3 and l4 are binary indicators of whether FoodNER
managed to link the token to a concept in FoodOn, SNOMEDCT ontologies, or
Hansard (using the Hansard-Closest or Hansard-Parent strategies).

Finally, we perform post-processing, which involves removing a few food-
related words (food, foods, consumption, and drug) that are too general to be
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Figure 2: Macro-averaged precision, recall and F1-score for each of the food
NER models, evaluated on scientific text

useful, and entities that do not contain any nouns, since these are likely to be
false positives.

3.4 Baseline Evaluation on Scientific Text

Each of the baseline models is applied on the 500 annotated scientific abstracts.
To be consistent with the evaluation of the BuTTER and FoodNER models,
the annotations are then represented into the Inside-Outside-Beginning (IOB)
format, and the macro-averaged precision, recall and F1-score are reported in
Figure 2. As can be seen from the figure, the BuTTER and FoodNER mod-
els experience a large performance degradation when evaluated on scientific
text. In particular, the performance of the BuTTER model, in terms of the
macro-averaged F1 score drops from 0.94 to 0.42, while the performance of the
FoodNER model drops from 0.94 to 0.51. In terms of precision, the FooDB
models give the best results, however, they also have the lowest recall scores,
since they only perform simple string matching and can only identify foods
if they are present in their dictionaries. In terms of recall, the Food Voting
Scheme achieves the best results, followed by the FoodNER model. The best
performance in terms of the F1-score is achieved by the Food Voting Scheme,
which achieves a score of 0.58. This shows that even an ensemble model which
combines the previously developed NER models achieves a relatively unsatis-
factory performance when applied on scientific text, introducing the need for a
novel corpus-based food NER method, intended specifically for the extraction
of entities from scientific text.
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4 Methodology

4.1 Data

The Food Voting Scheme introduced in 3.3 is applied on abstracts of scientific
papers extracted from PubMed. Out of all of the automatically annotated ab-
stracts, 500 were selected, such that each one contains at least eight entities
which were automatically extracted. These abstracts were then manually cor-
rected by several human annotators and linked to their appropriate semantic
classes from the Hansard taxonomy. The annotated entities have then been
automatically linked to the FoodOn and SNOMEDCT ontologies, using The
National Center for Biomedical Ontology Annotator [15]. The manually anno-
tated food entity phrases were inputted to the annotator and the tags obtained
by the annotator were joined together to form a tag for the entire food entity.
Since the tags for the FoodOn and SNOMEDCT ontologies were obtained in
an automatic manner, human inspection would be required to check the anno-
tations. The scientific corpus has been created as part of an European Food
Safety Authority-funded project called CAFETERIA.

4.2 Text Representation Models

In order to generate vectorized representation of the textual data, we use four
pre-trained transformed-based models: BERT [9], RoBERTa [10], BioBERT [9],
and SciBERT [11] which achieve state-of-the-art results in Natural Language
Processing. These are bidirectional, contextual representation models, which are
pre-trained on large amounts of textual data, in an unsupervised manner, on the
Mask Language Modeling or Next Sentence Prediction tasks. This kind of pre-
training allows the models to be fine-tuned for other downstream tasks, such as
NER, Natural Language Inference or Question Answering, with smaller amounts
of data, and without substantial modifications in the original architecture. In
the simplest case, only the output layer needs to be replaced, depending on the
task that the model is intended to perform.

In our experiments, we use the original BERT model, which is pre-trained
on the BooksCorpus [23] and English Wikipedia.

The RoBERTa model introduces some improvements to the BERT model,
such as longer pre-training, training on a larger amount of data, and the use
of dynamic masking. Apart from the data used for the pre-training of BERT
model, RoBERTa is trained on data from 3 additional sources: the Common-
Crawl News dataset [24], the OpenWebText corpus [25] and the Common Crawl
Stories dataset [26].

BioBERT is a version of the BERT model intended to be used specifically
for the domain of biomedicine. Since biomedical text contains domain-specific
terms that do not appear in more general texts, texts from PubMed abstracts
and full-text articles from PubMed Central are used in the pre-training of the
BioBERT model. As a result, BioBERT has been shown to outperform BERT
in biomedical NER, Relation Extraction and Question-Answering [9].
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SciBERT makes use of the same architecture as BERT while being trained
on scientific text corpus from Semantic Scholar [27]. Corpus consists of 1.14M
full papers and not just abstracts. The SciBERT vocabulary is more specialized
for scientific text and differs from BERT vocabulary with 42% token overlap.
SciBERT thus outperforms BERT on multi-domain tasks, and in some cases,
outperforms BioBERT in biomedical tasks [11].

4.3 Fine-tuning the Models for Named Entity Recognition

The NER task is addressed as a token classification problem, where the classes
are the tags from the Inside-Outside-Beginning (IOB) tagging scheme. This
means that for each word in the text, the model is supposed to determine
whether the word is at the beginning (class B), inside (class I) or outside (class
O) of a food entity. Therefore, the fine-tuning of the transformer models is
performed by adding a linear layer on top of the hidden-states outputs of the
original architecture which performs token classification. During the fine-tuning
process, the model parameters are initialized with the values from the pre-
training step, and are fine-tuned for the NER task.

4.4 Training Tasks

• NER - In the standard NER task, the models are trained to only identify
the mentions of food entities, regardless of their semantic tag, i.e. the
multi-class classification is using three classes, (”I”, ”O” and ”B”).

• NEL - Hansard - In this task, the Hansard semantic tags of the food en-
tities is supposed to be determined. There are 70 Hansard semantic cate-
gories to which the entities can be mapped, and one additional class ”X”,
which represents a term related to the food entity, which is not a food en-
tity in itself. Some of the words that are annotated with this class include:
intake, consumption, use, and dietary. Combining the semantic categories
with the prefixes ”B-” and ”I-”, indicating if the token is at the beginning
or inside the phrase matching the category, and including the additional
”O” and ”X” classes, the multi-class classification is done with a total of
140 classes. Note that since the some of the semantic tags are described
only with one token (there are no ”I-” prefixes, only ”B-”) the number of
unique classes is not necessarily equal to 2∗number of semantic tags+2.

• NEL - FoodOn - In this task, the food entities can be linked to 618 concepts
from the FoodOn ontology, and the multi-class classification is done with
a total of 1,078 classes.

• NEL - SNOMEDCT - In this task, the entities can be linked to 349 con-
cepts from the SNOMEDCT ontology, and there are a total of 607 classes.
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5 Results

5.1 Experimental Setup

The models are trained using the AdamW [28] optimizer with a learning rate
of 4 ∗ 10−5. The models are allowed to train for a maximum of 100 epochs,
however, to prevent overfitting, an early stopping strategy is used, meaning
that the training is interrupted once the decrease in the validation loss does
not exceed the threshold of 5 ∗ 10−3 for five consecutive epochs. Most of the
models reach the early stopping criteria in five to ten epochs. The models are
evaluated using 10-fold cross validation, where the splits are done on a sentence
level, i.e. 10% of the total sentences are in each test fold. The remaining 90%
of the sentences are further split into training (81%) and validation sets (9%).

5.2 Experimental Evaluation

For each model, we report the macro-averaged precision, recall and F1-score,
averaged across all of the classes.

Figure 3 features the results for the NER task. As can be seen, the BioBERT
model achieves the best performance, with a median macro-F1 score of 0.90
(median across 10 folds). The rest of the models have a similar performance,
with median macro-F1 scores of 0.89. The performance is generally stable across
the 10 folds. Comparing the proposed models to the baselines introduced in
section 3, we can see that all proposed models outperform the best-performing
baseline (the Food Voting Scheme) by 0.31 in terms of the macro F1-score. It
should be noted, however, that the macro F1-score of the baseline models is
evaluated based on a single run on the entire scientific corpus, while the F1-
score of the proposed models is calculated by taking the median of the macro
F1-scores obtained on each test fold of the cross-fold validation.

The results for the NEL task, linking the food entities to the Hansard tax-
onomy, are presented in Figure 4. In this case, the best models, in terms of the
median macro-F1 score, are the RoBERTa and BioBERT models, with a score
of 0.66. Next is the BERT model with a score of 0.65, and finally, the SciBERT
with a score of 0.64.

Figure 5 depicts the evaluation results for the FoodOn NEL task. BioBERT
again achieves the best median macro-F1 score of 0.43. The BERT and RoBERTa
models have scores of 0.42, while the SciBERT model achieves a score of 0.41.
In this case, however, the models’ performance is somewhat less stable across
the ten folds, with one run obtaining macro-F1 scores in the range 0.55-0.60.

Figure 6 contains the results for the NEL task of linking to the SNOMEDCT
ontology. The BioBERT model has the highest median macro-F1 score of 0.58,
followed by RoBERTa with a score of 0.56, and BERT and SciBERT, both
with a score of 0.54. It can also be noted that the results of the FoodOn
and SNOMEDCT NEL models are somewhat worse than the Hansard NEL
models, which is due to the larger number of classes used in the FoodOn and
SNOMEDCT linking and the automatically performed annotation.
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Figure 3: Macro-averaged precision, recall and F1-score for each of the food
NER models
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Figure 4: Macro-averaged precision, recall and F1-score for each of the NEL
models linking to the Hansard taxonomy
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Figure 5: Macro-averaged precision, recall and F1-score for each of the NEL
models linking to the FoodOn ontology
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Figure 6: Macro-averaged precision, recall and F1-score for each of the NEL
models linking to the SNOMEDCT ontology

11



Going across the results of the models for all four training tasks, we can
observe that all of the models achieve similar results, however, there is a consis-
tent ordering of the models in terms of the median macro F1-score. BioBERT
achieves the best results, then RoBERTa, and finally, BERT and SciBERT.
The performance of the models for each task is proportional to the number of
classes, meaning that the models for the NER task using three classes reach a
performance of 0.90, the best model for the Hansard NEL task has a score of
0.66 with 140 classes, the best model for the SNOMEDCT NEL task has a score
of 0.58 with 607 classes, while the best model for the FoodOn NEL task has a
score of 0.43 with 1,078 classes.

5.3 Per-Class Analysis

In order to identify the semantic tags which the models have difficulty identi-
fying, we analyze the results obtained for each semantic tag. Due to the large
amount of tags in the FoodOn and SNOMEDCT ontologies and the difficulties
of visualizing all of them, we only present the results for the NEL to the Hansard
Taxonomy. For each model, we take into account the medians of the F1-scores
of the semantic tags obtained in each fold, regardless of the prefix ”B-” or ”I-”,
indicating that the token is at the beginning or inside the semantic tag. This
means that for each semantic tag consisting of one token, the median is cal-
culated over 10 values (scores for the class with ”B-” prefix obtained in each
of the 10 runs), while for each semantic tag consisting of two or more tokens,
the median is calculated over 20 values (scores for the class with ”B-” and ”I-”
prefixes obtained in each of the 10 runs).

Figure 7 features the results for each semantic tag from the Hansard taxon-
omy. We can see that there are several semantic tags for which all of the models
have a median F1-score of zero. This is the case for the tags Manufacture of
alcoholic drink, Part/joint of animal, Mutton, Stalk vegetables, Puddings, Meat
dishes, Fish dishes, Prepared fruit and dishes, Pancake/tortilla/oatcake, and Egg
dishes.

On the other hand, some semantic tags have median F1-score of one. Such
is the case with the tags Ale/beer, Ices, Biscuit, Soup/pottage, Pear, Citrus
fruit, and Pork. Looking at the terms that are linked to these categories, we
can observe that the tags which the models have most difficulties identifying are
groups of prepared dishes, since these can contain a variety of food items that are
not necessarily similar lexically. For instance, the semantic tag Meat dishes is
used to link the following food items: bolognese sauce, bake-only chicken nuggets,
grilled beef, hamburgers, paté or high - fat meat. The food items tortillas and
mung bean pancake are both linked to the tag Pancake/tortilla/oatcake, while
the food items dried plums, raisins, applesauce, apple chips, dried fruit, dried
vine fruits, fruit purée, dried plum powder are all linked to the tag Prepared
fruit and dishes.

On the other hand, the food items linked to semantic tags that are easier
to identify almost always contain at least one common word. For instance, all
of the food items linked to the tag Ale/beer contain the word beer, the items
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linked to the tag Ices contain the word ice, while the items linked to the tag
Biscuit contain either the word biscuit or cookie. Another characteristic of the
tags that are easy to identify is that they describe a more specific type of food.
Take for instance, the tags Pear and Citrus fruit which refer to a specific fruit
type, as opposed to the class Prepared fruit and dishes which can refer to any
type of fruit product.

A more detailed breakdown of classification errors can be seen in figures 8, 9,
and 10 where we show 10 tags that achieved the worst F1-score and how they
were classified. Note that some predicted classes where no misclassification
occurred are removed form the plot. As can be seen from Figure 8, for the
NEL to the Hansard Taxonomy, most of the mistakes occur due to the entities
being linked to a semantic tag that is a parent of the true tag in the taxonomy.
Such is the case with the entities belonging to the tags Part/joint of animal and
Mutton being linked to the parent tags Animals for food, and the tags Puddings,
Pancake/tortilla/oatcake, Meat dishes, Grain dishes, Pastry, Prepared vegetables
and dishes being linked to their parent tag Dishes and prepared food. A similar
mistake is the incorrect linking to a sibling tag in the taxonomy, such as in the
case when Drink is predicted instead of Aerated/carbonated drink. Finally, some
tags are mistaken due to some food entities being an ingredient of other food
entities, like in the case when Corn/cereals/grain is predicted instead of Grain
dishes.

In Figure 9, we can observe the classification errors for the linking to the
FoodOn ontology. An important note to be made here is that in the scientific
corpus, in the case when a suitable match for a food entity is not found in the
FoodOn ontology, several of the original semantic tags are merged into a new
tag, which we refer to as a complex tag. As we can see in Figure 9, most of the
incorrectly classified tags are in fact complex tags. Consequently, most of the
complex tags are misclassified into their component tags. This means that the
models identify partial matches of the food entities and link them to the original
component tags, instead of detecting the entire food entity and linking it to the
complex tag. Such is the case with the tags water and spinach are predicted
separately instead of the complex tag water spinach, the tags fat, sugar and
salt being predicted instead of the tag products rich in salt, fat and sugar. The
same holds for the tags sugar cane, cartenoid-rich fruits and vegetables, smoked,
pickled or salted food, salt water, foods preserved in salt, products rich in salt
and fat, and products rich in salt, fat and sugar.

For the linking to the SNOMEDCT ontology, the mistakes are similar to
those of the FoodOn ontology, i.e. the complex tags are mapped to their com-
ponent tags. Some examples include the entity chocolate ice cream classified as
chocolate and ice cream, chocolate drink being classified as chocolate and drink,
and strawberry jam being classified as strawberries and jam. This is due to the
fact that the ontology does not contain such fine-grained distinctions of food
entities. In such cases, the model does capture the ”primary” class, i.e. in the
case of strawberry jam the model can correctly identify that the entity related
to some type of jam. However, since the entire concept match is not present
in the ontology, the automatic annotator would create a new artificial class by
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Figure 7: Median F1-score per semantic tag (median over all folds), for each of
the NEL models linking to the Hansard Taxonomy
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Figure 8: Confusion matrix for different 10 Hansard semantic tags with the
lowest F1 score averaged across all the models.15
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merging the concepts strawberry and jam into strawberry jam, and when the
model predicts them separately, this would be considered incorrect in the eval-
uation. Other mistakes include the mapping to concepts which are similar but
not exactly correct, such as the mapping of the entity coffee with milk to coffee,
coffee sample without cream and tea with milk.

6 Conclusion

In this paper, we present a corpus-based Named Entity Recognition (NER)
model for extracting food entities from scientific text, as well as Named En-
tity Linking (NEL) models for linking the food entities to concepts in the
Hansard Taxonomy, the FoodOn ontology and the Systematised Nomenclature
of Medicine Clinical Terms (SNOMEDCT). To accomplish this, we fine-tune
the transformer-based models BERT, BioBERT, SciBERT and RoBERTa on
a corpus of scientific abstracts annotated with food entities. The models have
a similar performance for each of the tasks, with the BioBERT model consis-
tently achieving the best results, which are usually only 0.01 higher than the
rest of the models. For the NER task, the best BioBERT model reaches a me-
dian macro-averaged F1 score of 0.89. For the NEL task, linking the entities to
the Hansard Taxonomy, and the FoodOn and SNOMEDCT ontologies, the best
model achieves scores of 0.66, 0.43, and 0.58, respectively.
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