This is the preprint of the following article:

Žibert T, Likozar B, Huš M. Pristine and ruthenium-doped TiO [sub] 2 nanoclusters for nitrogen reduction reaction : Ab initio study of structure and adsorption. *Fuel*. 2023;(334):1-11. doi:10.1016/j.fuel.2022.126451

which has been published in final form at: http://dx.doi.org/10.1016/j.fuel.2022.126451

Supplementary Information Pristine and ruthenium-doped TiO₂ nanoclusters for nitrogen fixation: First-principles modeling of structure and adsorption

Taja Žibert^{a,b}, Blaž Likozar^{a,*}, Matej Huš^{a,b,c,**}

^aNational Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1001 Ljubljana, Slovenia ^bUniversity of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia ^cAssociation for Technical Culture (ZOTKS), Zaloška 65, SI-1001 Ljubljana, Slovenia

List of Figures

S1	Optimized structures of a) $(TiO_2)_1$, b) $(TiO_2)_2$, c) $(TiO_2)_4$, d) $(TiO_2)_5$, e) $(TiO_2)_7$,	
	f) $(TiO_2)_{8}$, g) $(TiO_2)_{9}$, h) $(TiO_2)_{10}$, i) $(TiO_2)_{11}$	4
S2	HOMO and LUMO orbitals of TiO_2 clusters at an isovalue of \pm 0.02 $e_0/\text{\AA}^3.$	
	a) HOMO of $(TiO_2)_3$ b) LUMO of $(TiO_2)_3$ c) HOMO of $(TiO_2)_{12}$ d) LUMO of	
	(TiO ₂) ₁₂	5
S3	Optimized structures of a) Ru-(TiO ₂) ₁ , b) Ru-(TiO ₂) ₂ , c) Ru-(TiO ₂) ₄ , d) Ru-	
	(TiO ₂) ₅ , e) Ru-(TiO ₂) ₇ , f) Ru-(TiO ₂) ₈ , g) Ru-(TiO ₂) ₉ , h) Ru-(TiO ₂) ₁₀ , i) Ru-	
	(TiO ₂) ₁₁	7
S4	HOMO and LUMO orbitals of Ru-TiO_2 clusters at an isovalue of \pm 0.02 $e_0/\text{\AA}^3.$	
	a) HOMO of Ru-(TiO ₂) ₃ b) LUMO of Ru-(TiO ₂) ₃ c) HOMO of Ru-(TiO ₂) ₁₂	
	d) LUMO of Ru-(TiO ₂) ₁₂	8

*Corresponding author

**Corresponding author

Email addresses: blaz.likozar@ki.si (Blaž Likozar), matej.hus@ki.si (Matej Huš)

S5	HOMO and LUMO positions relative to the Fermi level (0.0 eV) of TiO_2	
	clusters calculated with PBE and HSE06 functionals	9
S6	Total density of states and projected density of states of the $(TiO_2)_3$ cluster	
	calculated with PBE and HSE06 functionals	10
S7	Total density of states and projected density of states of the $(TiO_2)_{12}$ cluster	
	calculated with the PBE functional	11
S8	HOMO and LUMO positions relative to the Fermi level (0.0 eV) of Ru-TiO $_{\rm 2}$	
	clusters calculated with PBE and HSE06 functionals	12
S9	Total density of states and projected density of states of the $Ru-(TiO_2)_3$ clus-	
	ter calculated with PBE and HSE06 functionals	13
S10	Total density of states and projected density of states of the $Ru-(TiO_2)_{12}$	
	cluster calculated with the PBE functional	14
S11	Optimized adsorption modes of a), e) N_2 , b), f) NH_3 , c), g) H and d), h) 2 H	
	over $(TiO_2)_3$ and $(TiO_2)_{12}$ clusters	16
S12	Total density of states and projected density of states of \ensuremath{NH}_3 adsorbed on	
	$(TiO_2)_3$ cluster calculated with the PBE functional	17
S13	Total density of states and projected density of states of \ensuremath{NH}_3 adsorbed on	
	$(TiO_2)_3$ cluster calculated with the PBE functional	18
S14	Total density of states and projected density of states of \ensuremath{NH}_3 adsorbed on	
	$(TiO_2)_3$ cluster calculated with the PBE functional	19
S15	Optimized adsorption modes of a), e) N_2 , b), f) NH_3 , c), g) H and d), h) 2 H	
	over Ru-(TiO ₂) ₃ and Ru-(TiO ₂) ₁₂ clusters	21
S16	Total density of states and projected density of states of \ensuremath{NH}_3 adsorbed on	
	Ru-(TiO ₂) ₃ cluster calculated with the PBE functional. \ldots \ldots \ldots	22

S17	Total density of states and projected density of states of NH_3 adsorbed on	
	Ru-(TiO ₂) ₆ cluster calculated with the PBE functional	23
S18	Total density of states and projected density of states of \ensuremath{NH}_3 adsorbed on	
	Ru-(TiO ₂) ₁₂ cluster calculated with the PBE functional	24

1. Optimized structures

1.1. $(TiO_2)_n$ clusters

Figure S1: Optimized structures of a) $(TiO_2)_1$, b) $(TiO_2)_2$, c) $(TiO_2)_4$, d) $(TiO_2)_5$, e) $(TiO_2)_7$, f) $(TiO_2)_8$, g) $(TiO_2)_9$, h) $(TiO_2)_{10}$, i) $(TiO_2)_{11}$

Figure S2: HOMO and LUMO orbitals of TiO₂ clusters at an isovalue of $\pm 0.02 e_0/Å^3$. a) HOMO of (TiO₂)₃ b) LUMO of (TiO₂)₃ c) HOMO of (TiO₂)₁₂ d) LUMO of (TiO₂)₁₂.

Figure S3: Optimized structures of a) Ru-(TiO₂)₁, b) Ru-(TiO₂)₂, c) Ru-(TiO₂)₄, d) Ru-(TiO₂)₅, e) Ru-(TiO₂)₇, f) Ru-(TiO₂)₈, g) Ru-(TiO₂)₉, h) Ru-(TiO₂)₁₀, i) Ru-(TiO₂)₁₁.

(a)

(b)

Figure S4: HOMO and LUMO orbitals of Ru-TiO₂ clusters at an isovalue of $\pm 0.02 \text{ e}_0/\text{Å}^3$. a) HOMO of Ru-(TiO₂)₃ b) LUMO of Ru-(TiO₂)₁₂ d) LUMO of Ru-(TiO₂)₁₂.

2. Electronic properties

2.1. $((TiO_2)_n clusters)$

Figure S5: HOMO and LUMO positions relative to the Fermi level (0.0 eV) of TiO_2 clusters calculated with PBE and HSE06 functionals.

Figure S6: Total density of states and projected density of states of the $(TiO_2)_3$ cluster calculated with PBE and HSE06 functionals.

Figure S7: Total density of states and projected density of states of the $(TiO_2)_{12}$ cluster calculated with the PBE functional.

Figure S8: HOMO and LUMO positions relative to the Fermi level (0.0 eV) of $Ru-TiO_2$ clusters calculated with PBE and HSE06 functionals.

Figure S9: Total density of states and projected density of states of the $Ru-(TiO_2)_3$ cluster calculated with PBE and HSE06 functionals.

Figure S10: Total density of states and projected density of states of the Ru-(TiO₂)₁₂ cluster calculated with the PBE functional.

3. Adsorption

3.1. $(TiO_2)_n$ clusters

(c)

Figure S11: Optimized adsorption modes of a), e) N_2 , b), f) NH_3 , c), g) H and d), h) 2 H over $(TiO_2)_3$ and $(TiO_2)_{12}$ clusters.

Figure S12: Total density of states and projected density of states of NH_3 adsorbed on $(TiO_2)_3$ cluster calculated with the PBE functional.

Figure S13: Total density of states and projected density of states of NH_3 adsorbed on $(TiO_2)_3$ cluster calculated with the PBE functional.

Figure S14: Total density of states and projected density of states of NH_3 adsorbed on $(TiO_2)_3$ cluster calculated with the PBE functional.

3.2. Ru- $(TiO_2)_n$ clusters

(c)

Figure S15: Optimized adsorption modes of a), e) N_2 , b), f) NH_3 , c), g) H and d), h) 2 H over Ru-(TiO_2)₃ and Ru-(TiO_2)₁₂ clusters.

Figure S16: Total density of states and projected density of states of NH_3 adsorbed on Ru- $(TiO_2)_3$ cluster calculated with the PBE functional.

Figure S17: Total density of states and projected density of states of NH_3 adsorbed on Ru-(TiO_2)₆ cluster calculated with the PBE functional.

Figure S18: Total density of states and projected density of states of NH_3 adsorbed on Ru- $(TiO_2)_{12}$ cluster calculated with the PBE functional.