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Abstract

Tree rings, wood density and the climate-growth relationship of four
Douglas-fir provenances were analysed separately for the juvenile and
adult phases. Four provenances were selected from an existing IUFRO
provenance trial planted in 1971 based on their diameter at breast height
and vitality. Increment cores were extracted from individual trees, on
which we measured tree-ring widths (RW), earlywood widths (EWW)
and latewood widths (LWW). Wood density was assessed in standing
trees using resistance drilling. The climate-growth correlations were
calculated between provenance chronologies of RW, EWW, LWW and
latewood share, and the day-wise aggregated Standardised Precipitation-
Evapotranspiration Index (SPEI). The analysis was done separately for
the juvenile and mature phases of growth. Provenances 1064 (Jeffer-
son) and 1080 (Yelm) exhibited larger annual radial increments than
provenances 1028 (Merrit) and 1089 (Cathlamet). The two provenances
with the highest annual radial increment in the juvenile phase did not
exhibit the same trend in the adult phase. In all provenances, RW, and
consequently EWW and LWW, were wider in the juvenile than in adult
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2 Tree rings, wood density and climate-growth relationships...

phase. The share of latewood was in all cases higher in juvenile wood
than in mature wood. All four provenances had similar wood densities in
both analyzed growth phases. Our analysis showed that when selecting
the most promising provenance for planting, possible changes in relative
growth rate from the juvenile to adult phase need to be considered.
Key message: The relationships between growth rates
of examined provenances in the sub-Mediterranean change
between juvenile and adult growth phase, while wood density
is approximately similar in all four examined provenances.

Keywords: Pseudotsuga menziesii, SPEI, juvenile phase, adult phase,
latewood share, resistance drilling

1 Introduction

Due to climate change and associated severe events, the tree-species composi-

tion in European forests is expected to change in the coming decades, which

will influence forest management practices and the global forest sector in terms

of timber supply, demand and production (Bolte et al. 2009; Keenan 2015;

Dyderski et al. 2018; Buras and Menzel 2019). The abundance of the currently

most economically important European tree species is thus expected either to

decrease (e.g., Norway spruce and Scots pine) or remain unchanged (common

beech and pedunculate oak). Several currently less represented and relatively

less economically important native (e.g., black pine, maritime pine, pubescent

oak) and/or non-native tree species (e.g., Douglas-fir) are projected partly to

fill these gaps (Buras and Menzel 2019). Despite a variety of opinions among

experts on non-native tree species, there is general agreement that non-native

tree species may become more economically important - but only in a sup-

porting role and not as a replacement for natural succession processes (Jandl

et al. 2019). Careful integration of a range of tested non-native tree species

into forests thus seems to be one of the solutions for climate change adaptation

and mitigation (Bindewald et al. 2020).
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In terms of wood properties and improved resilience to climate change,

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) has already been con-

sidered a possible suitable species, whose timber could be used to augment

or replace timber from the currently most widespread species (e.g. Norway

spruce) (Spiecker et al. 2019). Although Douglas-fir is grown on 0.83 million

ha in Europe (Brus et al. 2019) and is nowadays one of the most important

commercial non-native timber species in West and Central Europe (Eilmann

et al. 2013), its yearly harvest in Slovenia is representing only ca. 2.4 % of the

total harvested timber volume (Skudnik et al. 2021). Its currently negligible

share may change in the coming years for the reasons mentioned above.

The ability of trees to withstand environmental changes depends on phe-

notypic plasticity, genetic diversity within and between populations, and gene

flow (Kramer et al. 2010). Tree species that are more resistant to drought or

wind-related damages may thus have better chances of survival in such unpre-

dictable circumstances. Douglas-fir is native to the western United States and

Canada, where it grows in a wide range of site conditions and therefore dis-

plays high adaptive genetic variability. It is a highly productive tree species

that generally copes well with frequent droughts (Eilmann and Rigling 2012);

however, the drought tolerance and productivity of Douglas-fir trees depend

on their geographical origin. The coastal Douglas-fir variety (P. menziesii var.

menziesii) is less drought-tolerant but more productive than the interior vari-

ety (P. menziesii var. glauca), the latter is also less resistant to needle cast

(Rhabdocline pseudotsugae Syd., (1922)) when planted in Europe; thus, vari-

ety glauca has rarely been planted in Europe (Eilmann et al. 2013). Since

differences also exist in productivity and drought tolerance among coastal



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Springer Nature 2021 LATEX template

4 Tree rings, wood density and climate-growth relationships...

Douglas-fir populations, the suitability of provenances for different site con-

ditions in Europe has been extensively investigated (e.g. Spiecker et al. 2019;

Isaac-Renton et al. 2014).

Thus, for appropriate provenance selection that also considers changing

climate conditions, information on the long-term performance of different

provenances under current and future European climate conditions is needed.

Provenance trials, such as the IUFRO seed collection program established

in 1966/1967, in which seeds from the natural range of coastal Douglas-

fir were collected and distributed to 20 European countries (Montwé et al.

2015), are ideal for identifying the best performing provenance for selected

sites. The Slovene provenance trial was established in 1971 when 15 coastal

Douglas-fir provenances were planted in Brkini, characterised by an inland sub-

Mediterranean climatic regime (Smolnikar et al. 2021). However, in addition

to high productivity and drought-tolerance, wood quality is also an important

factor for provenance selection by forest owners and forest managers. Wood

density is one of the wood characteristics that has usually been used as a mea-

sure of wood quality, whereby higher density generally improves mechanical

wood properties resulting in higher-quality wood (Rais et al. 2014).

In this study, we analysed climate-growth relationships and wood den-

sity of four coastal Douglas-fir provenances, separately for juvenile and adult

phases. This was done because radial growth trend and climate-growth rela-

tionships may change from juvenile to adult phases. Juvenile wood is generally

considered inferior to adult wood in terms of mechanical and physical proper-

ties, which are crucial in determining the suitability of wood for specific end

uses (Blohm et al. 2016). Juvenile wood of Douglas-fir will probably become

more economically important because of the shortening of rotation periods on

commercial plantations, which leads to a higher proportion of juvenile wood
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(Blohm et al. 2016). The provenance selection was based on the recent data of

Smolnikar et al. (2021), who investigated the survival rate, diameter at breast

height growth and branchiness of 1061 surviving trees of 15 different prove-

nances in a Slovene provenance trial. Two of the best-performing (P-1080 and

P-1089) and two of the worst-performing (P-1028 and P-1064) provenances in

terms of vitality and diameter at breast height (DBH) were selected for the

tree-ring and wood density analyses presented in the current study. Since areas

with a sub-Mediterranean climate in Europe and worldwide are expected to

increase with global warming (Buras and Menzel 2019), the results can pro-

vide valuable insight into the future growth of Douglas-fir trees in drier and

warmer climates.

2 Material and Methods

2.1 Study site, origin and characteristics of provenances

The studied Douglas-fir trees are growing in a provenance trial designated

Padež I. The study site is located in the forest district of Sežana, Slovenia (N

45°36′13′′; E 14°3′21′′) at 530–580 m above sea level. The relief at the site is

smooth with 5% outcrops, and the soil is a distric brown soil on non-carbonate

flysch and decalcified marl. The climate is inland sub-Mediterranean (Ogrin

1996), the average annual temperature for the period 1980–2010 is 10.4 °C,

the average January temperature is 1.3 °C and the average July temperature

is 20.1 °C. The average annual precipitation for this period is 1306 mm and

the precipitation is quite favorably distributed within the growing season. The

wettest month is October with 152 mm average precipitation, while the driest

months are February, January and July, with 76, 81 and 82 mm precipitation,

respectively. During the period from 1961 to 2011, there were several dry years

with less than 1000 mm rainfall (1983, 2003 and 2011), while 1976, 1979, 1984,
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2000 and 2010 were wet years with more than 1600 mm rainfall. Climate data

were obtained from the nearest meteorological station, in Ilirska Bistrica (424

m a.s.l.), 16 km from the study area, reference period 1980–2010 (Agencija

Republike za Okolje 2014).

The provenance trial is part of an extensive IUFRO program in which seeds

from the natural range of Douglas-fir were collected and distributed to several

European countries (Kleinschmit and Bastien 1992). The provenance trial in

Slovenia was established in 1971 with the planting of 15 coastal Douglas-fir

(P. menziesii var. menziesii) provenances. The experimental plot was rectan-

gular, with an area of 1.56 ha, on which 2460 trees of 15 provenances were

planted. Provenances were planted in a systematic distribution to exclude envi-

ronmental influences such as small differences in soil and slope. Rows with 2.5

m spacing consisted of several series of 10 trees per provenance, again with

2.5 m spacing in a row. Depending on the number of seedlings available, there

were 11–20 replicates per provenance. In the establishment phase, the trial was

fenced, planting success was over 90% (Mlinšek 1977) and the trial plantation

has never been thinned. Prior to this study, data were collected and analyzed

for the period from 1975 to 1985 (Breznikar 1991) and again in 2017 (Smol-

nikar et al. 2021). The latter study showed that the best provenances, based

on vitality and current diameter at breast height were Yelm and Cathlamet,

while the worst provenances based on these two criteria were Merrit and Jef-

ferson (however, the latter was the provenance with the best log quality, as

evaluated by branching (Table 1 and Table 2, Smolnikar et al. (2021)). In the

present investigation, these four provenances were used in an in-depth study

with regard to their growth performance and wood density.
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2.2 Climate data

Climate data for climate-growth correlations were extracted from E-OBS daily

climate datasets, available since 1950 with a 0.1 grid of spatial resolution

(Cornes et al. 2018). Precipitation totals and mean, maximum and minimum

temperatures were extracted for 25 nearest grid points and interpolated for

the exact site coordinates using cokriging with elevation included as an auxil-

iary variable (Feki et al. 2012). The data for the climate diagrams in Figures

1 and 2 were obtained using the WorldClim 2.1 global climate dataset (Fick

and Hijmans 2017) with a spatial resolution of 2.5 minutes, and the climate

diagrams were plotted using R library climatol (Guijarro 2019).
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Fig. 1: Provenance origin location map with climate diagrams for each prove-
nance origin location (Walter and Lieth 1960). The provenance code is followed
by elevation in m above sea level (in parentheses), displaying the analyzed
period, average temperature and precipitation in the second line and average
maximum temperature of the warmest month with average minimum temper-
ature of the coldest month on the left side of the diagrams (data from period
of 1970-2000). The Merrit site is in the state of Washington and the others are
in Oregon.



461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Springer Nature 2021 LATEX template

Tree rings, wood density and climate-growth relationships... 11

0

10

20

30

40

50

0

20

40

60

80

100

300
C mm

 (625 m)
9.3C        1641 mm

24.2

−2.5

J FMAMJ J ASOND

Fig. 2: Provenance trial macro- and micro-location (marked wih red dot)
within Europe and Slovenia along with a Walter-Lieth climate diagram for the
period 1970-2000.

2.3 Dendrochronological analysis

Twelve to 18 individual trees from each provenance were sampled at random

in June of 2020 using a 5.15-mm increment borer (Haglöf, Sweden), taking

one core per tree. Increment cores were saved in paper straws, dried at the

laboratory and glued into wooden holders. The tree cores were then sanded

to obtain a clear surface with distinct tree rings, and high-resolution images

were taken and stitched with the ATRICS system (Levanič 2007). Total tree-

ring widths (RW), earlywood widths (EWW) and latewood widths (LWW)

were measured with CooRecorder (Cybis Elektronik & Data AB), and the final

crossdating was performed using PAST-5 software (SCIEM, Brunn, Austria).

Latewood share was calculated as LWW divided by RW.
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2.4 Climate-growth correlations

All chronologies used in the climate-growth analysis were first standardized

using a fixed spline with 32 years of length and 0.5 frequency response. To build

provenance chronologies, RW, EW and LW were pre-whitened and averaged

using a robust biweight mean. We calculated the climate-growth correlations

between provenance chronologies of RW, EWW, LWW and LW shares, and

the day-wise aggregated Standardised Precipitation-Evapotranspiration Index

(SPEI) (Jevšenak and Levanič 2018; Jevšenak 2020), while correlations with

daily temperature and precipitation are shown in Supplementary Material.

SPEI accounts for both actual precipitation and potential evapotranspiration

(PET) to determine drought (Begueŕıa and Vicente-Serrano 2017). PET was

estimated with the Hargreaves-Samani method (Hargreaves and Samani 1985)

and the climatic water deficit was calculated for each day as the difference

between the daily sum of precipitation and daily PET. We calculated the accu-

mulated drought effects by aggregating climatic water deficits into a log-logistic

probability distribution to obtain the SPEI index series of different seasons

(Vicente-Serrano et al. 2010), from three weeks to nine months, including the

effect of the previous growing season. Finally, we also assessed the effect of age

on the temporal stability of SPEI correlations by using a subset window of 25

years and sliding it from the juvenile to adult phase.

2.5 Wood density assessment using resistance drilling

Wood density was assessed in standing trees of the selected four provenances

using resistance drilling. For the sake of speed, less damage to the stem, and

ease of resistance drilling measurements, a larger number of trees were used

here than in extracting increment cores. Thirty trees were measured in each

provenance (trees used for increment coring plus additional randomly sampled
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trees) and the device used was a Resistograph SC-650 (Rinntech, Heidelberg,

Germany) with 500-mm long drilling needles, calibrated by the manufacturer

for absolute wood density assessment. The measurements were done bark-to-

bark through the pith of the tree and the drilling data were saved by the

device and then manually imported into the computer. The resistance drilling

density measurements (in kg/m3) were imported into the R statistical envi-

ronment (R Core Team 2021) with the R package densitr (Krajnc 2020). The

bark portion (where the drilling needle has not yet entered wood) of each mea-

surement was trimmed away, after which the measurements were detrended

automatically using a linear regression fit provided by the R package densitr.

The presented values of resistance drilling density profiles are median values

for each individual tree. As noted in other species (Krajnc et al. 2020), the

resistance-drilling density values are generally lower than basic wood density

due to the effect of the moisture content in fresh wood. No corrections in this

regard were applied, since relative values of wood density are still comparable

within the same species.

2.6 Distinguishing between juvenile wood and adult wood

Depending on genetic and external influences, the transition from juvenile to

adult phase in Douglas-fir occurs between 17 and 30 years (Abdel-Gadir and

Krahmer 1993; Giagli et al. 2017). The exact age at which a tree stops produc-

ing juvenile wood and begins producing adult wood cannot be defined because

of the gradual change in properties with age. At some point, the properties sta-

bilize, however, and the boundary between juvenile and adult wood depends

on tree species and analysed wood traits (i.e., wood density, RW, latewood per-

centage, cell wall thickness and microfibril angle) (Bendtsen and Senft 1986).

Blohm et al. (2016) reported that the age of demarcation between juvenile and
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adult wood can differ by more than 7 years when identified by different wood

characteristics. Information on the methodology used is therefore important

for data comparison between different laboratories. Based on previous research

(Abdel-Gadir and Krahmer 1993; Giagli et al. 2017) the limit between juve-

nile and adult phases in our study was set at 20 years, counting outwards from

the pith (i.e. the year 1991). Using a subset of trees for which both increment

cores and resistance drilling were collected and measured, the proportion of

juvenile vs. adult wood in the radial direction was calculated (50% juvenile :

50% adult) using the sum of RW of the first 20 years and the overall sum of

RW. This ratio was then used to distinguish the first half (bark-to-pith) of the

resistance-drilling measurements into juvenile and adult phases.

3 Results

3.1 Tree-ring patterns

RW chronologies for the four analysed provenances are shown in Figure 3. The

two provenances with the highest annual radial increment in the juvenile phase

do not exhibit the same pattern in the adult phase. Interestingly, the rela-

tionship between the two pairs of faster-growing provenances in either phase

is not reflected in their current DBH values. Provenances 1080 and 1089 have

the largest diameters, while this is not reflected in their annual radial incre-

ments in the adult phase. Instead, the largest annual increments in the adult

phase were found in 1064 and 1080, the former being second to last in terms

of current DBH across the whole trial, while the latter had the largest DBH

overall.
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Fig. 3: Robust RW chronologies, blue vertical line marks the transition
between juvenile and adult phase in 1991.

In all provenances, RW, and consequently EWW and LWW, were 41% (P-

1064) - 65% (P-1089) wider in the juvenile than in the adult phase (Figure 4

and Table A2). In the juvenile phase, the narrowest RWs were found in P-

1064 and the widest in P-1080. In the adult period, the narrowest RWs were

found in P-1028 and the widest in P-1080. Significantly more variation was

observed in the widths of adult wood across all provenances. Some of the

differences between provenances were found to be statistically significant, con-

firming what was already observed in Figure 3: provenances 1064 and 1080

have larger annual radial increments than provenances 1028 and 1089. These

relationships persist in both earlywood and latewood. The differences in all

tree-ring parameters between juvenile and adult phase were also statistically

significant (Figure A2).
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Fig. 4: RW, LWW and EWW by provenance and growth phase, The com-
parison of means between growth phases was done using a Kruskal-Wallis test
and statistical significance is marked with a * symbol (p < 0.05).

The share of latewood was in all cases higher in juvenile wood than in adult

wood, between 2% (P-1080) and 6% (P-1028) higher on average. Latewood

accounted for about half of the annual radial increment (Figure 5). Similar lev-

els of variation in the share of latewood were observed in both analyzed phases
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and across provenances. While some of the differences between provenances in

the juvenile phase were statistically significant, this was not observed in the

adult phase.
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Fig. 5: Latewood share by provenance and growth phase. The comparison
of means between growth phases was done using a Kruskal-Wallis test and
statistical significance is marked with a * symbol (p < 0.05).

3.2 Wood density

The values of resistance-drilling wood density are shown in Figure 6. The over-

all mean resistance drilling density was 338 kg/m3 with a standard deviation

of 27 kg/m3. All four provenances had similar wood density in both analyzed

growth phases and none of the differences were statistically significant.
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Fig. 6: Comparison of wood density between provenances and growth phases:
A) juvenile B) adult. The comparison of means between growth phases was
done using a Kruskal-Wallis test and statistical significance is marked with a
* symbol (p < 0.05).

3.3 Climate-growth relationships

The general effect of wet conditions in the current growing season was posi-

tive, indicating that Douglas-fir’s radial growth was favoured in moist years,

and reduced in dry years. A significant positive effect of SPEI on LW was also

observed at the beginning of the previous growing season. The opposite effect

was associated with the previous growing season’s SPEI, whereby dry sum-

mers resulted in wider tree-ring widths in the following year (Figure 7A). This

negative correlation pattern was more significant at the juvenile stage, espe-

cially the negative SPEI correlations of the previous late summer on LWW

and RW, while in the adult phase, these correlations became insignificant

(Figure 7B). The opposite pattern was observed for the positive correlations of

current-year wet conditions on RW and LWW, which became more significant
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in recent, adult years. In comparison to LWW and RW, climate-growth cor-

relations with EWW were more stable and varied less with cambial age. The

LW share generally correlated positively with current and previous year SPEI.

Generally, all provenances showed synchronous correlations with SPEI, but

there were differences in the strength of this signal. Considering both nega-

tive correlations with the previous year’s SPEI, and positive correlations with

the current year’s SPEI, the most significant correlations were calculated for

provenances P-1028 and P-1064, while the lowest correlations were observed

for P-1089. The last provenance also exhibited two exceptions, i.e., 1) the

positive correlations with previous year’s spring and LWW were not signifi-

cant, and 2) there was a significant pattern of negative SPEI effect on RW

at the end of the current growing season. Of all the proxies, the proportion

of latewood was most sensitive for provenances P-1028 and P-1064, for which

correlations exceeded 0.50. Strong correlations were also found between radial

growth and temperature. The correlations of radial growth with precipitation

and temperature are shown in Supplemental Material, Figures A4 and A5.
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Fig. 7: Climate growth correlations between studied tree-ring proxies and
aggregated SPEI using the variable response window from 21 to 270 days. B)
Climate growth correlations between tree-ring parameters and 60-day SPEI,
where correlations were calculated for sub-periods of 25 years, from juvenile
(1980 – 2004) to adult phases (1996 - 2020). Months with lowercase letters
and ‘*’ represent previous growing season. Only correlations with p < 0.05
are shown. The reference position of plotted correlations is the end of time
windows.

4 Discussion
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4.1 The importance of provenance on overall growth

qualities

The four analysed Douglas-fir provenances were found to be suitable for plan-

tation establishment in SW Slovenia with a sub-Mediterranean climate. As

reported by Smolnikar (2018), all provenances originated from the low-altitude

western coast of Washington, with the Cathlamet provenance (P-1089) show-

ing the best combination of good growth, survival rate, and log quality. Our

analysis showed that when selecting the most promising provenance for plant-

ing based on these criteria, a change in growth rate from juvenile to adult phase

should be considered. Only by combining climate-growth analysis with mea-

surements of external tree features (such as diameter etc.) can we compare and

assess the suitability of specific provenances for planting in current and future

climates. Additionally, a visual assessment of log quality does not provide an

insight into the wood structure (density, homogeneity of radial growth, intra-

annual density fluctuations and other wood characteristics), which defines its

usability for sawn timber or its end use. In addition to having the largest

annual radial increments, provenances 1064 and 1080 also had the most homo-

geneous growth in the adult phase. Due to systematic planting in provenance

trials and the fact that this particular trial was not thinned, the findings of the

study will not necessarily translate directly to trees in more natural stands.

However, in the context of the data from this provenance trial, neither mortal-

ity nor vitality can explain the superior radial growth of provenances 1064 and

1080 in the adult phase compared to the other two analyzed provenances and

why this trend is not consistent throughout the analyzed period (see Table 2

and Figure 3).
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4.2 Wood characteristics across growth phases

Since wood characteristics, and consequently, wood properties are age related

(Dinwoodie 1981), we distinguished between juvenile and adult wood in the

analysis. Juvenile wood is formed in the early stages of tree radial growth and is

generally of inferior quality compared to the relatively stable structure of adult

wood. In conifers, juvenile wood is characterised by shorter tracheids having

thinner secondary walls and a larger microfibril angle in the S2 layer, and it

usually contains a lower proportion of latewood. This is reflected in different

physical and mechanical wood properties compared to adult wood, such as

lower wood density, transverse shrinkage, and strength, which limit its end use

(Blohm et al. 2016). Despite that, juvenile wood of Douglas-fir is economically

important and its properties have to be considered due to the shortening of

the rotation periods on commercial plantations, which consequently leads to a

higher proportion of juvenile wood (Blohm et al. 2016).

The higher latewood proportion in juvenile wood (48%) compared with the

latewood proportion in adult wood (45%) found in our study contradicts pre-

vious findings. Giagli et al. (2017) observed a coordinated age-related decrease

of RW and EWW, while the LW proportion gradually increased with tree age;

from 30% in the juvenile phase to almost 50% in adult wood. In Germany,

a lower latewood percentage (34%) was reported in juvenile wood compared

with adult wood (Blohm et al. 2016). These discrepancies in findings can

be attributed to provenance specifics and/or environmental conditions. More

southern provenances tend to have a higher proportion of latewood as an adap-

tation to drought conditions, since thicker latewood cells with smaller lumens

prevent hydraulic failure (Eilmann et al. 2013). Our site is located in the sub-

Mediterranean area well supplied with water throughout the year, which could



1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Springer Nature 2021 LATEX template

Tree rings, wood density and climate-growth relationships... 23

allow a long growing season that can extend into the autumn, as already pre-

viously reported for conifers in similar environments (Prislan et al. 2016). To

the best of our knowledge, no data on the seasonal dynamics of xylogene-

sis are available for Douglas-fir, but it can be inferred from tree-ring widths,

which are consistent with the values provided by other studies for productive

Douglas-fir (Eilmann et al. 2013).

The differences in earlywood and latewood widths between provenances

appear consistent across both growth phases, indicating that differences

between provenances are not directly climate-related and are consistent

throughout the growing season. All three measured ring-related parameters

(RW, EWW, LWW) exhibited more variation in the adult phase of growth

than in the juvenile phase. Different climatic sensitivity across growth phases,

changing growing conditions, or the effect of changing competition pressure

over time could explain this pattern. Competition between individual trees was

more pronounced in the later stages of growth, since the trees had a relatively

large growing area (2.5 x 2.5 m) available immediately after the establishment

of the trial. The sampled trees in the current study were mostly dominant trees

at the time of sampling, although at least some of them were not constantly

dominant throughout their lifespan. The LW fraction exhibited less variation

than RW, EWW or LWW overall, with some individual trees exhibiting a con-

sistently higher latewood share than others. Whether this is directly related

to the geno- or pheno-type of individual trees could be an interesting direction

for future research.

Due to the differences found in RW between provenances, we also expected

to find some differences in resistance-drilling wood density. This was expected

because wood density in softwoods is directly related to RW (Dinwoodie 1981;

DeBell et al. 2004). However, we found no differences in wood density across
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the four provenances. One possible explanation for this lack of differences

could be directly related to the method and/or the device we used for assess-

ing wood density. If another method/tool were to be used (such as X-ray or

high-frequency densitometry), the results could be different and this should

be examined in future research, possibly using X-ray density measurements

for a side-by-side comparison of methods. However, such methods are rela-

tively time-consuming and expensive when compared to resistance drilling. An

alternative (and equally plausible) explanation is that no differences in wood

density exists between provenances. No differences were found in the latewood

share between provenances in the current study. It is therefore quite possible

that this was directly reflected in wood density, since latewood fraction can be

used as an indicator of wood density in softwood species.

4.3 Climate-growth relationship

Climate-growth analysis showed that dry conditions in the previous growing

season were favourable for radial growth in the following year, while dry condi-

tions in the current growing season limited radial growth, but again, promoted

growth in the next growing season (Figure 7 and Supplementary Material).

Such relationships are commonly reported for conifers (e.g. Sun et al. 2021)

and could be explained by the carry-over effect related to carbohydrates and

other nutrients, which are stored and are available for growth in the next grow-

ing season. Namely, photosynthetic activity, even at a reduced rate, may still

occur in dry conditions or during mild winter conditions (Lassoie and Salo

1981).

An adjustment of cambial rhythm to the months with favourable weather

conditions is necessary to avoid a potential water shortage. Wet conditions

in spring are beneficial and result in wider annual increments. Thus, earlier
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spring cambial reactivation provides a longer growing season without water

stress, which could enhance radial growth. Information on seasonal radial

growth dynamics is not known for Douglas-fir at the selected location; how-

ever our previous studies on conifers in the (sub)Mediterranean shows that

cambial rhythm in this region is more complex than in temperate locations

(Prislan et al. 2016). In the Mediterranean, cambial activity (and consequently

xylem growth) in conifers is more plastic compared to colder regions, such as

temperate or boreal climates. It may generally exhibit two interruptions, one

during winter triggered by low temperature and one during summer due to a

precipitation deficit coupled with high temperature (e.g., Liphschitz and Lev-

Yadun (1986); Deslauriers et al. (2017)). Thus, an autumnal resumption of

cambial cell production can occur in the case of favourable growing conditions.

Such bimodal xylem growth is reflected in intra-annual density fluctuations

(IADFs) (de Luis et al. 2007). IADFs are characterized by the occurrence of

latewood-like cells within earlywood or earlywood-like cells within latewood

(de Luis et al. 2007). Drastically unfavourable environmental conditions for

tree growth, i.e., severe lack of precipitation throughout the year, result in

specific wood anatomical features, such as locally missing rings or dark rings

(Novak et al. 2016). No missing rings or dark rings were detected in our case.

IADFs occurred occasionally only in one (P-1028), two (P-1064 and P-1080)

or three individual (P-1089) trees in the juvenile phase. No IADFs were iden-

tified in the adult phase. The lack of anatomical anomalies and rather wide

RW, on the one hand suggests that environmental conditions are favourable

for radial growth of Douglas-fir on the studied site. Conversely, this could also

be a direct result of only sampling dominant trees, which experience less stress

than subdominant trees when resources are scarce.
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Douglas-fir is reported to be a highly productive and relatively undemand-

ing tree species that copes well with prolonged drought periods (Eilmann and

Rigling 2012). It has been explained by a more effective stomatal control mech-

anism compared to other conifer species (Lassoie and Salo 1981), which may

constitute a water-saving strategy under temporary dry conditions (Eilmann

et al. 2013). In addition, stomatal functioning and photosynthetic capacity in

Douglas-fir have been observed to recover immediately after the relief of soil

water deficits. This and the ability to fix a significant amount of carbon diox-

ide during mild winter conditions could explain the wide distribution range of

Douglas-fir (Lassoie and Salo 1981). However, a recent study by Duarte et al.

(2016) shows a limited physiological plasticity of Douglas-fir after exposure to

elevated temperature. This would prevent it from full recovery in the case of

heat waves, which may become more frequent and severe in the coming years.

In this case, the capacity of a tree to maintain its photosynthetic potential

and minimize water loss will be crucial (Duarte et al. 2016). The differences

in the findings could be attributed to the age of the studied trees; in the case

of Lassoie and Salo (1981) the study was performed on adult trees, whereas in

the case of Duarte et al. (2016) on young saplings. However, the drought toler-

ance and productivity of Douglas-fir also depend on its geographical origin, as

demonstrated by Isaac-Renton et al. (2014). Based on the high share of late-

wood proportion linked with a lower cavitation risk, the analyzed provenances

in the current study indicate a high potential to cope with drought.

As far as different provenances are concerned, we observed that P-1089

showed no significant response to wet spring conditions from the previous grow-

ing season, in contrast to the other three examined provenances. We assume

that current climatic conditions at a given location are the most favourable
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for radial growth of P-1089, consequently its growth is less restricted by cli-

mate and thus more resistant to dry conditions although it originates from a

location well supplied with precipitation (annual amount = 2102 mm), also

in the spring period (Figure 1). In addition, our study site has a very similar

temperature pattern and mean annual temperature to the region from which

P-1089 originated (Figures 1 and 2).

Information in the literature on the age-related climate response of different

studies is inconsistent. For example, few differences were found in response

to climate between trees of different ages of Pinus nigra and Pinus uncinata

(Liñán et al. 2011) and Pinus cembra (Esper et al. 2008). In addition, the main

limiting climate factors constrained tree growth equally regardless of the age

group. Other studies reported that growth trends and climatic sensitivity differ

between young and old trees; annual increments are generally wider in young

trees, which also show higher climatic sensitivity (e.g., Colangelo et al. 2021).

In the juvenile phase trees usually exhibit different cambial and radial growth

rhythms than in the adult phase; in the former age group cambial growth

period is usually longer, which results in wider xylem increments (Rossi et al.

2008).

5 Conclusions

The current study demonstrates that provenances for future planting should be

selected by using a variety of criteria. Whether planting Douglas-fir to improve

the timber quality/quantity from future forests, or to simply improve the over-

all stand resilience of existing stands by including individual Douglas-fir trees

in existing stands, the visible and invisible features of individual trees and their

provenances should be considered. In addition to DBH, other factors to con-

sider include survival rate and vitality, present and past productivity, growth
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homogeneity, and intraannual density fluctuations. As well as providing useful

information on age-related radial and volume growth, tree-ring characteristics

also include a treasure trove of often overlooked and underutilized information

(e.g., IADFs). Tree age and future climate-change scenarios (including extreme

weather events) on a regional level should be considered when assessing the

suitability of provenances for certain parts of Europe because they may greatly

affect the long-term performance of provenances under future European envi-

ronmental conditions (St Clair and Howe 2007). The results of the current

study indicate that provenances could potentially be selected according to the

chosen rotation period of a stand, due to the differences found between radial

growth across the two growth phases. When considering shorter rotations (30+

years), different provenances could be chosen to maximize volume growth than

when considering longer rotation periods (60+ years). Existing provenance tri-

als remain extremely valuable and should be monitored long-term, since the

growth and vitality may change over the years, as demonstrated in the current

study.
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Appendix A Additional tables and figures
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Fig. A1: Raw chronologies.
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Fig. A2: EWW, LWW and RW by phase and provenance. The comparison
of means between growth phases was made using a Kruskal-Wallis test and
statistical significance is marked with a * symbol (p < 0.05).
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Table A2: RW data by growth phase and provenance, displaying mean values
and cofficients of variation in brackets.

Phase 1028 1064 1080 1089

EW 1.11 (68) 1.55 (51) 1.50 (54) 1.12 (78)

LW 0.90 (68) 1.16 (61) 1.32 (67) 0.93 (75)
adult

RW 2.02 (65) 2.62 (55) 2.81 (57) 2.11 (76)

EW 2.58 (40) 2.87 (35) 3.24 (43) 3.15 (43)

LW 2.68 (38) 2.32 (35) 2.86 (39) 2.97 (35)
juvenile

RW 5.24 (28) 5.11 (29) 6.11 (30) 6.10 (31)
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Fig. A3: Raw chronologies of latewood share by provenance.
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Table A3: Latewood share by provenance, displaying mean values and
coefficients of variation in brackets.

Phase 1028 1064 1080 1089

adult 0.45 (19) 0.44 (23) 0.45 (21) 0.44 (23)
juvenile 0.51 (22) 0.46 (23) 0.47 (30) 0.49 (24)

Fig. A4: Correlations between growth and precipitation for the four analyzed
provenances. Months with lowercase letters and ‘*’ represent previous growing
season. Only correlations with p < 0.05 are shown. The reference position of
plotted correlations is the end of time windows.
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Fig. A5: Correlations between growth and temperature for the four analyzed
provenances. Months with lowercase letters and ‘*’ represent previous growing
season. Only correlations with p < 0.05 are shown. The reference position of
plotted correlations is the end of time windows.
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