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Abstract

Understanding tumors and their micro-

environment are essential for successful

and accurate disease diagnosis. Tissue

physiology and morphology are altered in

tumors compared to healthy tissues, and

there is a need to monitor tumors and their surrounding tissues, including

blood vessels, non-invasively. This preliminary study utilizes a multimodal

optical imaging system combining hyperspectral imaging (HSI) and three-

dimensional (3D) optical profilometry (OP) to capture hyperspectral images

and surface shapes of subcutaneously grown murine tumor models. Hyper-

spectral images are corrected with 3D OP data and analyzed using the inverse-

adding doubling (IAD) method to extract tissue properties such as melanin

volume fraction and oxygenation. Blood vessels are segmented using the

B-COSFIRE algorithm from oxygenation maps. From 3D OP data, tumor vol-

umes are calculated and compared to manual measurements using a vernier

caliper. Results show that tumors can be distinguished from healthy tissue

based on most extracted tissue parameters (p<0:05). Furthermore, blood oxy-

genation is 50% higher within the blood vessels than in the surrounding tissue,

and tumor volumes calculated using 3D OP agree within 26% with manual

measurements using a vernier caliper. Results suggest that combining HSI and

OP could provide relevant quantitative information about tumors and improve

the disease diagnosis.

Abbreviations: 3D, three-dimensional; CLAHE, contrast limited adaptive histogram equalization; CMOS, complementary metal-oxide-
semiconductor; CPU, central processing unit; DoG, difference of Gaussians; FOV, field of view; GPU, graphics processing unit; HSI, hyperspectral
imaging; IAD, inverse adding-doubling; IDA, inverse diffusion approximation; IMC, inverse Monte Carlo; IRT, infrared thermography; LED, light-
emitting diode; LSCI, laser speckle contrast imaging; NIR, near-infrared; OP, optical profilometry; RT, radiotherapy; SAM, spectral angle mapper;
STR, short tandem repeat; VIS, visible.
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1 | INTRODUCTION

Understanding tumors and tumor microenvironment are
essential for successful diagnostic and treatment
approaches. Hanahan and Weinberg [1] have initially
postulated the six hallmarks of cancer, that is, distinctive
biological capabilities that enable tumor growth and met-
astatic dissemination. The fundamental trait of cancer
cells is their ability to sustain chronic proliferation (rapid
reproduction), evade growth suppressors, resist cell death
and activate invasion and metastasis. Recently, the six
hallmarks were expanded, and among the new hallmarks
of cancer are inflammation and metabolic specificities
[2]. Cancer cells require large amounts of nutrients and
oxygen and therefore induce angiogenesis, the formation
of new blood vessels, to meet the increased demand.
Unlike in normal tissue, the blood vessels in tumor tissue
are immature, tortuous and highly disorganized, result-
ing in hyperpermeability (leakage), low perfusion, hyp-
oxia (deprivation of oxygen) and decreased blood flow
within the tumor [3].

Tumor vasculature presents a complex hurdle for
achieving therapeutic success across various cancer treat-
ment approaches. The aberrant vasculature presents a phys-
ical barrier to drug treatment and promotes aggressive and
invasive tumor phenotypes because of the tumor's hypoxic
environment. The abnormal blood circulation leads to
insufficient perfusion and drug delivery and creates pockets
of hypoxia, rendering solid tumors more resistant to radio-
therapy (RT), chemotherapy and immunotherapy [3–5].
The undesired therapy side effects such as decreased radio-
sensitivity due to hypoxia in radiotherapy highlight the
pressing need for studies of tumors and their vasculature.

Optical imaging techniques are sensitive to light
absorption and scattering changes and can discriminate
healthy tissue from tumor tissue based on the intrinsic
tissue contrasts [6, 7]. Hyperspectral imaging (HSI) is a
promising non-invasive and contactless optical imaging
technique that captures spatial and spectral information
of the imaged tissue in a hyperspectral image (hyper-
cube), commonly in the visible (VIS) and near-infrared
(NIR) spectral bands [8]. The imaging system can operate
in different modes to capture the reflection or transmis-
sion spectra of the observed biological tissue. The result-
ing hypercubes contain spectral information in each pixel
of an image. Following the hyperspectral image analysis,
diagnostic information about tissue physiology (e.g.,

melanin volume fraction or tissue oxygenation), pathol-
ogy (e.g., increased metabolic activity) and morphology
(e.g., tissue components size) is obtained. [8] Based on
the extracted parameters, HSI can be used to differentiate
between healthy and tumor tissue in vivo or extract blood
vessel maps [8–10].

In recent years, HSI has been widely used to image
human and animal tumors in brain [8, 9, 11–22], breast
[8, 9, 11, 23–28], colon [8, 9, 11, 29–33], prostate [8, 9, 11,
34, 35] and skin [8, 9, 11, 36–42]. The main shortcoming
of most studies utilizing HSI is that they analyze images
of histopathological slides to detect tumor cells ex vivo.
Although this approach fits well in the current standard
of care where biopsy is taken, and tissue histology is
inspected, this approach has many limitations. First, such
a procedure is invasive as tissue samples must be taken.
Moreover, the biopsied tissue's optical properties differ
from the intact in vivo tissue, changing over time due to
dehydration, the absence of blood and tissue fixation
[43, 44]. Thus, many tissue parameters cannot be
extracted or are altered compared to the intact tissue.
Finally, the progression of angiogenesis and blood vessel
growth within the tumor and its surroundings cannot be
monitored due to the invasive nature of the biopsy. On
the other hand, macroscopic in vivo hyperspectral imag-
ing could image a large area (a few cm2) of tumor tissue
in a non-invasive and contactless fashion, leaving the tis-
sue completely intact during and after the procedure.
Additionally, the time to process the information and
establish a diagnosis is significantly reduced by eliminat-
ing the need to prepare histopathological samples.

HSI can be complemented with other non-invasive
optical techniques to provide additional information
about the biological tissue. A three-dimensional optical
profilometry (OP) provides the tissue surface shape [45]
that can be used to accurately calculate tumor volumes
and eliminate the need to measure tumor sizes with a
vernier caliper, a standard procedure [46, 47] in assessing
tumor volumes. Although optical profilometry is a wide-
spread technique in industry and many scientific fields, it
is still not common in biomedical optics to extract infor-
mation about tumors or other biological tissue. Using the
surface shape information, the tumor topology, such as
size and shape, can be assessed, and tumor texture can be
extracted based on the roughness of its surface. Addi-
tional information could help differentiate between
tumors and healthy tissue or different tumor types. For

2 of 16 TOMANIC ET AL.



example, Handels et al. [48] showed that laser profilome-
try could improve non-invasive melanoma diagnosis in
human patients. Norhaimi et al. [49] demonstrated that a
fringe projection imaging modality could detect changes
in breast surface caused by the size variation of the tumor
in affected women. In another study, Pavlovčič et al. [50]
applied a compact and rotational laser profilometer to
measure the volume of skin wounds accurately.

The main aim of this preliminary study is to non-
invasively determine quantitative physiological and mor-
phological tissue parameters of four different murine
tumor models in vivo and compare them to healthy tis-
sue. Doing so could help discriminate the tumors from
the healthy tissue and differentiate various tumor
models. Therefore, this study utilized macroscopic hyper-
spectral imaging to record spatially resolved spectral
images of tumors and applied a GPU-accelerated two-
layer inverse adding-doubling (IAD) method to deter-
mine tissue properties from hyperspectral images. What
is more, tumor growth is closely connected to the process of
angiogenesis and blood vessel growth within the tumor and
its surroundings to ensure a sufficient supply of oxygen and
nutrients. Thus, one of the main goals was also to automati-
cally segment the blood vessel maps using the B-COSFIRE
[51–53] algorithm to determine blood oxygenation within
the blood vessels. Finally, a standard operating procedure
in studying murine tumor models involves manually mea-
suring the tumor dimensions using a vernier caliper to
determine tumor volumes. Hence, another objective of this
study was to obtain the surface shape of the imaged tissue
to determine tumor volumes using the optical profilometry
module integrated with the HSI system and compare them
with manual measurements. This part aims to facilitate and
increase the accuracy of the tumor size determination in
animal tumor models.

2 | MATERIALS AND METHODS

2.1 | Imaging system

This study used a custom-built multimodal optical imag-
ing system combining a hyperspectral imaging (HSI)
module and a three-dimensional optical profilometry
(OP) module presented in Figure 1. HSI was integrated
with an optical profilometry module to obtain the surface
shape of the imaged tissue and apply the curvature and
height corrections [45] of hyperspectral images to com-
pensate for the signal loss in areas with high inclination
angles and distance variation. HSI is a push-broom (line-
scanning) hyperspectral imaging device consisting of a
monochrome CMOS camera (Blackfly S, BFS-U3-51S5M-C,
FLIR, Canada), an imaging spectrograph (ImSpector
V10E, Specim, Finland), two motorized translation stages
(8MT195, Standa, Lithuania), custom LED illumination
panel spanning the spectral range of 400–1000 nm and
crossed polarizers to minimize specular reflection. A 50 mm
objective (Xenoplan 2.8/50-0902, Schneider-Kreuznach,
Germany) is used to image a small field of view (FOV) suit-
able for murine tumor models. The 3D optical profilometry
module was based on the triangulation method and com-
prised a laser projector (FLEXPOINT, 30 mW, 405 nm,
LASER COMPONENTS, Germany) and a monochrome
camera (Flea3, FL3-U3-13Y3M-C, FLIR, Canada) with a
16 mm lens and a bandpass filter.

The HSI and OP modules were aligned using a refer-
ence object of known geometry resulting in the multi-
modal image misalignment <0.1 mm. The spatial and
spectral resolution of the HSI module was 100 μm and
2.9 nm, respectively. The accuracy of a 3D surface cap-
tured by the OP module in the X, Y and Z directions was
100, 100 and 50 μm, respectively.

2.2 | Experimental procedure

Seven BALB/c (BALB/cAnNCrl, Charles Rivers) and one
C57Bl/6 (C57Bl/6NCrl, Charles Rivers) 8–10 weeks old
female mice were included in the study to image subcutane-
ously grown tumors. Specifically, two mice with a 4T1
murine mammary carcinoma (American Type Culture Col-
lection, ATCC), one mouse with a B16-F10 murine mela-
noma (ATCC), three with a CT26 murine colon carcinoma
(ATCC) and two with a TS/A [54] mouse mammary adeno-
carcinoma (authenticated by CellCheck, mouse short tan-
dem repeat [STR] profile and interspecies contamination
test) were imaged in the preclinical setting at the Depart-
ment of Experimental Oncology, Institute of Oncology
Ljubljana. Mice were kept in a specific pathogen-free envi-
ronment with a 12-h light–dark cycle at 20�C–24�C with

FIGURE 1 A schematic of the multimodal optical imaging

system combining HSI and OP
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55% ± 10% relative humidity and food and water provided
ad libitum. The experiments were approved by the Ministry
of Agriculture, Forestry and Food of the Republic of
Slovenia (permission no. U34401-3/2022/11).

Tumors were induced by subcutaneous injection of
3 � 105 4T1, B16-F10, CT26 or TS/A tumor cells in 100 μL
of 0.9% NaCl saline onto the back of the mice. Prior to
injection, the cells were cultured in Advanced RPMI 1640
(Gibco, Thermo Fisher Scientific) in a humidified incuba-
tor at 5% CO2 at 37�C. Media was supplemented with Glu-
taMAX (100�, Gibco), 5% fetal bovine serum (FBS, Gibco)
and Penicillin-Streptomycin (100�, Sigma-Aldrich, Merck,
Darmstadt, Germany). The cells were routinely tested
mycoplasma negative by MycoAlertTM PLUS Mycoplasma
Detection Kit (Lonza, Basel, Switzerland).

Before imaging, mice were anesthetized with an anes-
thetic solution (ketamine, 125 mg/kg; xylazine 12.5 mg/kg;
acepromazine 2.5 mg/kg) injected intraperitoneally with
volumes adjusted to the weight of the animal. The back of
the mouse was then shaved and depilated with a depilatory
cream to expose the bare skin and avoid excess light scatter-
ing on the white hair.

2.3 | Image preprocessing

Raw hyperspectral images were normalized to calculate
reflectance using [8]:

Iref ¼ Iraw� Idark
Iwhite� Idark

ð1Þ

where Iref is the sample reflectance, Iraw is the raw hyper-
spectral pixel intensity, Idark is the dark current and Iwhite
is the white standard intensity (Spectralon, Labsphere
Inc., New Hampton). Normalized hyperspectral images
were then corrected for the signal loss due to the chang-
ing inclination of the object surface and distortions
resulting from the varying distance between the object
and the camera. Specifically, 3D OP data were analyzed
to obtain the surface shape profile, and height and sur-
face curvature corrections were applied as described by
Rogelj et al. [45] to flatten the hyperspectral intensity
profiles at different surface inclinations.

Corrected hyperspectral images were spectrally
cropped and binned to 430–750 nm spectral range and
5 nm spectral resolution and spatially binned tenfold in
both directions to facilitate the image analysis. Ulti-
mately, the spectral angle mapper [8, 55] (SAM) was used
for hyperspectral image segmentation to remove the
background and obtain the segmentation masks of
murine tumor models. SAM calculates the spectral simi-
larity of two spectra by treating them as vectors in space

with dimensionality equal to the number of wavelengths
and calculating the angle between them [55]:

θ¼ arccos
s1
!� s2!

js1!
�� ���� � s2

!�� ���� ��
 !

, ð2Þ

where s1
! and s2

! are the two spectra of interest. As a
threshold cosθ¼ 0:2 was selected, resulting in precise
segmentation of tumors from the background.

2.4 | Image analysis by the inverse
adding-doubling algorithm

In order to extract physiological and morphological infor-
mation from the corrected reflectance images, the biological
tissue (e.g., murine skin) is modeled, taking into account its
geometry, absorption and scattering properties, and light
propagation within the tissue must be simulated. [7] The
most common techniques to extract tissue properties are
the inverse Monte Carlo (IMC), the gold standard, the
inverse diffusion approximation (IDA) and the inverse
adding-doubling (IAD) [6]. IMC method is the most widely
used, flexible and accurate, but requires high computational
power and is generally time-consuming. IDA is simple and
rapid but considerably inaccurate. Finally, IAD is much fas-
ter and as accurate as IMC but only applies to layered tissue
[56]. Using these techniques, tissue properties are extracted
iteratively until the calculated values of reflectance or trans-
mittance do not match the measured values [6].

A GPU-accelerated inverse adding-doubling [56]
(IAD) algorithm was implemented in MATLAB R2020b
(Mathworks, MA), allowing rapid and accurate light
propagation simulation in the murine skin model. A two-
layer skin model presented in Figure 2 was used, consist-
ing of the epidermis and semi-infinite dermis with
11 tissue properties thoroughly described in our recent
publication [57]. Briefly, the absorption coefficient of the
epidermis was calculated as [7]:

μa,epi ¼ fmμa,mþμa,base, ð3Þ

FIGURE 2 A two-layer murine skin model consisting of the

epidermis and semi-infinite dermis with 11 tissue parameters
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where fm is the volume fraction of melanin, μa,m is the
melanin absorption coefficient and μa,base is the baseline
absorption of bloodless skin. The absorption coefficient
of the semi-infinite dermis was defined as [7]:

μa,der ¼
fHbμa,Hbþ fHbO2

μa,HbO2
þ f brubμa,brub

þ f COμa,COþ f COO2
μa,COO2

þμa,base,
ð4Þ

where fHb and fHbO2
are volume fractions of deoxy- and

oxyhemoglobin, μa,Hb and μa,HbO2
are corresponding

absorption coefficients, and f brub and μa,brub are concen-
tration and absorption coefficient of bilirubin, respec-
tively. Moreover, f CO and f COO2

are concentrations of
reduced and oxidized cytochrome C oxidase, whereas
μa,CO and μa,COO2

are associated absorption coefficients.
These two parameters were included in the model to
improve the fitting for wavelengths above 650 nm. The
reduced scattering coefficient was calculated as [7]:

μ0s ¼ a f Ray
λ

500nm

� ��4

þ 1� f Ray
� � λ

500nm

� ��b
" #

: ð5Þ

Here, a is the reduced scattering coefficient at 500 nm, b
is an exponential parameter related to the size of the Mie
scatterers and f Ray represents the fraction of Rayleigh
scattered light. In Figure 2, de represents the epidermis
thickness, and dd represents the actual dermis thickness,
restricted in the IAD algorithm to values an order of mag-
nitude thicker than the penetration depth of light in the
400–1000 nm spectral range (a few cm compared to a few
mm). Since dd is so thick (the average value estimated by
the IAD algorithm is 5.62± 0.69 cm) that almost no light
passes through it can be considered semi-infinite.

Levenberg–Marquardt (LM) algorithm was adopted to
GPU for least-squares fitting of measured reflection spec-
tra, and the maximum number of iterations was limited
to 200. Incoming and outgoing light was divided into
20 fluxes to ensure accuracy comparable to MCML. [58]
Fitting was performed on a computer comprising an Nvi-
dia Titan Xp graphics card with 12 GB RAM, AMD
Ryzen 7 1700X processor and 16 GB RAM. The batch size
(simultaneous number of GPU threads) was 1000. The
average number of iterations was 25�14, and the aver-
age fitting time per spectrum was 0:22�0:57 s.

2.5 | Blood vessel segmentation

Automatic blood vessel segmentation was performed to
obtain maps and skeletons of blood vessels from blood
parameter maps extracted from hyperspectral images.

First, blood oxygenation was calculated from deoxy- and
oxyhemoglobin volume fractions:

StO2 ¼
fHbO2

fHbþ fHbO2

: ð6Þ

Then, StO2 parameter map was thresholded and
enhanced using contrast limited adaptive histogram
equalization (CLAHE) to improve the contrast of blood
vessels. Images were also padded to minimize the edge
artifacts [10]. Finally, blood vessels were segmented using
an automated B-COSFIRE [51–53] algorithm, which
detects elongated features such as lines (i.e., blood ves-
sels) using the identification of maximal values of convo-
lution of the original image with a linearly arranged
Difference of Gaussian (DoG) functions. Images resulting
from the B-COSFIRE segmentation were thresholded to
discard the parts of an image (with a response lower than
30) corresponding to noise and algorithm artifacts. Seg-
mented binary blood vessel masks were post-processed
using dilation, erosion and Gaussian smoothing to
remove the artifacts and improve the segmentation. Ulti-
mately, vessel skeleton maps were extracted from the seg-
mented blood vessel maps.

2.6 | Tumor volume estimation

Tumor volumes were estimated using a standard proce-
dure involving manual measurements performed at the
Department of Experimental Oncology, where three per-
pendicular axes (A, B and C) are measured with a vernier
caliper (Mitutoyo, Japan) and the tumor volume is
approximated with an ellipsoid:

V ¼ π
6
ABC: ð7Þ

These results were compared to the tumor volumes calcu-
lated from the three-dimensional point clouds obtained
with the profilometry module of the multimodal imaging
system. Two approaches were used: in the first approach,
the perpendicular axes of the tumor were measured from
the 3D point clouds, and tumor volumes were calculated
using Equation (7); in another approach, the tumor mask
from SAM segmentation was applied to 3D point cloud to
locate the tumor. Then, we summed the number of voxels
under the mask belonging to the tumor mass. The tumor
volume was then estimated from a total number of tumor
voxels and a known volume of a single voxel (V 1) as:

V ¼V1 �
X

i � tumor

i ð8Þ
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3 | RESULTS

3.1 | Image analysis and tissue
parameters extraction

In this section, the results of hyperspectral image analysis
of eight mice with subcutaneously grown tumors are pre-
sented. Figure 3 shows the in vivo measured reflectance
skin spectra at 430–750 nm of four different tumors
(in red) and surrounding healthy tissue (in blue)
extracted from hyperspectral images. The following
tumor models are presented: (A) 4T1, (B) B16-F10, (C)
CT26 and (D) TS/A. The figure shows that healthy tissues
feature either a double camel hump (oxygenated tissue)
or a dip (relatively deoxygenated tissue) in the 550–
600 nm spectral region. However, this does not apply to
the healthy tissue surrounding the B16-F10 tumor, which
is deoxygenated and has much lower reflectance values
than other healthy tissues for wavelengths larger than
650 nm. As for tumor models, the reflectance spectra do
not have the described characteristic shape. Generally,
they have lower reflectance values, indicating higher
absorption in the tumor tissue at low wavelengths, espe-
cially in the B16-F10 murine melanoma model, where
high melanin volume fraction yields reflectance values
close to 0 (Figure 3B). On the other hand, the spectra of
the CT26 tumor model are similar to spectra of healthy
tissue, yet they are slightly more oxygenated with a
higher blood volume fraction, as indicated by a more pro-
nounced double camel hump and lower reflectance for

wavelengths lower than 650 nm. It is also interesting to
note that spectra of 4T1 and TS/A tumor models are very
similar, indicating a similar composition of both tumor
models.

In general, the spectra of the tumors could be easily
discriminated from the spectra of the healthy tissue
allowing the classification of tumorous and healthy tis-
sue. The spectra also show that some tumor models, such
as TS/A, are more homogeneous than the others (e.g.,
4T1), deducing from the high standard deviations.

The measured reflectance skin spectra were fitted
using the IAD algorithm to extract tissue parameters
from the hyperspectral images. Figure 4 shows the
measured and fitted spectra of a female BALB/c mouse
with a subcutaneously grown 4T1 mammary carci-
noma. The presented spectra are from the less oxygen-
ated (Figure 4A), the more oxygenated area of the
healthy tissue (Figure 4B), and the tumor tissue
(Figure 4C). The difference in oxygenation is notable
in the 550–600 nm spectral region, where a double
camel hump is more pronounced in Figure 4B than in
Figure 4A. The tumor spectrum is significantly differ-
ent from the healthy tissue spectrum. An excellent
match between fitted and measured spectra is obtained
(R2 > 0:99 for the presented spectra), apart from the
minor deviations for wavelengths around 400 nm and
above 650 nm. The latter could be attributed to higher
noise levels in these spectral regions due to the LED light
source. In these spectral regions, the illumination inten-
sity is reduced [59].

FIGURE 3 Reflectance skin spectra recorded in vivo of healthy (blue lines) and murine tumor tissue (red lines): A, 4T1; B, B16-F10; C,

CT26 and D, TS/A tumor models for subjects 2, 3, 5 and 7 (Table 1). Solid lines represent the mean spectra, and shaded areas represent the

corresponding standard deviation
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Figure 5 shows a color image of the 4T1 mammary
carcinoma and surrounding healthy tissue calculated
from the hyperspectral image of a female BALB/c mouse.
Blood vessels in the skin surrounding the tumor and the
necrotized tissue (central dark area) within the tumor are
present.

Figure 6 presents maps of melanin volume fraction
fm, deoxyhemoglobin fHb and oxyhemoglobin fHbO2

,
extracted from the hyperspectral image of a female

BALB/c (Figure 5). Notably, the melanin and deoxyhe-
moglobin volume fractions are much higher within the
tumor tissue than in the neighboring healthy skin tissue,
as are some areas of oxyhemoglobin. Blood vessel archi-
tecture is distinctly visible from the colormaps of deoxy-
and oxyhemoglobin (marked with black arrowheads).
The mean value of fm within the tumor and in the
healthy tissue was 3.24%± 2.51% and 0.49%± 0.07%,
respectively. The respective mean values of blood oxygen-
ation in the tumor area and healthy tissue were 13.47%
±18.51% and 25.52%± 14.49%. These results suggest that
the 4T1 mammary carcinoma in a murine tumor model
has a significantly higher melanin volume fraction and is
considerably less oxygenated than healthy skin tissue sur-
rounding the tumor. However, high fm could be due to
an interplay between melanin and necrosis, as discussed
later. Although the maps are generally smooth, they
appear grainy and noisy in the tumor due to the higher
heterogeneity of the tumor tissue compared to the
healthy tissue.

In further analysis, all tumors and healthy tissues
were considered together to deduce some general tumor
properties that could differentiate them from healthy tis-
sue. Shown in Figure 7 are the box plots for average tis-
sue parameters for all tumor models and healthy tissues.
Interestingly, values of physiological properties such as
fm, fHb, fHbO2

and StO2 are all higher in tumors than
healthy tissues, suggesting that the investigated tumors
generally contain more melanin and are more oxygen-
ated than healthy tissue. The difference in melanin vol-
ume fraction is especially relevant in the B16-F10 murine
melanoma, which is six times higher within the

FIGURE 4 In vivo measured (blue line) and fitted (red line) reflectance skin spectra of a BALB/c mouse (subject 2) with a

subcutaneously grown 4T1 mammary carcinoma: A, less oxygenated tissue; B, more oxygenated tissue; C, tumor tissue

FIGURE 5 Color image extracted from the hyperspectral

image of a female BALB/c mouse (subject 2) with a subcutaneously

grown 4T1 mammary carcinoma
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melanoma than in the surrounding tissue. Tissue oxygen-
ation was higher in all examined tumor models except
for a 4T1 mammary carcinoma presented in Figure 6,
being an outlier for StO2 in Figure 7D. In this tumor
model, there is an area of low oxygenation in the necro-
tized tissue, vastly contributing to overall low oxygena-
tion within the tumor. It could also be attributed to
pockets of hypoxia within the tumor formed due to oxy-
gen requirements exceeding the oxygen supply. We have
also found that total hemoglobin content was, on aver-
age, four times higher in tumors than in healthy tissue.
As for the scattering properties connected with tissue
morphology, the scattering coefficient and the scattering
power were higher in the healthy tissue than in tumors,

suggesting a more homogenous composition of the
tumors.

We performed the Mann-Whitney U-test to test if there
are statistically significant differences between tumors and
healthy tissue based on the extracted tissue parameters.
Briefly, the test checks the null hypothesis that data in two
groups are samples from continuous distributions with
equal medians against the alternative hypothesis that they
are not. The test assumes that the two samples are inde-
pendent. For all parameters presented in Figure 7, as well
as total hemoglobin content, there are statistically signifi-
cant differences (p<0:05) between tumors and healthy
tissues, except for the scattering amplitude a (p¼ 0:13).
Based on these results, the spectral analysis clearly shows

FIGURE 6 Maps of A, fm; B, fHb and C, fHbO2
extracted from the hyperspectral image of a female BALB/c mouse (subject 2) with the

subcutaneously grown 4T1 mammary carcinoma. Black arrowheads point at the visible blood vessels, and red arrowheads point at the

necrotized tumor area. Color bar for fHb is in logarithmic scale for the optimal display of blood vessels

FIGURE 7 Box plots of extracted tissue parameters for all healthy tissues and tumor models: A, fm; B, fHb; C, fHbO2
; D, StO2; E, a and F,

b. Tissue oxygenation, StO2, was calculated from Equation (6). HT, healthy tissues; T, tumors. On each blue box, the central mark represents

the median value, and the bottom and top edges indicate 25th and 75th percentiles, respectively. The whiskers extend to the most extreme

data points not considered outliers, and the outliers are plotted individually using the red plus (+) marker symbol
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that the tumors have significantly different physiological
and morphological properties than healthy skin tissue.
Therefore, spectral imaging enables the discrimination
between them.

3.2 | Blood vessel segmentation

Herein we present the results of blood vessel segmenta-
tion from oxygenation maps extracted from hyperspectral
images of murine tumor models. As described in
Section 2.5, tissue oxygenation was first calculated using
Equation (6), followed by image contrast enhancement
using CLAHE and blood vessel segmentation using the
B-COSFIRE algorithm. Shown in Figure 8 are the results
of blood vessel segmentation from calculated StO2

parameter maps. Specifically, Figure 8A shows the raw
StO2 parameter map that was later preprocessed to
enhance the contrast of blood vessels before using as an
input to the B-COSFIRE algorithm for blood vessel seg-
mentation. Figure 8B presents the binary blood vessel
segmentation mask obtained by thresholding and post-
processing the B-COSFIRE response image and overlaid
onto the StO2 parameter map. A comparison between the
applied binary mask in Figure 8B and RGB image in
Figure 5 confirms that most blood vessels visible by the
naked eye were accurately segmented, as well as some

blood vessels hardly visible from the image. Blood oxy-
genation within the blood vessels was calculated by
applying the binary mask and the skeleton mask to the
StO2 parameter image of subject 2. For 4T1 mammary
carcinoma, the respective mean values of blood oxygena-
tion in the tumor area and healthy tissue were 13.47%
±18.51% and 25.52%± 14.49%, as mentioned in
Section 3.1. Notably, healthy tissue oxygenation is an
average of the vessel oxygenation and the surrounding
tissue oxygenation. With the blood segmentation masks
available, we could separate the two areas. StO2 values
within the blood vessels and the healthy tissue excluding
vessels were 37.49%± 5.46% and 24.70%± 14.55%, respec-
tively. As expected, these results show that blood oxygen-
ation within the vessels is much higher than in other
areas of healthy tissue, and the blood vessel oxygenation
variation is much lower.

Moreover, Figure 8C shows the blood vessel skeleton
representing vascular architecture overlaid applied to the
StO2 map. From the skeleton map, the oxygenation pro-
file within two annotated blood vessels was determined
in the direction indicated by the red arrows and is pre-
sented in Figure 8D. Such an approach makes it possible
to determine the changes in blood oxygenation along the
vessels within the tumors or the surrounding tissue. Since
the image pixel size is known, the length of the blood ves-
sels could also be accurately calculated. For example, the

FIGURE 8 Blood vessel segmentation from the StO2 map (subject 2) using the B-COSFIRE algorithm: A, StO2 parameter map; B, post-

processed binary segmentation mask applied to StO2 map; C, skeleton representing vascular architecture applied to StO2 map and D,

oxygenation profile along blood vessels 1 and 2 (annotated in B)
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length of the blood vessels 1 and 2 between the red
markers was 0.44 and 0.65 cm, respectively. The oxygena-
tion and blood volume in the blood vessels could also
serve as tumor biomarkers.

3.3 | Tumor volume estimation

This section presents the tumor volume estimation based
on three-dimensional optical profilometry integrated
with the hyperspectral imaging system. First, tumors
were segmented from the normalized hyperspectral
images based on the SAM method Equation (2). The seg-
mented tumor masks were then post-processed to fill the
holes within the tumor and remove the outlying points to
get the binary masks. Figure 9A shows the 525 nm band
of the hyperspectral image of a TS/A murine mammary
adenocarcinoma, whereas Figure 9B presents the binary
segmentation mask of the tumor obtained with the SAM

method. There is a good agreement between the visually
estimated tumor location and its binary mask. Figure 9C
shows the hyperspectral image overlaid onto the 3D point
cloud extracted using the optical profilometry module,
enabling 3D inspection of the imaged tumor.

The tumor volumes estimated from 3D OP data using
the two approaches described in Section 2.6 are com-
pared to the standard vernier caliper procedure in
Table 1. All methods roughly agree; however, the vol-
umes estimated from the profilometry data using the first
approach (OP1 in Table 1) generally overestimate the
manual measurements by 2.9% to 8.5%; on the other
hand, tumor volumes estimated from the profilometry
data using the second approach (OP2 in Table 1) are
either smaller or larger by a minimum of 7.4% and a max-
imum of 26.3%, compared to the standard technique
using a vernier caliper. The discrepancies between the
approaches mainly result from the fact that the actual
tumor shapes are not ellipsoids as assumed by the

FIGURE 9 (A) Hyperspectral image at the 525 nm spectral band of a TS/A murine mammary adenocarcinoma (subject 7); (B) a binary

segmentation mask of the tumor obtained with SAM and (C) hyperspectral image overlaid onto the 3D point cloud of the tumor

TABLE 1 The comparison of tumor volumes estimated using 3D OP and manual measurements with a vernier caliper for different

murine tumor models

Subject Tumor model Volume (caliper) [mm3] Volume (OP1) [mm3] Volume (OP2) [mm3]

1 4T1 104.7 111.3 132.2

2 4T1 49.6 53.8 41.0

3 B16-F10 118.7 126.6 140.1

4 CT26 88.5 91.2 101.8

5 CT26 164.8 175.5 195.7

6 CT26 267.5 259.7 220.3

7 TS/A 81.8 88.1 92.6

8 TS/A 334.3 318.3 309.4
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standard approach. For example, a 4T1 mammary carci-
noma presented in the RGB image (Figure 5) has an
irregular shape and is relatively shallow in the middle.

4 | DISCUSSION

This article aims to show that distinct characteristics of
tumor tissue can be investigated and quantified using a
multimodal optical imaging approach combining hyper-
spectral imaging and optical profilometry. The former
has shown much promise in highlighting the physiologi-
cal differences in tumors and healthy tissue, such as
blood volume fraction and tissue oxygenation, and mor-
phological differences reflected in the tissue scattering
properties. Furthermore, blood vessels within the tumor
and its environment can be segmented from the extracted
blood parameter maps, allowing for monitoring angio-
genesis in early-stage solid tumors and blood vessel
growth over time. On the other hand, profilometry can
be used to measure tumor size and thus monitor tumor
growth by accurately estimating tumor volumes from
three-dimensional point clouds. To the best of our knowl-
edge, this is the first study to apply the combination of
hyperspectral imaging and three-dimensional optical pro-
filometry to examine murine tumor models in a preclini-
cal pilot study.

Figure 3 shows the normalized measured reflectance
skin spectra of various tumor models and surrounding
healthy tissues. The spectra allow direct discrimination
between most tumor models (4T1, B16-F10, TS/A) and
healthy tissue without needing to extract the tissue
parameters from the hyperspectral images since the spec-
tra change dramatically when the disease is present.

The hyperspectral images of murine tumor models
were fitted using the IAD algorithm to extract tumor tis-
sue's physiological and morphological parameters and
the surrounding healthy tissue. Figure 4 shows the mea-
sured and fitted spectra of a 4T1 mammary colon adeno-
carcinoma (subject 2). Specifically, the spectra from
within the less oxygenated, more oxygenated, and tumor
tissue are presented. Here the characteristic shape of the
spectra is altered in the tumor model, demonstrating that
hyperspectral imaging is very sensitive to small changes
in oxygenation, especially in the 550–600 nm spectral
range. The fit results also show a good agreement
between the measured and fitted spectra, suggesting that
the IAD algorithm is accurate and robust in extracting
the tissue parameters. However, our recent publication
[57] showed that different sets of model parameters could
yield precisely the same reflectance spectra, meaning
there is already some intrinsic uncertainty in parameter
estimation.

A comparison of the tissue parameters between all
tumor models and the surrounding healthy tissues con-
sidered in this study is presented in box plots in Figure 7.
It shows that physiological properties such as fm, fHb,
fHbO2

, StO2 and total hemoglobin content are generally
higher in tumors than in healthy tissues. Meanwhile, the
opposite applies to scattering properties such as a and b.
Lower scattering parameters for tumors could be related
to the structural changes within the diseased tissue, such
as the local collagen fiber reorganization and alignment
and cell and nuclei sizes [60]. However, the tumor oxy-
genation is expected to be lower than in the healthy tis-
sue due to the increased demand for oxygen and
disrupted supply, which opposes our findings [1–3]. A
potential explanation is that the oxygen supply in small
tumor models is sufficient to meet the growing tumor
demand, as reported by Ziemer et al. [61]. On the other
hand, large tumors are usually more hypoxic in the cen-
ter and well-oxygenated in the tumor margins [62]. It is
also possible that high oxygenation within the investi-
gated tumors could be attributed to petechiae from skin
irritation due to depilation. Generally, low oxygenation
values are probably because the skin is typically among
the least oxygenated tissues [63]. We have also found that
total hemoglobin content is four times higher in tumors
than in healthy tissue, meaning there is more blood
within the diseased tissue due to an increased demand
for oxygen and nutrients. Finally, we confirmed that the
differences in tissue parameters between the tumors and
healthy tissue are statistically significant (p< :05) for all
parameters except a, as determined by the Mann–Whit-
ney U-test.

We also investigated the oxygenation within the
blood vessels segmented from the StO2 map (Figure 8A)
using the B-COSFIRE algorithm. Figure 8B shows the
binary segmentation mask overlaid onto the blood oxy-
genation map of a 4T1 tumor model, and Figure 8C
shows the blood oxygenation of the vessel skeleton map.
Using the B-COSFIRE, it is possible to isolate the oxygen-
ation within the healthy tissue, excluding the blood
vessels. We showed that blood oxygenation in the tumor-
feeding blood vessels is approximately 50% higher than in
the remaining healthy tissue and that the oxygenation
variation is much lower in the vessels than in the tissue.
Moreover, oxygenation profiles for two blood vessels
were plotted in Figure 8D, allowing us to determine
changes in oxygenation along the vessels. A combination
of the presented information could be beneficial in moni-
toring the angiogenesis and blood vessel growth in
tumors and the surrounding tissues as the disease gradu-
ally progresses and in monitoring the dynamic processes
such as stroke. We also demonstrated that the vascular
architecture and blood vessel length could be determined
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from the vessel skeletons, opening many possibilities to
quantify vascular morphology, such as vessel skeleton
density [64].

A standard approach to monitoring tumor progres-
sion in murine tumor models is the measurement of
tumor volumes [46]. Usually, daily measurements of the
three tumor axes are performed with a vernier caliper,
and the tumor volume is calculated using Equation (7).
However, approximating solid tumors with an ellipsoid
yields errors in tumor volume estimation since the
tumors are not ellipsoids. Our results show that the dis-
crepancy between the manual approach and the esti-
mated volumes from the profilometry data is within 26%
(Table 1) when tumor volume is estimated using
Equation (8). However, when tumor volumes are esti-
mated from profilometry data by measuring three per-
pendicular axes and using Equation (7), the differences
with the manual measurements are less than 10% and as
low as 2.9%. The latter approach is more precise because
it uses the same method Equation (7) as the manual
approach yet still overestimates the tumor volume. We
believe this is because the vernier caliper slightly
squeezes the tumor when performing manual measure-
ments, resulting in lower tumor volumes.

On the other hand, the tumor volumes from the profi-
lometry approach using Equation (8) are more different
from manual measurements than the profilometry
approach using Equation (7), presumably related to the
actual tumor shapes differing from the ellipsoid shape.
However, because of a remarkably high spatial resolution
of the 3D OP module (0.1, 0.1 and 0.05 mm in the X, Y
and Z directions), we firmly believe that tumor volumes
estimated from profilometry data using the second
approach Equation (8) are more accurate than two other
measurements. We showed that with the help of the 3D
OP, tumor volumes could be estimated more accurately
than using a vernier caliper.

Furthermore, Figure 9C presents the spectral image
overlaid onto the 3D point cloud. This visual representa-
tion demonstrates the power of combining the comple-
mentary information using different optical imaging
modalities to improve the disease diagnosis by helping
convey the relevant diagnostic information to the
observer.

This pilot study demonstrated that a multimodal opti-
cal imaging system comprising hyperspectral imaging
and three-dimensional optical profilometry could dis-
criminate between tumor and healthy tissue based on
quantitative information about tissue physiology, pathol-
ogy and morphology. However, further studies of specific
tumor models are needed with enough subjects (at least
10–20) to assess the tumor growth, angiogenesis and
blood vessel growth characteristics with a high degree of

statistical significance. A sufficient number of subjects for
specific tumor models could also help identify that partic-
ular model's physiological and morphological characteris-
tics and help discriminate different tumor types. These
properties might include but are not limited to physiolog-
ical parameters such as melanin volume fraction and tis-
sue oxygenation. The former is usually high in
melanoma tumors [65]; the latter is often low in tumors
and even lower in highly aggressive phenotypes [3]. Dif-
ferent tumor models could also be discriminated based
on morphological properties such as graininess of the
surface or highly tortuous and porous blood vessel
structure [3–5].

One limitation of this study is that, at the moment, only
blood vessels in the tumor environment can be detected
and segmented, especially in sizeable tumors. We believe
this could be attributed to some parts of tumors being out
of focus due to the shallow depth of field of the camera
lens. Since the imaging plane was in the middle of the
tumors in the Z direction, small blood vessels within the
tumors could be blurred and thus not distinctive. Another
possibility is that blood vessels in large tumors are located
deep within the tissue and therefore not reached by the
incident light in the 400–1000 nm spectral band.

Light penetration depth in the human skin in this
spectral band is between 0.5 and 2.5 mm [66], but human
skin is significantly thicker than murine skin. The
human epidermis and dermis are generally 100–150 μm
and 1–4 mm thick [6, 67], respectively, compared to 10–
50 μm and 0.1–0.7 mm in mice [67], meaning that light
in the 400–1000 nm spectral band penetrates these two
skin layers in mice and can even probe the subcutaneous
adipose tissue layers. The absorption of the subcutaneous
layer is defined by hemoglobin, lipids and water, but it
was not considered in our two-layer model because
absorption by water and lipids is especially relevant in
the NIR spectral band for wavelengths higher than
1000 nm not used in this study. Moreover, Bjorgan and
Randeberg [68] proved that by exploiting the scale-
invariance of the reflectance modeling, it is possible to
consider just the epidermis and dermis without fully
modeling complex deeper layers. Therefore, a two-layer
murine skin model should sufficiently accurately model
light propagation in biological tissue and estimate tissue
parameters describing tissue physiology and morphology.

In our recently published research work [57], we
showed that the accuracy and robustness of tissue param-
eter extraction by the IAD algorithm improved signifi-
cantly as more model parameters were fixed. For
example, the standard deviation of fHb decreased eight-
fold as the number of free model parameters was reduced
from 11 to 5. In the present study, all model parameters
of the two-layer murine skin model were estimated.
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Although we have no ground truth values for estimated
tissue parameters, based on our previous observations for
simulated reflectance skin spectra, the mean values of
fitted parameters are within �1 STD from the actual
values. We also demonstrated that the correlation
between the estimated parameters depends on the selec-
tion of fixed parameters [57]. In the present study, fm
and de exhibited the highest negative correlation
(Pearson correlation coefficient was p12 ¼�0:7538),
meaning a decrease in epidermal thickness yields a
higher melanin volume fraction. It can be explained by
the fact that melanocytes in the epidermis are the major
producers of melanin, which is therefore the main
absorber in the epidermis [6]. As the layer thickness
decreases, the volume fraction of melanin must be
increased to compensate for a change in light absorption.
On the other hand, no correlation (p12 ¼�0:0708) was
found for fm and fHbO2

, meaning a change in one param-
eter does not affect the other at all.

A relevant limitation of the present study is low
reflectance values for the B16-F10 melanoma tumor
model (Figure 3B) due to the high melanin volume frac-
tion within the melanoma, fm ¼ 6:46%�2:68%, leading
to the inaccurate extraction of the tissue parameters such
as oxygenation. To increase the amount of signal, the cur-
rent exposure time of 250ms would have to be increased
significantly. However, this could lead to overexposure of
the surrounding tissue with much less absorption from
melanin, so the exposure time should be carefully opti-
mized to satisfy both cases.

An important issue is also an interplay between mela-
nin and tumor necrosis. The melanin volume fraction is
overestimated in necrotized tumors (Figure 6A) because
the spectra of melanin and necrotized tissue seem simi-
lar, and the necrosis optical data is not included in our
current tumor model. Therefore, we plan to obtain histo-
pathological samples of the necrotized tumor tissue and
perform microscopic hyperspectral imaging to obtain the
corresponding reflectance and transmittance spectra.
This data will be used to determine the optical properties
of the necrotic tissue. Then, the necrotized tissue could
be incorporated into the tissue model to better discrimi-
nate between the actual necrosis and tissue with high
melanin volume fraction.

Tissue properties such as fm, fHb and fHbO2
could be

estimated from the hyperspectral images by calculating
standard RGB channel intensities as in Figure 5 and
determining their concentrations from these channels.
Nishidate et al. [69] estimated tissue parameters based on
the RGB images and found a good match between the
proposed method and the actual results. For example,
the estimated oxygenation values were within 10% of the
actual, while the error was 3.46% for the melanin

concentrations. Similarly, the group by Spigulis proved
the concept of single snapshot multispectral imaging for
skin chromophore mapping [70] and applied it to extract
values fm, fHb and fHbO2

for skin malformations [71, 72].
The main advantage of estimating tissue properties from
RGB images is speed due to a time-consuming process of
least-squares fitting of reflectance spectra to estimate
properties directly from hyperspectral images. However,
extraction based on the RGB channel intensities does not
consider the whole spectrum of LED illumination but indi-
vidual values, possibly missing some crucial information
because various chromophores express characteristic fea-
tures in different spectral bands. Also, this approach gener-
ally involves estimating the absorption properties of tissue
but rarely the scattering properties, which could provide rel-
evant information about the tissue scatterers, such as their
size. However, in the future study, we will directly compare
the tissue parameters extracted either from HSI or projected
RGB images to assess the feasibility of using a more compu-
tationally demanding full HSI analysis.

5 | CONCLUSION

This preliminary study examined eight mice with four dif-
ferent subcutaneously grown tumor models employing
combined hyperspectral imaging (HSI) and three-
dimensional (3D) optical profilometry (OP). We demon-
strated that hyperspectral imaging could differentiate
between tumor models and healthy tissue based on the
shape of skin reflectance spectra and the physiological (mel-
anin volume fraction, blood oxygenation) or morphological
(scattering properties) tissue parameters extracted from the
hyperspectral images. We also demonstrated the blood ves-
sel segmentation using B-COSFIRE based on tissue oxygen-
ation maps, which could be used to monitor oxygenation
within the blood vessels. Moreover, vascular architecture
could be determined using the skeletonization approach,
and the oxygenation profiles along the blood vessels could
be measured. Additionally, blood vessel length and volume
could be easily determined from the binary segmentation
masks or skeletons. Additionally, tumor volumes could be
accurately determined from the 3D point clouds obtained
with the OP module, eliminating the need for manual
tumor measurements using a vernier caliper.

By exploiting the combined information about tissue
parameters, blood vessels and tumor volumes, we provide
a valuable tool to monitor tumor growth and disease pro-
gression in murine tumor models. Following the biologi-
cal validation in murine tumor models, the presented
imaging system could be translated into the clinical set-
ting and applied to non-invasive and contactless tumor
detection in human patients.
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