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Abstract: Potato production worldwide is threatened by late blight, caused by the oomycete Phy-
tophthora infestans (Mont.) de Bary. Highly resistant potato cultivars were developed in breeding
programs, using resistance gene pyramiding methods. In Sárpo Mira potatoes, five resistance genes
(R3a, R3b, R4, Rpi-Smira1, and Rpi-Smira2/R8) are reported, with the latter gene assumed to be the
major contributor. To study the level of late blight resistance conferred by the Rpi-Smira2/R8 gene,
potato genotypes with only the Rpi-Smira2/R8 gene were selected from progeny population in which
susceptible cultivars were crossed with Sárpo Mira. Ten R8 potato genotypes were obtained using
stepwise marker-assisted selection, and agroinfiltration of the avirulence effector gene Avr4. Nine
of these R8 genotypes were infected with both Slovenian P. infestans isolates and aggressive foreign
isolates. All the progeny R8 genotypes are resistant to the Slovenian P. infestans isolate 02_07, and
several show milder late blight symptoms than the corresponding susceptible parent after inoculation
with other isolates. When inoculated with foreign P. infestans isolates, the genotype C571 shows
intermediate resistance, similar to that of Sárpo Mira. These results suggest that Rpi-Smira2/R8
contributes to late blight resistance, although this resistance is not guaranteed solely by the presence
of the R8 in the genome.

Keywords: potato R8 genotypes; Sárpo Mira; Rpi-Smira2/R8; Phytophthora infestans; in vitro infection;
Solanum tuberosum

1. Introduction

The potato (Solanum tuberosum L.) holds a significant place in global crop production,
with over 370 million tons produced in 2019 [1]. Although the potato was not immediately
accepted by European farmers after its first introduction in the late 16th century by Spanish
colonizers, nowadays potatoes remain an essential staple food crop in Europe, with over
55.3 million tons harvested in 2020 [2].

In particular, late blight, caused by the oomycete Phytophthora infestans (Mont.) de
Bary, is considered one of the most devastating plant diseases, and poses a challenge to
both organic and conventional potato production systems worldwide [3]. It is estimated
that late blight causes up to EUR 1 billion losses in costs with the control and reduction of
production [4]. Fungicides are most frequently used in late blight control, however, their
mass application increases the evolutionary pressure on P. infestans, which could potentially
lead to the development of fungicide resistance [5].

Phytophthora infestans is a hemibiotroph, meaning that its life cycle is both biotrophic
and necrotrophic [6]. This pathogen can reproduce asexually or sexually, depending on the
presence of the two mating types, referred to as A1 and A2 [7]. In asexual reproduction,
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sporangia are carried either by wind or water to their host cells, where they germinate
directly, by forming invasive hyphae, or indirectly, by zoospores [8].

Until the 1980s, only isolates of P. infestans of mating type A1 existed in Europe, which
prevented P. infestans from increasing its genetic diversity through sexual recombination [9].
In the period between 1980 and 1988, several European countries began to report the ap-
pearance of the isolates of the A2 mating type [10]. This drastically changed the P. infestans
populations, especially in north-western Europe, leading to fungicide resistance, higher
environmental adaptability, and disease control challenges [11]. In 2004, the genotype
EU_13_A2 (also known as Blue13) spread out across north-western Europe, and became the
dominant genotype in European fields for five years [12]. Its aggressiveness and resistance
to phenylamide fungicides made it difficult for farmers to control the disease [13]. In 2017,
the presence of Blue13 decreased, replaced by other adapted genotypes, such as EU_36_A2,
EU_37_A2, and EU_41_A2, which still continue to spread today [14].

In addition to late blight research and control of the disease using fungicides, potato
breeding programs continuously developed new potato cultivars with high resistance to late
blight [4,15–19]. Plant resistance is divided into two types: vertical resistance (race-specific)
and horizontal (race-non-specific, partial resistance) [20]. Vertical resistance involves the
major resistance (R) genes that produce R proteins, which interact with the effector proteins
secreted by P. infestans. This interaction requires the presence of both products of the
R gene, and a corresponding avirulence effector gene (Avr) from the pathogen to result
in plant resistance, according to the gene-for-gene model [21]. Pathogen effectors bind
to the complementary R proteins in plants, resulting in the hypersensitive response as
part of the effector-triggered immunity (ETI) [8,22–24]. Based on the same model, the
transient agroinfiltration of the effector genes is used in many potato studies for gene
function analysis [25], transgenic potato plant production [26], metabolic studies [27,28],
and resistance enhancement [29,30].

In the mid-20th century, several wild potato species carrying major R genes were
identified, mostly Solanum demissum, with eleven race-specific R genes (R1–R11) [31]. Some
of these R genes were introduced into potatoes to form new resistant cultivars with multiple
stacked R genes (gene pyramiding), which proved to have stronger and more durable
resistance [20]. As the P. infestans population developed and evolved into more complex
races and highly adaptable strains, these cultivars were soon overcome by the pathogen,
and the major R genes derived from S. demissum were no longer sufficient [32]. Researchers
focused on horizontal or quantitative resistance, conferred by QTLs, and discovered new
sources of resistance from wild potato species. To date, more than 60 Rpi and R genes have
been identified, the most recent being Rpi-amr1, which confers broad-spectrum resistance
to late blight [33,34].

In the 1990s, a potato breeding program, led by the Sárvari family, developed a highly
late blight-resistant cultivar, Sárpo Mira [35]. It was trialed in the United Kingdom, and
included in the United Kingdom National List in 2002 [36]. After almost three decades,
Sárpo Mira is still resistant to late blight, even after inoculation with the aggressive isolate
EU_13_A2 [37,38]. The exact molecular mechanisms underlying this resistance in Sárpo
Mira are still under investigation. It is known that resistance is conferred by four qualitative
resistance genes, R3a, R3b, R4, and Rpi-Smira1, and one quantitative gene, Rpi-Smira2 [39].
However, Sárpo Mira resistance differs depending on whether the whole plant was infected,
or whether only detached leaves were inoculated [40–42].

Of the five R genes in Sárpo Mira, Rpi-Smira1 and Rpi-Smira2 are the subject of molec-
ular and resistance studies [36,43–47]. Rpi-Smira1 is located on chromosome XI, near the
R3 gene cluster of the potato genome, which is associated with the location of several other
S. demissum-originating resistance genes [36]. In a PhD dissertation by Jo [48], it is suggested
that Rpi-Smira2 and R8 are identical, or functional homologs, and confer similar resistance
levels. Genetic mapping reveals that the R8 gene is located on the long arm of chromosome
IX [46], and not on the short arm of chromosome XI, as originally hypothesized [49]. The
R8 gene is also present in Mastenbroek R8 (MaR8) differential plants, the cultivars Jacque-
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line Lee and Missaukee, and the Chinese cultivars PB-06 and S-60, shown to have similar
late blight resistance levels to Sárpo Mira in field trials [50]. Therefore, the Rpi-Smira2/R8
gene was hypothesized to be the predominant source of P. infestans resistance in Sárpo Mira.
So far, late blight resistance studies of the Rpi-Smira2/R8 gene include either transgenic
plants with the R8 gene [50], which limits its use in potato breeding programs, or the
F1 progeny from MaR8 differential plants containing only the R8 gene not originating from
Sárpo Mira [51]. The F1 progeny from Sárpo Mira shows intermediate or high late blight
resistance; however those progeny genotypes were not analyzed with genetic markers for
the presence of the five Sárpo Mira R genes [39]. Therefore, this late blight resistance could
not be attributed to a single R gene.

In potato resistance research, in vitro techniques are mostly used to propagate plant
material under sterile and controlled conditions, and to rapidly generate numerous plantlets
for infection studies in a greenhouse environment [31,42,52]. However, few studies use
potato plantlets for direct inoculation of pathogens and observation of disease progression
in vitro [53–56].

In this study, we: (i) applied marker-assisted selection (MAS) and effector agroin-
filtration to select potato genotypes containing only Rpi-Smira2/R8 from the progeny of
susceptible cultivars and Sárpo Mira, and (ii) conducted in vitro inoculation assays of these
selected potato genotypes with P. infestans isolates, differing in geographical origin and
aggressiveness, to compare them with the corresponding susceptible and resistant parental
cultivars. Our objective was to determine the contribution of the Rpi-Smira2/R8 gene, origi-
nating from Sárpo Mira, to late blight resistance in these progeny potato genotypes, while
ensuring uniform plant material and a contamination-free tissue culture environment.

2. Results
2.1. Marker-Assisted Selection and Avr4 efector Agroinfiltration of Progeny Potato Genotypes
Carrying Rpi-Smira2/R8 Gene

To evaluate the contribution of the Rpi-Smira2/R8 gene, originating from Sárpo Mira,
to late blight resistance in potato, we first obtained plant genotypes carrying only the
Rpi-Smira2/R8 gene, and none of the other four R genes from Sárpo Mira. Therefore,
1420 progeny seeds of crosses between Sárpo Mira and five susceptible cultivars (Rioja,
Lusa, Bikini, Colomba, and Sylvana) were sown in the greenhouse, and three rounds of
selection with genetic markers were performed on 1213 successfully germinated progeny
plants (Figure 1). Only 186 samples lacked the R3b gene, and we then proceeded onto
negative selection for genetic markers for R3a and Rpi-Smira1, resulting in 104 samples. The
final genetic selection was performed using the genetic marker R8-184, where 36 samples
were positive for the R8 gene. At this point, only progeny from four of five crosses
completed this selection, as no genotypes were obtained from the cross of Bikini and Sárpo
Mira. To the best of our knowledge, no genetic marker for R4 has yet been developed, so
agroinfiltration was used as an alternative selection approach.

In this study, effector agroinfiltration of the Avr4 gene was performed on detached
leaves of 36 genotypes positive for the R8 gene, along with Sárpo Mira as a positive control.
Detached leaves were carefully nicked on the surface of the abaxial side with needles under
a stereomicroscope to successfully infiltrate the bacterial suspension with a syringe. At least
four sites per leaflet were nicked several times, which was approximately the diameter of a
syringe, and three leaflets were used for infiltration. A total of three leaves per genotype
were used to include the mock and negative controls. Three days after infiltration, the
leaves were examined for the presence or absence of a hypersensitive response (Figure 2).
Of the 36 tested genotypes, 17 show signs of hypersensitive response indicating the R4 gene
presence, and 5 genotypes return inconclusive results and are, therefore, excluded from the
final collection.

The final selection yielded ten R8 potato plants (0.82% of all germinated progeny) that
contained only the Rpi-Smira2/R8 gene among the five R genes of Sárpo Mira. These were
two genotypes from the Rioja cross (R7, R15), one genotype from the Lusa cross (L166),
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three genotypes from the Colomba cross (C419, C557, and C571), and four genotypes
from the Sylvana cross (S859, S989, S999, and S1219). All ten R8 genotypes and parental
cultivars were tested for the four resistance genes (R3a, R3b, Rpi-Smira1, and Rpi-Smira2/R8)
to confirm the presence of the Rpi-Smira2/R8 gene, and the absence of other R genes in
the progeny plants (Figure 3). Rioja is positive for the R3b (Figure 3a) and R3a genes
(Figure 3b), whereas Lusa and Colomba are both negative. Sylvana is positive for the
R3a gene (Figure 3b). All four susceptible cultivars are negative for the Rpi-Smira1 (Figure 3c)
and Rpi-Smira2/R8 genes (Figure 3d), while Sárpo Mira is positive for all four resistance
genes tested.

Figure 1. Diagram of Phytophthora infestans inoculum preparation, selection of R8 potato genotypes,
and experimental design of P. infestans inoculation of R8 genotypes in vitro.
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Figure 2. The Avr4 effector agroinfiltration discriminates potato plants with (a) or without (b) R4 gene.
(a) Leaflets displaying hypersensitive response after agroinfiltration of Avr4 effector gene. (b) Leaflets
without R4 gene showing no response after agroinfiltration of Avr4 effector gene. (c) Leaves with
hypersensitive response (left) compared to leaves agroinfiltrated with empty vector, mock control (right).

Figure 3. Absence of the (a) R3b gene, (b) R3a gene, (c) Rpi-Smira1 gene, and presence of the (d) Rpi-
Smira2/R8 gene in the final collection of ten R8 progeny genotypes and parental cultivars. Progeny
R8 genotypes are listed as follows: R7, R15 (Rioja cross); L166 (Lusa cross); C419, C557, and C571
(Colomba cross); S859, S989, S999, and S1219 (Sylvana cross), separated by bold lines; (a) only Rioja
and Sárpo Mira are positive for marker R3b (378 bp), and contain the R3b gene; (b) Rioja, Sylvana,
and Sárpo Mira are positive for marker Sha (the red arrow marks the amplicon length of 982 bp),
and contain the R3a gene; (c) only Sárpo Mira is positive for marker 45/XI (the red arrow marks the
amplicon length of 1000 bp), and contains the Rpi-Smira1 gene; (d) ten R8 progeny genotypes and
Sárpo Mira are positive for marker 184-81 (the red arrow marks the amplicon length of 480 bp) after
restriction with RsaI, and contain the Rpi-Smira2/R8 gene. M represents 100 bp ladder in case of R3b
(a) and 184-81 (d) marker, and 1000 bp ladder in case of Sha (b) and 45/XI (c) marker. NTC stands for
non-template control.



Plants 2022, 11, 1319 6 of 20

2.2. Disease Progression of Phytophthora infestans Isolates

Four P. infestans isolates of different origins, which also differed in their growth after
a successful infection, were used in this study. The isolates 90128 and 02_07 begin to
sporulate after covering a larger leaflet area with mycelia, although 02_07 rarely reaches
this growth stage, whereas the isolates IPO-C and 09_07 sporulate almost immediately after
mycelial development with numerous sporangia.

The area under the disease progression curve (AUDPC) value was calculated for
each P. infestans isolate across all R8 genotypes and parental cultivars, to compare disease
progression and aggressiveness (Figure 4). IPO-C has the highest AUDPC value (23.7),
whereas the AUDPC of 90128 is slightly lower (22.4), although the difference between these
two isolates is not statistically significant (p > 0.05, Tukey’s range test). In comparison,
the isolate 09_07 shows similar disease progression to the foreign isolates in terms of
growth and sporulation, but the AUDPC of 09_07 (17.4) is statistically significantly different
(p < 0.05) from the foreign isolates and 02_07, which has the lowest AUDPC (7.8). These
results indicate that 02_07 is the least aggressive isolate used in this study, whereas 09_07
has an intermediate level of aggressiveness.

Figure 4. Area under the disease progression curve (AUDPC) values with standard deviation of
each Phytophthora infestans isolates (02_07, 09_07, 90128, and IPO-C). ANOVA and Tukey’s analysis
(p < 0.05) were used to determine the level of aggressiveness of each isolate across all tested potato
genotypes and parental cultivars (n = 14). Same letters for individual P. infestans isolate indicate no
statistical significance.

2.3. Late Blight Resistance of Progeny R8 Genotypes

A total of nine progeny R8 genotypes were infected in vitro with four P. infestans
isolates, along with the corresponding susceptible parental cultivar (Rioja, Lusa, Colomba,
and Sylvana), and the resistant cultivar Sárpo Mira. The genotype S1219 was excluded
from the experiments, due to its poor growth in tissue culture. Data obtained from all
in vitro experiments were combined into four separate cross groups of the progeny R8
genotypes, containing the corresponding susceptible parental cultivar and the resistant
cultivar Sárpo Mira (Rioja, Lusa, Colomba, and Sylvana cross group). Each cross group was
evaluated for susceptibility or resistance to each of the four P. infestans isolates (Table 1).
Data were plotted for each cross group as a dot plot, with local polynomial regression
fitting to compare the mean disease (MD) scores of the progeny R8 genotypes for each
isolate over an eight day period (Figures 5 and S1–S3).
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In the Rioja cross group, the resistance level of two progeny R8 genotypes (R7 and
R15) are compared to susceptible Rioja and resistant Sárpo Mira. Infection with 02_07
causes similar mild disease symptoms in R7, R15, and Rioja, and late blight progresses
slowly on plantlets throughout the inoculation experiment (Figure S1a). The MD scores for
R7, R15, and Rioja are 2.56, 2.13, and 3.28, respectively; therefore, all three are resistant to
02_07 (Table 1). This is not evident in the case of the isolate 09_07, where both progeny R8
genotypes and Rioja are successfully infected by this isolate, and the severity of symptoms
on the leaflets increases from 3 to 6 days post inoculation (dpi, after which it reached
its stationary phase, showing logarithmic growth (Figure S1b). Only the genotype R7 is
susceptible to the isolate 09_07 (MD score of 6.00), while the genotype R15 and cultivar
Rioja have an intermediate response (MD score of 5.75 and 5.83, respectively). However, all
three are statistically significantly different from the resistant Sárpo Mira (p < 0.05), with
an MD score of 1.00 (Table 1). After inoculation with the isolate 90128, the genotype R15
has the highest MD score of 6.50, while the genotype R7 has an MD score of 5.67, and are
considered susceptible and intermediate, respectively. Rioja is also considered susceptible,
due to its MD score of 6.00. For the isolate IPO-C, the genotype R7 has the highest MD
score of 7.39, and is statistically significantly different from Sárpo Mira (p < 0.05), but not
from Rioja. Both genotypes R7 and R15 are susceptible to IPO-C, while Rioja and Sarpo
Mira have intermediate responses (Table 1). The disease progression curves for the isolates
90128 and IPO-C are not characteristic for logarithmic growth, but instead lean towards
linear growth (Figure S1c,d). This is the case for all genotypes and cultivars in the Rioja
cross, except for the genotype R15 for the isolate 90128, where some data were missing at
3 dpi, due to a technical error.

Table 1. Mean disease (MD) scores for progeny R8 genotypes divided into four cross groups, after
infection with each Phytophthora infestans isolate (02_07, 09_07, 90128, and IPO-C), at 8 dpi. Each cross
group consists of MD scores for the progeny R8 genotypes, the corresponding susceptible parental
cultivar, and the resistant cultivar Sárpo Mira. ANOVA was performed within each cross group,
to compare the progeny R8 genotypes with the parental cultivars for each P. infestans isolate, and
Tukey’s range test was used for post-hoc analysis. Same letters within the cross group for individual
P. infestans isolate indicate no statistical significance.

Phytophthora infestans Isolates
02_07 09_07 90128 IPO-C

Rioja 3.28 a 5.83 a 6.00 ab 5.94 ab

R7 2.56 ab 6.00 a 5.67 ab 7.39 a

R15 2.13 ab 5.75 a 6.50 a 6.28 ab

Sárpo Mira 0.94b 1.00 b 4.56 b 5.33 b

Lusa 1.72 b 4.89 a 5.89 a 6.82 a

L166 3.33 a 5.22 a 6.44 a 6.13 ab

Sárpo Mira 0.94 b 1.00 b 4.56 b 5.33 b

Colomba 2.06 a 6.33 a 7.44 a 7.94 a

C419 1.33 a 4.33 ab 5.72 bc 7.22 a

C557 0.78 a 5.39 ab 6.61 ab 7.61 a

C571 2.33 a 3.39 bc 5.22 bc 5.61 b

Sárpo Mira 0.94 a 1.00 c 4.56 c 5.33 b

Sylvana 2.78 a 7.17 a 7.00 a 7.40 a

S859 1.56 a 5.67 ab 5.00 ab 6.72 ab

S989 1.83 a 4.56 b 5.89 ab 7.06 ab

S999 2.27 a 4.11 b 6.28 ab 7.06 ab

Sárpo Mira 0.94 a 1.00 c 4.56 b 5.33 b
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Figure 5. Late blight disease progression curves of the Colomba cross group show intermediate
resistance of the progeny R8 genotypes compared to parental potato cultivars, after inoculation
with Phytophthora infestans isolate 02_07 (a), isolate 09_07 (b), isolate 90128 (c), and isolate IPO-C (d).
Genotype C571 is the only progeny that shows comparable disease resistance to Sárpo Mira, both
after inoculation with isolate IPO-C and 90128. Genotypes C419 and C557 show milder symptoms
compared to the susceptible parental cultivar Colomba, after inoculation with isolates 09_07, 90128,
and IPO-C. All three genotypes and parental cultivars are resistant to isolate 02_07.

The Lusa cross group consists of only one progeny R8 genotype, L166, susceptible
parental cultivar Lusa, and resistant Sárpo Mira. Although the genotype L166 has higher
MD scores at 8 days post inoculation for the isolates 02_07, 09_07, and 90128 (3.33, 5.22,
and 6.44, respectively) compared with the susceptible cultivar Lusa (1.72, 4.89, and 5.89,
respectively), this difference is statistically significant only in the case of the isolate 02_07
(p < 0.05). Throughout the inoculation experiment with the isolates 02_07 and 09_07, the
genotype L166 generally has higher MD scores compared to the susceptible cultivar Lusa,
and its disease progression curve resembles a linear growth (Figure S2a,b). In addition, the
genotype L166 has statistically significantly higher MD scores for the isolates 02_07, 09_07,
and 90128 compared with Sárpo Mira (p < 0.05). After inoculation with the isolates IPO-C
and 90128, the disease progression curves for the genotype L166 and both parental cultivars
also resemble a linear growth (Figure S2c,d). In addition, a Tukey’s range test conducted at
the 8 dpi shows that the genotype L166 is not statistically significantly different to any of
the parental cultivars (Table 1).

All genotypes and parental cultivars in the Colomba cross group have low MD scores
(ranging from 0.78 to 2.33) for the isolate 02_07 at 8 dpi (Table 1), and are therefore resistant
to this isolate. In addition, similar to other cross groups, the disease progression curves
for the isolate 02_07 show slow progression of late blight symptoms (Figure 5a). In the
case of the isolate 09_07, all three progeny R8 genotypes (C419, C557, and C571) have
lower MD scores (4.33, 5.39, and 3.39 respectively) compared to the susceptible parental



Plants 2022, 11, 1319 9 of 20

cultivar Colomba (MD score of 6.33), but higher compared to the resistant cultivar Sárpo
Mira (Table 1). In addition, all progeny genotypes and the parental cultivar Colomba
show logarithmic spread of late blight symptoms after inoculation with the isolate 09_07
(Figure 5b). Although the genotypes C419 and C557 show intermediate disease response,
they are not statistically significantly different from the susceptible Colomba (p > 0.05).
However, they are statistically significantly different to Sárpo Mira (p < 0.05). The genotype
C571 is the only progeny genotype with an MD score at 8 dpi for the isolate 09_07 that
is statistically significantly different from Colomba (p < 0.05), while showing a similar
resistant response to that of Sárpo Mira, where there is no statistically significant difference
(p > 0.05). After inoculation with the isolate 90128, both of the genotypes C419 and C571
(MD scores of 5.72 and 5.22, respectively, at 8 dpi) show an intermediate response in contrast
to Colomba (MD score of 7.44), which has a susceptible response, and this difference is
statistically significant (p < 0.05). Both genotypes show no statistically significant difference
from Sárpo Mira (MD score of 4.56, p > 0.05), which also shows an intermediate response
to the isolate 90128 (Table 1). Inoculation with the isolate IPO-C results in susceptible
responses of the genotypes C419, C557, and Colomba (MD scores at 8 dpi of 7.22, 7.61,
and 7.94 respectively), which is also statistically significantly different to the intermediate
response of the genotype C571 and Sárpo Mira (MD scores of 5.61 and 5.33, respectively,
p < 0.05). Tukey’s range test shows no statistically significant difference between C571 and
Sárpo Mira (p > 0.05) (Table 1). The disease progression curves of the progeny R8 genotypes
and parental cultivars of Colomba cross group for the isolates 90128 and IPO-C are not
entirely characteristic of logarithmic growth (Figure 5c,d).

Sylvana and its three progeny R8 genotypes (S859, S989, and S999) show low MD
scores for the isolate 02_07, ranging from 1.56 to 2.78. (Table 1), and none of them are
statistically significantly different from Sárpo Mira (MD score of 0.94, p > 0.05), making them
all resistant to 02_07. Similar to the other R8 genotypes and parental cultivars, the disease
progression curves of the Sylvana cross group for the isolate 02_07 show slow progression
(Figure S3a). The disease response of the genotypes S989 and S999 (MD scores of 4.56 and
4.11, respectively) to the isolate 09_07 are statistically significantly different from both the
susceptible cultivar Sylvana (MD score of 7.17, p < 0.05), and the resistant Sárpo Mira (MD
score of 1.00, p < 0.05), resulting in an intermediate response. The genotype S859 also has
an intermediate response, with an MD score of 5.67, but is not statistically significantly
different to either Sylvana or the genotypes S989 and S999 (p > 0.05). However, there is
a statistically significant difference between the genotype S859 and Sárpo Mira (p < 0.05)
(Table 1). The disease progression curves of the progeny R8 genotypes and susceptible
cultivar Sylvana, after inoculation with the isolate 09_07, follow logarithmic growth, similar
to the other cross groups (Figure S3b). For both the foreign isolates, 90128 and IPO-C, the
MD scores of all three R8 progeny genotypes (S859, S989, and S999) are not statistically
significantly different from either the susceptible Sylvana (MD score of 7.00 for 90128, and
7.40 for IPO-C, p > 0.05) or the intermediate response of Sárpo Mira (MD score of 4.56 for
90128, and 5.33 for IPO-C, p > 0.05). All three R8 genotypes show a susceptible response to
the isolate IPO-C, whereas for the isolate 90128, only the genotype S999 shows a susceptible
response, while the genotypes S859 and S989 show intermediate responses (Table 1). The
disease progression curves of the Sylvana cross group for both the foreign isolates, 90128
and IPO-C, do not resemble logarithmic growth (Figure S3c,d).

Sárpo Mira has the lowest MD scores for the two Slovenian isolates, 02_07 and 09_07,
(0.94 and 1.00, respectively), and is, therefore, highly resistant to these two isolates (Table 1).
In comparison, the MD scores for Sárpo Mira, after inoculation with the foreign isolates
90128 and IPO-C, are 4.56 and 5.33, respectively, indicating intermediate resistance.
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3. Discussion
3.1. Combining Available PCR-Based Markers for Late Blight Resistance and Avr4 Effector Gene
Agroinfiltration Enabled the Selection of Potato Plantlets Carrying Solely Rpi-Smira2/R8 Gene

Selection with genetic markers, or marker-assisted selection (MAS), is a reliable method
used in breeding programs for rapid and accurate selection of potato genotypes with
desirable traits, such as tuber flesh color [57], and resistance to pathogens [58]. In this study,
our aim was to find specific genotypes from the whole progeny population that carried the
Rpi-Smira2/R8 gene, but were also lacking other R genes originating from Sárpo Mira (R3a,
R3b and Rpi-Smira1), in order to use them in P. infestans resistance assays.

To the best of our knowledge, no genetic marker is available for the R4 gene, therefore,
agroinfiltration of the Avr4 effector gene was applied as an effective and established
method [24]. In our study, we successfully modified the bacterial infiltration step by
using detached potato leaves, instead of whole plants, to ensure the effectiveness of the
agroinfiltration. For plant species with thick and robust leaves, this technique of lightly
incising the abaxial leaf surface provides accuracy, and avoids excessive tissue damage.
Since whole plant agroinfiltration requires a properly equipped greenhouse, or walk-in
growth chamber, detached leaves placed in floral foam and plastic containers require less
space, and enable agroinfiltration in a laboratory environment with an appropriate safety
level.

Using genetic markers and effector gene agroinfiltration, we successfully obtained ten
R8 potato genotypes, selected from the progeny of five susceptible parents and the resistant
Sárpo Mira.

3.2. Slovenian Isolate 02_07 Was the Least Aggressive Isolate despite Belonging to EU_13_A2 Genotype

After obtaining the final collection, the R8 genotypes were inoculated with four
P. infestans isolates, along with their parental cultivars, in order to evaluate their resistance
level and compare them to their corresponding parental cultivar. The four isolates differed
in their aggressiveness, geographical origin, and growth. The two foreign complex isolates,
IPO-C and 90128, are known for their aggressiveness, and are frequently used in potato
late blight resistance studies [24,31,46,51,54,56,59]. In this study, the aggressiveness of the
two Slovenian P. infestans isolates, 02_07 and 09_07, was determined and reported for the
first time. The isolate 02_07 was the least aggressive, while isolate 09_07 was intermediate,
ranked by a Tukey’s range test as in between 02_07 and the foreign isolates IPO-C and
90128 (Figure 4). The isolates 02_07 and 09_07 were isolated from infected potato leaves
in Slovenian fields in 2007 [60]. As part of this population study, both isolates were tested
for mating type and metalaxyl resistance, and genotyped with microsatellite markers. The
isolate 02_07 belongs to mating type A2, and is resistant to metalaxyl, while the isolate 09_07
belongs to mating type A1, and is susceptible to metalaxyl. Microsatellite analysis of twelve
SSR markers reveals that the isolate 02_07 belongs to genotype EU_13_A2, which is the
aggressive genotype that dominated western European potato fields from 2004 to 2017 [14].
Although several studies that use EU_13_A2 isolates for late blight infection confirm this
aggressiveness [35,38,61], this was not the case in our study. Among all the progeny R8
genotypes and parental cultivars tested in this study, only the cultivar Rioja shows some
late blight symptoms after inoculation with the isolate 02_07 (Table 1, Figure S1), and in
general, 02_07 rarely produced sporangia after mycelial emergence, which is an indication
of a successful infection. In a 2015 study by Mariette et al. [62], several P. infestans EU_13_A2
isolates are tested for aggressiveness and invasiveness. The EU_13_A2 isolates produce
significantly fewer spores, and have the lowest sporulation capacity among tested isolates;
however EU_13_A2 isolates collected in 2004–2005 cause the largest lesions, while the
EU_13_A2 isolates collected in 2006–2008 cause the smallest lesions. These data are in
partial agreement with our results, since the isolate 02_07 used in our study produced
few sporangia, even on susceptible cultivars. However, as we did not measure late blight
lesion sizes, we cannot assess the ability of lesion formation. It was suggested that these
discrepancies were due to phenotypic variability within the same clonal lineage, which is
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characteristic of genetically distinct isolates [62]. One of the suggested possibilities for this
difference was the geographical origin of the collected isolates, as different locations and
their climate conditions could influence the virulence phenotype. Further studies, such as
determining the race of the isolate 02_07 by infecting Mastenbroek differential set [63], are
needed to fully test and evaluate the virulence and aggressiveness of 02_07. The second
Slovenian isolate, 09_07, was classified as genotype EU_34_A1, which was predominant in
Poland in 2008 [64]. Although the AUDPC of the isolate 09_07 was intermediate, between
that of 02_07 and the foreign isolates 90128 and IPO-C, it has a high sporulation ability,
similar to IPO-C, and could be described as aggressive.

Sárpo Mira was used in late blight resistance studies, where it was inoculated with
isolate EU_13_A3, and it shows very mild, or no, late blight symptoms [35,38], which
is in correspondence to our results, since Sárpo Mira is also resistant to the EU_13_A2
genotype in our study. However, since the aggressiveness of the EU_13_A2 genotype is not
consistent in other resistance studies, and all susceptible parental cultivars in our study
show similar resistance to this isolate, we conclude that the isolate 02_07 is not aggressive,
despite belonging to the genotype EU_13_A2.

3.3. Rpi-Smira2/R8 Gene Is Capable of Conferring Resistance to Late Blight Comparable to Sárpo
Mira, Although This Trait Depends on the Genetic Background

The progeny R8 genotypes differed in their level of resistance depending on the
inoculated P. infestans isolate. All cross groups are resistant to the isolate 02_07, while the
disease severity for the other three isolates (09_07, 90128, and IPO-C) is higher in all four
cross groups, showing an intermediate or susceptible phenotype.

The genotype L166, from the Lusa cross group, is the only progeny R8 genotype with
higher MD scores compared to its susceptible parental cultivar after inoculation with the
isolates 02_07, 09_07, and 90128, although this difference is only statistically significant for
the least aggressive isolate 02_07.

The progeny genotypes from the Rioja cross group (R7 and R15) do not statistically
significantly differ from their parental cultivar Rioja after inoculation with the isolates
09_07, 90128, and IPO-C, showing similar intermediate or susceptible response to these
P. infestans isolates. Analysis with genetic markers for the genes R3a and R3b reveals the
presence of both minor genes in the cultivar Rioja (Figure 3), which could potentially affect
the disease response of this cultivar to late blight in this study. Although the cultivar
Rioja has lower MD scores, and higher resistance, compared to the cultivars Sylvana and
Colomba after inoculation with the isolates 09_07, 90128, and IPO-C, Rioja still has higher
MD scores, and shows more late blight symptoms compared to the cultivar Lusa (Table 1),
which is shown to have none of the four tested R genes (Figure 3). This indicates that the
R3a and R3b genes have minor, or no, effect on late blight resistance in the cultivar Rioja.

In some cases, the progeny R8 genotypes from the Sylvana and Colomba cross groups
show statistically significantly higher resistance levels compared to the parental cultivars
Sylvana and Colomba, respectively. The genotypes S989 and S999 are intermediately
resistant to the isolate 09_07, but are more susceptible to this isolate when compared to
Sárpo Mira. They show no statistically significant difference to Sylvana after infection
with the isolates 90128 and IPO-C (Table 1). Although the cultivar Sylvana tested positive
for the minor R3b gene (Figure 3), it is still highly susceptible to the isolates 09_07, 90128,
and IPO-C, along with the cultivar Colomba, which indicates little or no effect of the R3b
gene in the cultivar Sylvana. The genotype C571 has the lowest MD scores among the
progeny R8 genotypes after inoculation with the isolates 09_07, 90128, and IPO-C, and
is statistically significantly more resistant to late blight compared to the parental cultivar
Colomba (Table 1). In the case of the isolate IPO-C, there is no statistically significant
difference between the genotype C571 and Sárpo Mira, indicating a similarly intermediate
late blight response between the progeny R8 genotype and the resistant parental cultivar.
However, this similarity is more likely due to Sárpo Mira having a relatively high MD
score for this isolate, even though Sárpo Mira is shown to be resistant to the isolate IPO-
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C [39,51,65]; therefore; ANOVA and post-hoc analysis ranks the genotype C571 and resistant
cultivar in the same group. Nevertheless, both the genotype C571 and Sárpo Mira have
intermediate late blight response to the isolate IPO-C when compared to the genotypes
C419, C557, and parental cultivar Colomba, which are all highly susceptible. In addition,
as mentioned earlier, the genotype C571 has the lowest MD scores for the isolates 09_07,
90128, and IPO-C among the nine tested R8 genotypes.

These results suggest that the R8 gene of Sárpo Mira contributes to the qualitative
resistance of the progeny R8 genotypes. This resistance, however, is not the same for all
R8 genotypes used in this study, even if they contain the same major R gene. Studies by
Vossen et al. [50] and Kim et al. [51] suggest that the level of R8 gene resistance is highly
dependent on the genetic background, which may explain the differences in resistance
levels among the tested R8 genotypes. Both studies use R8 plants obtained either by sexual
crossing [51] or by transgenesis [50], which report similar levels of resistance to that of
Sárpo Mira under field conditions. However, in both studies, this high level of resistance is
lost either during detached leaf assay (DLA), or under climate chamber conditions. This
is consistent with other studies in which resistance of Sárpo Mira to late blight varies
depends on whether whole plants or detached leaves are infected [40–42]. Detached leaves
are shown to be more susceptible to P. infestans compared to whole plants or field trials,
due to different experimental conditions [31,66,67]. In addition, intermediately aggressive
P. infestans isolates are more suitable for this type of late blight resistance study, due to
their characteristic logarithmic growth on the host plant (Figures 5b and S1b–S3b). This
type of disease progression reveals the minor response differences between the tested
potato genotypes, and helps to better evaluate the contribution of individual R genes
compared to control plants, such as susceptible parental cultivars, as was the case in our
study. The use of the overly aggressive isolates 90128 and IPO-C in our study masks these
differences between the progeny R8 genotypes, since their disease progression resembles
linear growth (Figures 5c,d and S1c,d–S3c,d), and makes it difficult to distinguish whether
the tested progeny R8 genotypes are more susceptible to these isolates due to the poor
contribution of the Rpi-Smira/R8 gene to combating late blight, or if the immune system is
simply overwhelmed by the aggressiveness of the pathogen.

Despite previous reports of Sárpo Mira’s high resistance to the isolate IPO-C [39,51,65]
this is not completely the case in our study, since the isolate IPO-C sporulates on some
Sárpo Mira plantlets, which is an indication of a successful infection with P. infestans. This
is probably due to the in vitro conditions of the experiment. Microbe-free plant material,
combined with controlled conditions in the growth chamber (optimal temperature and
high humidity), present favorable conditions for symptom development and the growth
of P. infestans. Moreover, plant tissue cultures cannot be compared equally to greenhouse
or field-grown whole plants, therefore, some differences in disease development are to
be expected. In the study by Orłowska et al. [42], a signaling pathway is induced by late
blight infection, where plant roots and meristems play an important role. Since root and
meristem development might be altered in in vitro plantlets, this could influence the extent
of resistance to late blight.

Overall, experiments on late blight infection in vitro is a suitable method for molec-
ular and disease development studies related to plant-pathogen interaction, as in vitro
plantlets are uniform and provide optimal conditions for a successful inoculation, with no
interference of other pathogens [53], which can occur in detached leaf assays. Additionally,
plantlets in tissue culture are easily examined under stereomicroscope, without disrupting
the disease progression, and no destruction of the plant material. This allows for accurate
monitoring of late blight symptom development and detailed observation of even minor
changes among tested potato genotypes, such as the emergence of mycelia and presence of
sporangia.
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4. Materials and Methods
4.1. Plant Material

A total of 1420 true seeds were acquired from the potato breeding program at the Agri-
cultural Institute of Slovenia, where five susceptible cultivars (Rioja, Lusa, Bikini, Colomba,
and Sylvana) were crossed with the resistant cultivar Sárpo Mira. In November 2017,
true seeds were sown in soil-filled trays in the greenhouse (growing conditions: 16 h/8 h
day/night regime, temperature 21 ± 3 ◦C). After four weeks, a total of 1213 plantlets
reached full germination, and were planted in individual soil-filled pots (Figure 1).

During the selection process, plants were clonally propagated using cuttings with
either apical (shoot), or intercalary meristem (nodes from second to fourth leaves, from six
to eight week old plants). Each cutting, containing one upper node with leaf and one lower
node with leaf removed, was dipped in paste containing the auxin hormone naphthalene
acetic acid (NAA) and activated charcoal (0.1 g/mL). Cutting paste was prepared by
dissolving 30 mg NAA in a few drops of 1 M NaOH, then adding distilled water up to
100 mL, and gradually adding 10 g activated charcoal to obtain a thick consistency. The
dipped cuttings were placed into sowing trays in the greenhouse, and covered with clear
plastic film to maintain high humidity until root formation. After three weeks, the cuttings
were transferred to soil-filled pots.

After obtaining the final plant collection (ten progeny genotypes and five parental
cultivars), the single nodal stem explants (approximately 1 cm in size) of the greenhouse-
grown potato plants were sterilized with 0.5% (m/v) IZOSAN G (PLIVA, Zagreb, Croatia)
for 10 min, washed with sterile water three times, and transferred to Murashige and Skoog
(MS, supplemented with 30 g/L sucrose and 8 g/L agar at pH 5.7 [68]) medium for in vitro
micropropagation (Figure 1). In vitro plantlets were maintained and sub-cultured every
four weeks in glass jars (10 cm diameter) with 25 mL of fresh MS medium. Cultures were
grown at 22/20 ◦C under a photoperiod of 16 h light day, with a light intensity of 3200 lux.

4.2. Marker-Assisted Selection (MAS) of Potato Genotypes

For selection with genetic markers, DNA was extracted from 4 week old greenhouse
grown plants using the Biosprint15 DNA Plant Kit (QIAGEN, Hilden, Germany) and the
MagMax Express Magnetic Particle Processor (Life Technologies, Carlsbrand, CA, USA),
according to the manufacturer’s instructions. The quality of genomic DNA was determined
with electrophoresis on a 1.4% agarose gel. The oligonucleotides and conditions used
for PCR amplification of the qualitative resistance genes R3a, R3b, Rpi-Smira1, and the
quantitative resistance gene Rpi-Smira2/R8, as well as the expected amplicon length, are
listed in Table 2. The PCR protocol was as follows: initial denaturation 4 min at 95 ◦C,
35 cycles of 30 s denaturation at 95 ◦C, 30 s at annealing temperature (Ta in Table 2), 1 min
extension at 72 ◦C, and 4 min final extension at 72 ◦C. PCR reactions were performed using
the Kapa3G Plant PCR Kit (Sigma-Aldrich, St. Louis, MI, USA) and Veriti™ thermal cycler
(Applied Biosystems, Waltham, MA, USA). Potato genotypes were selected in several steps
(Figure 1). First, PCR amplicons of the R3b gene were verified in agarose electrophoresis,
and only negative samples were used for subsequent selection of plants with markers for
the R3a and Rpi-Smira1 genes. Finally, the R8-184 marker was used to obtain a population
of plants carrying the R8 gene. The R8 fragments were cleaved using the restriction
enzyme RsaI (New England Biolabs, Ipswich, MA, USA), according to the manufacturer’s
instructions. Positive plants were used for further screening and negative selection for the
R4 gene.
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Table 2. Primers used for PCR amplification of genetic markers for plant selection of R8 genotypes,
annealing temperatures (Ta), and amplicon length.

Gene Marker Name Primer Sequence (5′-3′) Ta (◦C) Amplicon Length (bp) Reference

R3a Sha
F ATCGTTGTCATGCTATGAGATTGTT

60 982 [54]
R CTTCAAGGTAGTGGGCAGTATGCTT

R3b R3b
F GTCGATGAATGCTATGTTTCTCGAGA

55 378 [51]
R ACCAGTTTCTTGCAATTCCAGATTG

Rpi-Smira1 45/XI
F AGAGAGGTTGTTTCCGATAGACC

58 1000 [36]
R TCGTTGTAGTTGTCATTCCACAC

Rpi-Smira2/R8 184-81
F CCACCGTATGCTCCGCCGTC

55
480

(RsaI) [46]
R GTTCCACTTAGCCTTGTCTTGCTCA

4.3. Selection of R4-Negative Plants Using Avr4 Effector Gene Agroinfiltration

The presence of the R4 gene was determined using agroinfiltration of the Avr4 ef-
fector gene. Agrobacterium tumefaciens strain Agl1 + VirG, containing vector pK7WG2
with the Avr4 gene (PITG_07387), was kindly provided by Francine Govers (Laboratory
of Phytopathology, Department of Plant Sciences, Wageningen University and Research).
Agroinfiltration was performed according to Van Poppel et al. [24], with slight modifica-
tions. Briefly, A. tumefaciens was grown overnight in 50 mL YEB media (5 g beef extract,
5 g bacto-tryptone, 5 g sucrose, and 1 g yeast extract per liter [52]), supplemented with
200 µM acetosyringone, 10 µM MES (2-morpholinoethanesulfonic acid), and the antibi-
otics spectinomycin 100 µg/mL and rifampicin 25 µg/mL. When the optical density at
600 nm (OD600) reached 0.8, cells were centrifuged and resuspended in an infiltration buffer
consisting of 10 mM MES, 10 mM MgCl2, and 200 µM acetosyringone. The resuspended
bacteria were incubated in the dark at room temperature for one hour. Detached leaves
from 3 week old greenhouse-grown plants were first nicked several times with a needle on
the abaxial side under a stereomicroscope, and then syringe-infiltrated with the bacterial
suspension. A. tumefaciens with empty pK7WG2 vectors and sterile water were used as a
mock control and negative control, respectively. After three days, leaves were examined for
the hypersensitive response indicating the presence of the R4 gene (Figure 2).

4.4. Maintenance of Phytophthora infestans Isolates and Inoculum Preparation

Four different P. infestans isolates were used in this study (Table 3). The isolates IPO-C
(race 1.2.3a.3b.4.5.6.7.10.11) and 90128 (race 1.3a.3b.4.6.7.8.10.11) were kindly provided
by Trudy van den Bosch (Biointeractions and Plant Health, Wageningen Plant Research,
Wageningen University, and Research). The isolates 02_07 and 09_07 are classified as
genotype EU_13_A2 and EU_34_A1, respectively, although their virulence is unknown.
P. infestans isolates were cultured on Rye-A medium, [69] supplemented with 20 g/L sucrose
and incubated in the dark at 20 ◦C. Mycelial plugs were transferred to fresh Rye-A medium
every two weeks.

Table 3. Characteristics of Phytophthora infestans isolates used in this study.

Isolate Mating Type Year Genotype/Race Origin Reference

02_07 A2 2007 EU_13_A2 Slovenia [60]

09_07 A1 2007 EU_34_A1 Slovenia [60]

90128 A2 1990 1.3a.3b.4.6.7.8.10.11 Netherlands [56]

IPO-C A2 1982 1.2.3a.3b.4.5.6.7.10.11 Belgium [34]
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To ensure the virulence of the pathogen [70], all P. infestans isolates were passed
through susceptible potato cultivar Dobrin [71] (Figure 6). Sporangia suspension was
prepared by washing the mycelia-covered Rye-A plates with sterile water and scraping the
sporangia with a metal spatula. Sporangia suspension was incubated in the dark at 6 ◦C
for two hours, to induce the release of zoospores. After incubation, hyphal fragments were
removed by filtering the suspension with 100 µm cell strainers (Corning®, Sigma-Aldrich,
St. Louis, MI, USA), then transferred to 50 mL glass spray bottles (Figure 6a). Glass jars
with four to five week old in vitro plantlets of Dobrin were evenly sprayed with zoospore
suspension. After five to six days, mycelium-covered leaflets were transferred to Rye-A+
medium (Figure 6b) supplemented with 20 g/L sucrose, antibiotics ampicillin (250 mg/L),
rifampicin (10 mg/L), and antimycotic pimaricin (10 mg/L). The plates were incubated in
the dark at 20 ◦C for three weeks, until sporangia formation.

Figure 6. Inoculation of Phytophthora infestans on susceptible potato cultivar Dobrin in vitro. (a) Four
to five week old in vitro plantlets of Dobrin were used to maintain virulence of P. infestans isolates
before experiments. Zoospore suspension was inoculated using 50 mL glass spray bottles. (b) Five to
six days post inoculation mycelium-covered leaflets were transferred to Rye-A+ medium.

Mycelium-covered Rye-A+ plates from infected Dobrin plantlets were then used to
prepare the inoculum for the late blight resistance assays. The preparation protocol was
similar to that described for Dobrin. After the Rye-A+ plates were washed and scraped,
an aliquot of the suspension was taken to count the sporangia with a hemocytometer
(Neubauer Improved, Glaswarenfabrik Karl Hecht GmbH, Sondheim vor der Rhön, Ger-
many). The concentration was adjusted to 2.5 × 104 sporangia/mL, and 0.01% (v/v) Tween
20 was added. The sporangia suspension was incubated in the dark at 6 ◦C for two hours,
filtered with 100 µm cell strainers (Corning®, Sigma-Aldrich, St. Louis, MI, USA), and
transferred to 50 mL glass spray bottles (Figure 1).

4.5. In Vitro Inoculation of R8 Plants with Phytophthora infestans Zoospores

Four to five week old in vitro R8 plantlets were used for the experiment. Glass
jars containing three plantlets were evenly spray-inoculated with zoospore suspensions.
Control plantlets were spray-inoculated with sterile water, supplemented with 0.01% Tween
20. The plastic lids of the jars were covered with parafilm to maintain high humidity. The
glass jars were placed in a growth chamber (14 h/10 h day/night regime at 22 ◦C and 75%
relative humidity). Middle, fully developed leaves of inoculated plantlets were visually
inspected under a stereomicroscope daily for eight days for symptom development and
pathogen growth. Each plantlet was given a disease score ranging from 0 (no symptoms) to
8 (leaves covered with mycelia and sporangia), depending on the severity of symptoms on
the leaves (Figure 7). Representative leaflets with late blight symptoms were photographed
(Figure 7) using a digital microscope (Olympus DSX1000, objective DSX10-SXLOB1X,
working distance 51.7 mm). ImageJ software [72] was used to remove the background of
the images and set to black.
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Figure 7. Disease rating scale used for determining the severity of late blight after inoculation of R8
genotypes with Phytophthora infestans with representative leaflets for each disease score. Necrotic
lesions are indicated with red circles, while mycelia and sporangia are marked with red arrows. All
images were taken with darkfield illumination and 20×magnification.

Progeny R8 genotypes and parental cultivars were inoculated separately with Slove-
nian P. infestans isolates (02_07, 09_07) and foreign isolates (90128, IPO-C). Each inoculation
experiment with one of the two groups of P. infestans isolates was independently repeated
twice.

4.6. Statistical Analysis

In this study, six glass jars containing three plantlets (eighteen plantlets total) per
genotype or cultivar, from two replicated inoculation experiments with either Slovenian or
foreign P. infestans isolates, were examined daily for late blight symptoms. Contaminated
glass jars were removed from the experiment, leaving fifteen inoculated plantlets for
genotype R15 infected with isolates 02_07 and 09_07, genotype S999 infected with isolate
02_07, genotype L166 infected with isolate 90128, and cultivar Sylvana infected with isolate
IPO-C.

The mean disease (MD) score was calculated for each inoculated genotype or cultivar
as the mean of the scores for eighteen (or fifteen) plantlets, and the resulting data were
divided into four groups, according to progeny and corresponding susceptible parental
cultivar. The genotype or cultivar was considered resistant if the MD score at eight days
post inoculation (dpi) was below 3.9, intermediate if the MD score was between 4.0 and 5.9,
and susceptible if the MD score was above 6.0. One-way analysis of variance (ANOVA)
was applied only to the data sets at 8 dpi to compare each progeny R8 genotype with
the corresponding susceptible and resistant parental cultivar. The threshold for statistical
significance was p < 0.05, and Tukey’s range test was used for post-hoc analysis.

The area under the disease progress curve (AUDPC) for each P. infestans isolate was
calculated using trapezoidal rule [73], and one-way ANOVA was used to compare disease
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progression and aggressiveness in all potato plantlets tested. Tukey’s range test was also
used for post-hoc analysis.

All statistical analyses were performed using R Studio software [74] (version 4.0.3),
package “agricolae”.

5. Conclusions

In this study, we successfully obtained ten R8 genotypes with only one resistance gene
(Rpi-smira/R8) from the resistant parent Sárpo Mira by using genetic markers and effector
agroinfiltration. Nine of these genotypes were inoculated with two Slovenian and two
foreign P. infestans isolates, and we confirm the high aggressiveness of the isolates 90128
and IPO-C, while 09_07 is moderately aggressive. The isolate 02_07, although identified as
genotype EU_13_A2, is the least virulent.

The progeny R8 genotypes of the Colomba and Sylvana cross groups show statistically
significantly milder symptoms compared to the susceptible parental cultivar, with the
genotype C571 being the most resistant among all nine progeny genotypes to the moderately
and highly aggressive P. infestans isolates used in this study. These results suggest that the
Rpi-Smira2/R8 gene confers resistance to late blight, but is not the most contributive gene,
as previously considered. In addition, the presence of this gene alone does not ensure high
resistance, and is influenced by the genetic background, since the progeny R8 genotypes
differ in late blight response.

Although in vitro experiments performed in this study provided a contamination-free
environment and optimal infection conditions, field trials or whole plant experiments need
to be conducted in parallel to confirm the level of resistance shown in the Rpi-Smira2/R8
genotypes. To fully understand the influence of the genetic background of the Rpi-Smira2/R8
gene, and its contribution to late blight resistance, further studies, such as gene expression
studies, coupled with genome sequencing of the progeny R8 genotypes and Sárpo Mira,
are required. Additionally, effectoromics could be applied to the progeny R8 genotypes to
confirm proper functioning of the Rpi-Smira2/R8 gene. Furthermore, progeny genotypes
containing two or more R genes from Sárpo Mira could be selected and tested for late blight
resistance, in order to identify potential R gene interactions.
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isolate 90128 (C), and isolate IPO-C (D). Figure S2: Late blight disease progression curves of the Lusa
cross group show differences in resistance levels between progeny R8 genotypes and parental potato
cultivars after inoculation with isolate 02_07 (A), isolate 09_07 (B), isolate 90128 (C), and isolate IPO-C
(D). Figure S3: Late blight disease progression curves of the Sylvana cross group show differences in
resistance levels between progeny R8 genotypes and parental potato varieties after inoculation with
isolate 02_07 (A), isolate 09_07 (B), isolate 90128 (C), and isolate IPO-C (D).
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