Current Trends on Mechanical, Corrosion Resistance, and Antibacterial Properties of Metallic Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ibrahim, M.A.M.; Abd El Rehim, S.S.; Hamza, M.M. Corrosion behavior of some austenitic stainless steels in chloride environments. Mater. Chem. Phys. 2009, 115, 80–85. [Google Scholar]
- Hryniewicz, T.; Rokicki, R.; Rokosz, K. Corrosion characteristics of medical-grade AISI Type 316L stainless steel surface after electropolishing in a magnetic field. Corrosion 2008, 64, 660–665. [Google Scholar] [CrossRef]
- Potgieter, J.H.; Olubambi, P.A.; Cornish, L.; Machio, C.N.; Sherif, E.S.M. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corros. Sci. 2008, 50, 2572–2579. [Google Scholar] [CrossRef]
- Lin, N.; Li, D.; Zou, J.; Xie, R.; Wang, Z.; Tang, B. Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review. Materials 2018, 11, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, D.P.; Miller, I.S.; Ardhaoui, M.; Gallagher, W.M. Effect of Surface Wettability and Topography on the Adhesion of Osteosarcoma Cells on Plasma-Modified Polystyrene. J. Biomater. Appl. 2011, 26, 327–347. [Google Scholar] [CrossRef]
- Biggs, M.J.P.; Richards, R.G.; Gadegaard, N.; Wilkinson, C.D.W.; Dalby, M.J. The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J. Mater. Sci. Med. 2007, 18, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Junkar, I.; Kulkarni, M.; Drasler, B.; Rugelj, N.; Recek, N.; Drobne, D.; Kovac, J.; Humpolicek, P.; Iglic, A.; Mozetic, M. Enhanced biocompatibility of TiO2 surfaces by highly reactive plasma. J. Phys. D Appl. Phys. 2016, 49, 24. [Google Scholar] [CrossRef] [Green Version]
- Jenko, M.; Godec, M.; Kocijan, A.; Rudolf, R.; Dolinar, D.; Ovsenik, M.; Gorensek, M.; Zaplotnik, R.; Mozetic, M. A new route to biocompatible Nitinol based on a rapid treatment with H gaseous plasma. Appl. Surf. Sci. 2019, 473, 976–984. [Google Scholar] [CrossRef]
- Lim, J.Y.; Hansen, J.C.; Siedlecki, C.A.; Hengstebeck, R.W.; Cheng, J.; Winograd, N.; Donahue, H.J. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: Effect of nanotopography, surface chemistry, and wettability. Biomacromolecules 2005, 6, 3319–3327. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- MacQueen, R.C.; Granata, R.D. A positron annihilation lifetime spectroscopic study of the corrosion protective properties of epoxy coatings. Prog. Org. Coat. 1996, 28, 97–112. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, Y.; Gonzalez, S.; Souto, R.M. Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection. Corros. Sci. 2007, 49, 3514–3526. [Google Scholar] [CrossRef]
- Malshe, V.C.; Sangaj, N.S. Effect of introduction of structural defects on protective ability of polyesters. Prog. Org. Coat. 2006, 57, 37–43. [Google Scholar] [CrossRef]
- Hung, W.-I.; Weng, C.-J.; Lin, Y.-H.; Chung, P.-J.; Tsai, S.-F.; Yen, J.-M.; Tsai, M.-H. Enhanced anticorrosion coatings prepared from incorporation of well-dispersed silica nanoparticles into fluorinated polyimide matrix. Polym. Compos. 2010, 31, 2025–2034. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Kek-Merl, D.; Zorko, M.; Verpoest, I. Mechanical and anticorrosion properties of nanosilica-filled epoxy-resin composite coatings. Appl. Surf. Sci. 2014, 292, 432–437. [Google Scholar] [CrossRef]
- Anselme, K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21, 667–681. [Google Scholar] [CrossRef]
- Papenburg, B.J.; Rodrigues, E.D.; Wessling, M.; Stamatialis, D. Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter 2010, 6, 4377–4388. [Google Scholar] [CrossRef]
- Lourenco, B.N.; Marchioli, G.; Song, W.; Reis, R.L.; Van Blitterswijk, C.A.; Karperien, M.; Van Apeldoorn, A.; Mano, J.F. Wettability Influences Cell Behavior on Superhydrophobic Surfaces with Different Topographies. Biointerphases 2012, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Kim, E.-S.; Jeon, G.; Choi, K.Y.; Kim, J.R. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1689–1695. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, L.; Song, W.; Wu, Z.K.; Li, D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008, 33, 1059–1087. [Google Scholar] [CrossRef]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef] [Green Version]
- De Falco, G.; Ciardiello, R.; Commodo, M.; Del Gaudio, P.; Minutolo, P.; Porta, A.; D’Anna, A. TiO2 nanoparticle coatings with advanced antibacterial and hydrophilic properties prepared by flame aerosol synthesis and thermophoretic deposition. Surf. Coat. Technol. 2018, 349, 830–837. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conradi, M.; Kocijan, A. Current Trends on Mechanical, Corrosion Resistance, and Antibacterial Properties of Metallic Materials. Materials 2022, 15, 3822. https://doi.org/10.3390/ma15113822
Conradi M, Kocijan A. Current Trends on Mechanical, Corrosion Resistance, and Antibacterial Properties of Metallic Materials. Materials. 2022; 15(11):3822. https://doi.org/10.3390/ma15113822
Chicago/Turabian StyleConradi, Marjetka, and Aleksandra Kocijan. 2022. "Current Trends on Mechanical, Corrosion Resistance, and Antibacterial Properties of Metallic Materials" Materials 15, no. 11: 3822. https://doi.org/10.3390/ma15113822
APA StyleConradi, M., & Kocijan, A. (2022). Current Trends on Mechanical, Corrosion Resistance, and Antibacterial Properties of Metallic Materials. Materials, 15(11), 3822. https://doi.org/10.3390/ma15113822