EFFECT OF THE MQL TECHNIQUE ON CUTTING FORCE AND SURFACE QUALITY DURING THE SLOT MILLING OF TITANIUM ALLOY
Abstract
In this study, the effects of four control parameters, i.e., the cutting speed (vc), feed per tooth (f), depth of cut (ap), and flow rate of the cutting fluid (Q), on the surface roughness (Ra) and cutting force (Fc) were investigated in the slot milling of titanium alloys (Ti-6Al-4V). The effects of the control parameters were determined by a statistical analysis. In addition, RSM models for Ra and Fc during machining under three cooling/lubrication conditions, i.e., dry, flood, and minimum quantity lubrication (MQL), were obtained. The results revealed that both Ra and Fc are sensitive to changes in f, ap and Q. It was found that the MQL condition generates lower values of Ra where the surface roughness value is 0.227 µm. By contrast, Fc values under the MQL condition were close to those of the flood condition and at times even better. The machining performance at a cutting-fluid flow rate of 36 mL/h under the MQL condition was found to be the best under certain machining conditions. MQL was found to be an effective alternative technique for conventional conditions when machining Ti-6Al-4V.
References
2 Klocke, F., Gerschwiler, K., Fritsch, R., Lung, D.: PVD-coated tools and native ester: An advanced system for environmentally friendly machining. Surface and Coatings Technology (2006). https://doi.org/10.1016/j.surfcoat.2006.08.089
3 Sujan, D., Reddy, M. M., Sok, YiQ.: Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method. Measurement (2016). https://doi.org/10.1016/j.measurement.2015.09.011
4 Smith, G. T.: Cutting tool technology:Iindustrial handbook. Springer Science & Business Media (2008).
5 Rahman, M., Kumar, A. S., & Salam, M. U.: Experimental evaluation on the effect of minimal quantities of lubricant in milling. International Journal of Machine Tools and Manufacture (2002). https://doi.org/10.1016/S0890-6955(01)00160-2
6 Mozammel, M.: Mathematical modeling and optimization of MQL assisted end milling characteristics based on RSM and Taguchi method. Measurement (2018). https://doi.org/10.1016/j.measurement.2018.02.017
7 Motorcu, A., Kuş, R. A., & Durgun, I.: The evaluation of the effects of control factors on surface roughness in the drilling of Waspaloy superalloy. Measurement (2014). https://doi.org/10.1016/j.measurement.2014.09.012
8 Sharma, A. K., Kiwari, A. K., & Dixit, A. R.: Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner Production (2016). https://doi.org/10.1016/j.jclepro.2016.03.146
9 Ghosh, S., & Rao, P. V.: Application of sustainable techniques in metal cutting for enhanced machinability: A review. Journal of Cleaner Production (2015). https://doi.org/10.1016/j.jclepro.2015.03.039
10 Brinksmeier, E., Walter, A., Janssen, R., & Diersen, P.: Aspects of cooling lubrication reduction in machining advanced materials. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (1999). https://doi.org/10.1243/0954405991517209
11 Zhang, S., Li, J. F., & Wang, Y. W.: Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. Journal of Cleaner Production (2012). https://doi.org/10.1016/j.jclepro.2012.03.014
12 Kamata, Y., & Obikawa, T.: High speed MQL finish-turning of Inconel 718 with different coated tools. Journal of Materials Processing Technology (2007). https://doi.org/10.1016/j.jmatprotec.2007.04.052
13 Silva, L. R., Bianchi, E. C., Catai, R. E., Fusse, R. Y., Franca, T. V., & Aguiar, P. R.: Study on the behavior of the minimum quantity lubricant-MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering (2005). https://doi.org/10.1590/S1678-58782005000200012
14 Dhar, N. R., Kamruzzaman, M., & Ahmed, M.: Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology (2006). https://doi.org/10.1016/j.jmatprotec.2005.09.022
15 Obikawa, T., Kamata, Y., Asano, Y., Nakayama, K., & Otieno, A. W.: Micro-liter lubrication machining of Inconel 718. International Journal of Machine Tools and Manufacture (2008). https://doi.org/10.1016/j.ijmachtools.2008.07.011
16 Okafor, A. C., & Jasra, P. M.: Effects of cooling strategies and tool coatings on cutting forces and tooth frequency in high-speed down-milling of Inconel-718 using helical bull-nose solid carbide end mills. The International Journal of Advanced Manufacturing Technology (2008). https://doi.org/10.1007/s00170-018-2096-5
17 Zhao, W., He, N., & Li, L.: High speed milling of Ti6Al4V alloy with minimal quantity lubrication. Key Engineering Materials (2007). https://doi.org/10.4028/www.scientific.net/KEM.329.663
18 Yasir, A., Che Hassan, C. H., Jaharah, A. G., Nagi, H. E., Yanuar, B., & Gusri, AI.: Machinability of Ti-6Al-4V under dry and near dry condition using carbide tools. The Open Industrial & Manufacturing Engineering Journal 2, 1–9 (2009).
19 Joshi, K. K., & Anurag, K. R.: An experimental investigation in turning of Incoloy 800 in dry, MQL and flood cooling conditions. Procedia Manufacturing (2018). https://doi.org/10.1016/j.promfg.2018.02.051
20 Tazehkandi, A. H., Shabgard, M., & Pilehvarian, F.: On the feasibility of a reduction in cutting fluid consumption via spray of biodegradable vegetable oil with compressed air in machining Inconel 706. Journal of Cleaner Production (2015). https://doi.org/10.1016/j.jclepro.2015.05.039
21 Ezugwu, E, O.: Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools & Manufacture (2005). https://doi.org/10.1016/j.ijmachtools.2005.02.003
22 Kishawy, H. A., Dumitrescu, M., Ng, E-G., & Elbestawi, MA.: Effect of coolant strategy on tool performance, chip morphology and surface quality during high-speed machining of A356 aluminum alloy. International Journal of Machine Tools and Manufacture (2005). https://doi.org/10.1016/j.ijmachtools.2004.07.003
23 Sun, J., Wong, Y. S., Rahman, M., Wang, Z. G., Neo, K. S., Tan, C. H., & Onozuka, H.: Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Machining Science and Technology 10, 355–370 (2006).
24 Rahim, E. A., & Sasahara, H.: Investigation of tool wear and surface integrity on MQL machining of Ti-6AL-4V using biodegradable oil. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2011). https://doi.org/10.1177/0954405411402554
25 Arrazola, P. J., Özel, T., Umbrello, D., Davies, M., & Jawahir., I. S., Recent advances in modelling of metal machining processes. CIRP Annals-Manufacturing Technology (2013). https://doi.org/10.1016/j.cirp.2013.05.006
26 Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S.: Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology (2010). https://doi.org/10.1016/j.cirpj.2010.03.006
27 Özel, T., & Karpat, Y.: Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. International Journal of Machine Tools and Manufacture (2005). https://doi.org/10.1016/j.ijmachtools.2004.09.007
28 Asiltürk, I., & Neşeli, S., Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement (2012). https://doi.org/10.1016/j.measurement.2011.12.004
29 Leo Kumar, S. P.: Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm. Measurement (2018). https://doi.org/10.1016/j.measurement.2018.04.056
30 Hashmi, K. H., Zakria, G., Raza, M. B., & Khalil, S.: Optimization of process parameters for high speed machining of Ti-6Al-4V using response surface methodology. The International Journal of Advanced Manufacturing Technology (2016). https://doi.org/10.1007/s00170-015-8057-3
31 Sahu, N. K., & Andhare, A. B.: Multiobjective optimization for improving machinability of Ti-6Al-4V using RSM and advanced algorithms. Journal of Computational Design and Engineering (2018). https://doi.org/10.1016/j.jcde.2018.04.004
32 Gupta, M. K., & Sood, P. K.: Surface roughness measurements in NFMQL assisted turning of titanium alloys: An optimization approach. Friction (2017). https://doi.org/10.1007/s40544-017-0141-2
33 Sahu, N. K., & Andhare., A. B., Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti-6Al-4V using RSM and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering (2017). https://doi.org/10.1007/s40430-017-0804-y
34 Gupta, M. K., Sood, P. K., Singh, G., & Sharma., V. S., Sustainable machining of aerospace material Ti (grade-2) alloy: Modeling and optimization. Journal of Cleaner Production (2017). https://doi.org/10.1016/j.jclepro.2017.01.133
36 Rotella, G., Dillon, O. W., Umbrello, D., Settineri, L., & Jawahir, I. S., The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. The International Journal of Advanced Manufacturing Technology (2014). https://doi.org/10.1007/s00170-013-5477-9
35 Nouioua, M., Yallese, M. A., Khettabi, R., Belhadi, S., Bouhalais, M. L., & Girardin., F.: Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN). The International Journal of Advanced Manufacturing Technology (2017). https://doi.org/10.1007/s00170-017-0589-2
36 Sarıkaya, M., & Güllü, A.: Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. Journal of Cleaner Production (2015). https://doi.org/10.1016/j.jclepro.2014.12.020
37 Yazid, M. Z. A., Che Haron, C. H., Ghani, J. A., Ibrahim, G. A., & Said, A. Y. M.: Surface integrity of Inconel 718 when finish turning with PVD coated carbide tool under MQL. Procedia Engineering (2011). https://doi.org/10.1016/j.proeng.2011.11.131
38 Revuru, R. S., Zhang, J. Z., Posinasetti, N. R., Kidd, T.: Optimization of titanium alloys turning operation in varied cutting fluid conditions with multiple machining performance characteristics. The International Journal of Advanced Manufacturing Technology (2018). https://doi.org/10.1007/s00170-017-1299-5
39 Bermingham, M. J., Kirsch, J., Sun, S., Palanisamy, S., & Dargusch, M. S.: New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V. International Journal of Machine Tools and Manufacture (2011). https://doi.org/10.1016/j.ijmachtools.2011.02.009
40 Zhiqiang, L.: Green machining of Ti-6Al-4V under Minimum Quantity Lubrication (MQL) condition. Machining of Titanium Alloys Part of the Materials Forming, Machining and Tribology, 113-129 (2014). https://doi.org/10.1007/978-3-662-43902-9_5
41 Fang, N., & Wu, Q.: A comparative study of the cutting forces in high speed machining of Ti-6Al-4V and Inconel 718 with a round cutting edge tool. Journal of Materials Processing Technology (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.013