Evaluation of Au/ZrO₂ Catalysts Prepared via Postsynthesis Methods in CO₂ Hydrogenation to Methanol

Tatiparthi Vikram Sagar ¹, Janez Zavašnik ², Matjaž Finšgar ³, Nataša Novak Tušar ¹ and Albin Pintar ^{1,*}

- ¹ Laboratory for Environmental Sciences and Engineering, Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; tvikramsagar@gmail.com (T.V.S.); natasa.novak.tusar@ki.si (N.N.T.)
- ² Department of Gaseous Electronics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; janez.zavasnik@ijs.si
- ³ Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; matjaz.finsgar@um.si
- * Correspondence: albin.pintar@ki.si; Tel.: +38-6-1476-0237; Fax: +38-6-1476-0460

Catalyst	Reaction Conditions	x(CO ₂) (%)	s(CH ₃ OH) (%)	STY(CH ₃ OH) (g _{MeOH} h ⁻¹ g _{cat} ⁻¹⁾	Ref.
^a Au(0.5 wt.%)/ZrO ₂	240°C, 40 bar	6	72.5	1.6	This work
^a Au(1 wt.%)/ZrO ₂	240°C, 40 bar, WHSV=120000 cm ³ h ⁻¹ g _{cat} ⁻	7	71.5	1.9	This work
Au(3 wt.%)/ZrO ₂	220°C, 5 bar	5	5	-	[1]
Au(1 wt.%)/ZrO ₂	180°C, 45 bar		73	-	[2]
Au(10 at.%)/3ZnO/ZrO ₂	220°C, 80 bar, GHSV=10000 h ⁻¹	2	100	0.01	[3]
Au/In2O3-ZrO2	300°C, 50 bar, GHSV=21000 cm ³ h ⁻¹ g _{cat} ⁻¹	14	70	0.5	[4]

Table S1. Comparison of performance of Au/ZrO_2 solids examined in this study with the reported Au supported ZrO_2 and modified ZrO_2 catalysts for CO_2 hydrogenation to methanol.

^aThese catalysts were prepared by means of the deposition precipitation method.

Table S2. Relative atomic and relative weight surface concentration for the ZrO₂ support and Au/ZrO₂ catalysts calculated based on the measured high-resolution XPS spectra.

Sample	С		Zr		0		Au	
	Rel. at.	Rel. wt.						
	conc.							
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
ZrO ₂	13.4	4.7	24.7	66.2	61.9	29.1	-	-
0.5Au/ZrO ₂ DP	15.4	5.3	25.3	66.7	59.2	27.4	0.1	0.5
1Au/ZrO ₂ DP	14.0	4.7	25.9	66.1	59.6	26.6	0.5	2.5
0.5Au/ZrO2 IMP	12.6	4.2	26.5	67.8	60.8	27.3	0.1	0.6

Figure S1. a) Catalytic activity of 0.5Au/ZrO₂ DP catalyst obtained at different temperatures, and **b**) results of the stability test carried out at 240°C. Operating conditions: Ptot=50 bar, catalyst weight: 50 mg (homogeneously mixed with 200 mg of SiC), gas flow rate: 100 ml/min, composition of the feed gas stream: 24 vol.% CO₂, 72 vol.% H₂ (balanced with N₂).

Figure S2. UV-Vis DR spectra of ZrO₂ support and Au/ZrO₂ deposition precipitation/impregnation catalysts after reduction.

Figure S3. TEM images of Au/ZrO₂ deposition precipitation/impregnation catalysts after reduction.

Figure S4. XPS survey spectra measured for the ZrO2 support and Au/ZrO2 catalyst samples.

Figure S5. RMS profile of time resolved DRIFTS spectra for the whole steady-state experiment region conducted over $1\text{Au}/\text{ZrO}_2$ DP catalyst under reaction mixture and N₂ gas switch after 40 min at 240°C and 40 bar total pressure.

1. Reaction steps of CO2 to methanol hydrogenation via CO route

Direct CO₂ to methanol hydrogenation via CO route starts with the reaction of adsorbed CO₂* with adsorbed H* and forms an intermediate OCOH*. This intermediate is highly active when compared to the formate intermediate that is formed via the formate route (Eq. 7). High energy is required for the reaction in Eq. S1 that makes it an unfavorable route for methanol production from CO₂ hydrogenation [5]. OCOH* is later decomposed by reacting with H* into *CO and H₂O. Further, *CO reacts with H* and forms HCO* which is continuously hydrogenated to CH₃OH.

 $\begin{array}{ll} \text{CO}_2^{*+2}\text{H}_2+^{*}\text{H}_2 \rightarrow \text{OCOH}^{*}+\text{H}^{*}+2\text{H}_2 & (\text{S1}) \\ \text{OCOH}^{*}+\text{H}^{*}+2\text{H}_2 \rightarrow \text{CO}^{*}+\text{H}_2\text{O}^{*}+2\text{H}_2 & (\text{S2}) \\ \text{CO}^{*}+\text{H}_2\text{O}^{*}+2\text{H}_2 \rightarrow \text{CO}^{*}+2\text{H}^{*}+\text{H}_2-\text{H}_2\text{O} & (\text{S3}) \\ \text{CO}^{*}+2\text{H}^{*}+\text{H}_2 \rightarrow \text{HCO}^{*}+3\text{H}^{*} & (\text{S4}) \\ \text{HCO}^{*}+3\text{H}^{*} \rightarrow \text{H}_2\text{CO}^{*}+2\text{H}^{*} & (\text{S5}) \\ \text{H}_2\text{CO}^{*}+2\text{H}^{*} \rightarrow \text{H}_3\text{CO}^{*}+\text{H}^{*} & (\text{S6}) \\ \text{H}_3\text{CO}^{*}+\text{H}^{*} \rightarrow \text{H}_3\text{COH} & (\text{S7}) \end{array}$

Figure S6. DRIFTS spectra recorded for 1Au/ZrO₂ DP catalyst under reaction gas mixture at T=240°C and P_{tot}=40 bar: a) the overall spectra, b) the carbonate segment, c) CO vibration segment and d) CH vibration segment. The numbers 0 to 21.75 indicate time in minutes.

Figure S7. DRIFTS spectra recorded for $1\text{Au}/\text{ZrO}_2$ DP catalyst under N₂ mixture at T=240°C and P_{tot}=40 bar: a) the overall spectra, b) the carbonate segment, c) CO vibration segment and d) CH vibration segment. The numbers 60 to 120 indicate time in minutes.

Figure S8. Selected DRIFTS spectra acquired at 0, 40 and 120 min by either using reaction gas mixture or N₂ gas, respectively, in the presence of $1Au/ZrO_2$ DP catalyst. Operating conditions: T=240°C, P_{tot}=40 bar.

Figure S9. Temporal profiles for HCOO* and H₃CO* surface intermediates obtained during the *insitu* DRIFTS measurements carried out in the presence of 1Au/ZrO₂ DP catalyst.

References

- Hartadi, Y.; Widmann, D.; Behm, R.J. CO₂ Hydrogenation to Methanol on Supported Au Catalysts under Moderate Reaction Conditions: Support and Particle Size Effects. *ChemSusChem* 2015, *8*, 456–465. https://doi.org/10.1002/cssc.201402645.
- Wu, C.; Zhang, P.; Zhang, Z.; Zhang, L.; Yang, G.; Han, B. Efficient Hydrogenation of CO₂ to Methanol over Supported Subnanometer Gold Catalysts at Low Temperature. *ChemCatChem* 2017, *9*, 3691–3696. https://doi.org/10.1002/cctc.201700872.
- Słoczyński, J.; Grabowski, R.; Kozłowska, A.; Olszewski, P.; Stoch, J.; Skrzypek, J.; Lachowska, M. Catalytic activity of the M/(3ZnO·ZrO₂) system (M = Cu, Ag, Au) in the hydrogenation of CO₂ to methanol. *Appl. Catal. A: Gen.* 2004, 278, 11–23. https://doi.org/10.1016/j.apcata.2004.09.014.
- Lu, Z.; Sun, K.; Wang, J.; Zhang, Z.; Liu, C. A Highly Active Au/In₂O₃-ZrO₂ Catalyst for Selective Hydrogenation of CO₂ to Methanol. *Catalysts* 2020, 10, 1360. https://doi.org/10.3390/catal10111360.
- 5. Wang, J.; Li, G.; Li, Z.; Tang, C.; Feng, Z.; An, H.; Liu, H.; Liu, T.; Li, C. A highly selective and stable ZnO-ZrO₂ solid solution catalyst for CO₂ hydrogenation to methanol. *Sci. Adv.* **2017**, *3*, e1701290. https://doi.org/10.1126/sciadv.1701290.