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Abstract
Objective: Electroencephalography (EEG) is a non-invasive technique used to record cortical
neurons’ electrical activity using electrodes placed on the scalp. It has become a promising avenue
for research beyond state-of-the-art EEG research that is conducted under static conditions. EEG
signals are always contaminated by artifacts and other physiological signals. Artifact contamination
increases with the intensity of movement. Approach: In the last decade (since 2010), researchers
have started to implement EEG measurements in dynamic setups to increase the overall ecological
validity of the studies. Many different methods are used to remove non-brain activity from the
EEG signal, and there are no clear guidelines on which method should be used in dynamic setups
and for specific movement intensities.Main results: Currently, the most common methods for
removing artifacts in movement studies are methods based on independent component analysis.
However, the choice of method for artifact removal depends on the type and intensity of
movement, which affects the characteristics of the artifacts and the EEG parameters of interest.
When dealing with EEG under non-static conditions, special care must be taken already in the
designing period of an experiment. Software and hardware solutions must be combined to achieve
sufficient removal of unwanted signals from EEG measurements. Significance:We have provided
recommendations for the use of each method depending on the intensity of the movement and
highlighted the advantages and disadvantages of the methods. However, due to the current gap in
the literature, further development and evaluation of methods for artifact removal in EEG data
during locomotion is needed.

List of abbreviations

AMICA adaptive mixture independent
component analysis

ASR artifact subspace separation
BCI brain–computer interface
BSS blind source separation
CCA canonical correlation analysis
EEG electroencephalography

EEMD ensemble empirical mode
decomposition

ICA independent component analysis
MoBI mobile brain/body imaging
ORICA online recursive independent

component analysis
PCA principal component analysis
RELICA reliable independent component

analysis
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1. Introduction

EEG is a non-invasive technique used to record
the electrical activity of cortical neurons with elec-
trodes placed on the scalp [1]. EEG amplifiers can be
lightweight and portable while providing high tem-
poral resolution of the recorded signal rendering EEG
the most suitable brain imaging device to measure
human brain activity during locomotion [2]. How-
ever, EEG signals are highly susceptible to artifact
contamination due to their electrical properties [3].
Artifacts can be of mechanical or electrical origin,
such as cable or electrodemovements, or the presence
of other electromagnetic devices. Besides that, the
EEG signal is also affected by other physiological sig-
nals, such as eyemovements ormuscle activity. In tra-
ditional EEG research, these non-brain physiological
contributions to the recorded EEG signal are con-
sidered artifactual as they distort the signal of interest
due to volume and capacitive conduction. Nonethe-
less, eye movement and muscle activity provide addi-
tional information about cognitive processes if ana-
lyzed separately and thus should not be considered
artifacts [4]. These physiological signals originate
mainly frommuscle activity, eyemovements, and car-
diac activity of the participant which increase with
movement in general and with the intensity of move-
ment specifically. Recording EEG in stationary pos-
itions and a controlled laboratory environment can
result in very clean signals, however, these kinds of
experiments do not lead to a good understanding
of brain dynamics in real-life situations [5]. On the
other hand, movement as part of realistic and natural
behavior increases the occurrence of unwanted sig-
nals in the EEG signal [6]. MoBI [4, 7, 8] overcomes
these restrictions by combining EEG with motion
tracking and potentially other physiological signals
combined with data-driven analyses techniques to
dissociate brain fromnon-brain activity.MoBI is thus
a promising approach to investigate human brain
dynamics in actively locomoting humans.

Walking, along with standing and sitting, is the
most important activity of daily living and has
recently been extensively studied with EEG [9–14].
The better understanding of the brain dynamics and
motor control of gait might aid in the control of
lower limb exoskeletons [14], the understanding of
the effect of cognition on gait, or the association
of the neural correlates of altered gait patterns with
pathologies [15]. Measuring EEG during gait is chal-
lenging due to its susceptibility to artifacts [3]. A
study comparing EEG to accelerometer data during
treadmill walking [16] found that EEG and accel-
erometer signals have similar time-frequency prop-
erties up to 150 Hz. In addition, they found that
movement artifacts phase-coupled with the stepping
frequency produce a signal contaminated with up to
15 harmonics. The number of harmonics depends on
the walking speed and location of the electrode. These

results show that gait-related artifacts are complex,
difficult to detect and remove, and that simple solu-
tions such as band-pass filters are not sufficient [17].

The characteristics of gait-related artifacts are
closely related to the biomechanics and the type of
gait. The gait cycle consists of twomain phases: swing
phase and stance phase. The stance phase begins with
heel strike and ends with toe-off, the first and last
contact of the foot with the ground, respectively.
In normal gait, the sequence is usually as follows:
right heel strike, left toe-off, left heel strike, right
toe-off. Between right/left heel strike and left/right
toe-off is a double support phase and the rest is a
single support phase [15]. A recent study [18] com-
bined seven features from various data dimensions
to thoroughly characterize gait-related artifacts as a
seven-dimensional footprint. This footprint includes
features of time, time-frequency, spatial, and source
domains. This gait-related artifact characterization
could be used to optimize future preprocessing and
artifact removal pipelines or to compare different
artifact removal methods for EEG data during walk-
ing [18]. An earlier study by Kline et al examined the
characteristics of movement artifacts recorded with
EEG at different walking speeds and they found that
with walking speed increased movement artifact fre-
quency spectra amplitudes and maximal frequency
at which the movement artifact occurred [17]. Addi-
tionally, they found that the head accelerometer data
had poor correlation with the movement artifact on
the EEG electrodes. In general, artifacts aremore pro-
nounced in the EEG signal during movement, have
specific characteristics depending on the type and
intensity of movement, and they interfere with the
EEG signal, making it difficult to distinguish them
from brain signals. Some studies raised doubts about
the cortical origin of time-frequency results during
walking due to insufficient artifact removal [16, 17].

The most commonly used methods for artifact
removal in movement studies are mainly techniques
based on ICA [19], ASR [20], and CCA [21]. There
are many types of improved versions or combina-
tions of these methods (e.g. AMICA [22] or RELICA
[23] in the case of ICA), and new methods for arti-
fact removal in the EEG domain are constantly being
developed or evaluated. To date, there are no clear
guidelines as to which artifact removal methods are
suitable for specific movement studies. The current
paper bridges this gap in the literature and reviews
the methods currently used in EEG studies involving
human movement.

Since the publication of the first studies using
EEG signals recorded during whole body movement
[2, 24], many studies have been conducted invest-
igating walking [12, 25, 26], cycling [27–29], and
some other types of whole body movement such
as jumping and squatting [30, 31]. In the current
study, we focus on walking and cycling, as these are
the most frequently studied. Only a few studies have
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Figure 1. Diagram of artifact removal methods used in movement studies described in this section.

investigated EEG during running [2, 32, 33], and
although the feasibility of measuring the signal dur-
ing running was confirmed [2], sometimes research-
ers are unable to use the signal due to artifact con-
tamination [33] or most electrodes and parts of the
data had to be removed [32]. To avoid such cases,
it is important to have appropriate hardware, fol-
low recommendations to minimize artifacts during
measurement (i.e. appropriate size of electrode cap,
preparation of electrodes, testing of signal, removal
of all possible sources of artifacts from the environ-
ment), and use effective methods for artifact removal
after the data have been measured. The lack of EEG
studies during intense movement implies the need to
improve EEG systems to further avoid artifacts and to
develop more efficient methods for artifact removal
and to evaluate existing methods for specific types
and intensities of movement.

This manuscript provides an overview of artifact
removal methods used in walking and cycling studies.
We discuss the most commonly used filtering tech-
niques, BSS methods, and ASR as well as the develop-
ment of new combinations of methods evaluated for
EEG signals during locomotion (figure 1). We sum-
marize these evaluated practices to improve the effi-
ciency of each method on locomotion EEG data. The
goal is to provide recommendations on suitable arti-
fact rejection methods for use in EEG studies with
locomotion of participants, possibly depending on
the intensity of the movement itself.

2. Artifact removal methods used in
movement studies

2.1. Filters
2.1.1. Low and high-pass filters
Low-pass and high-pass filters are commonly used
preceding other artifact removal methods. This type
of filter alone is sufficient only if the frequency bands

of artifacts and signals do not overlap, which is
not the case in studies involving movement [16].
Usually, high-pass filters with cut-off frequencies of
0.1–1 Hz are used in EEG studies, but higher cut-off
frequencies might be indicated in studies involving
fast movements [5, 34]. Before performing ICA, it
is recommended to use a high-pass filter to improve
decomposition rather than a low-pass filter. Espe-
cially for higher intensities of movement (e.g. higher
speed of walking), the cut-off frequency can be
higher, up to 2 Hz or even more, as the signals are
more contaminated with artifacts [5]. Similarly, in
adaptive filtering, a high-pass filter with a cut-off fre-
quency of 2 Hz is found to give better results [34].
When using these filters, it is important to know
which frequency range is of interest, as applying a
higher high-pass filterwill also remove information in
delta and theta frequencies bands that originate from
the brain.

2.1.2. Adaptive filters
Adaptive filters can adapt to the changing character-
istics of the artifacts by adjusting filterweights or coef-
ficients from one to the next time point according to
the reference signal with an optimization algorithm.
These filters use external sensors as a reference for
artifacts. One of the first adaptive filters were the least
mean squares algorithms which are used to find the
filter coefficients that produce the least mean square
of the error signal (difference between the reference
and the output signal). The goal of these filters is to
find the relationship between the input signal and
the reference signal. Linear mapping of the refer-
ence signal (artifact signal) to the contaminated EEG
signal is insufficient because of the complexity and
dynamics of the signal. Therefore, non-linear filters
are recommended in EEG studies involving move-
ment. Non-linear adaptive filters such as Volterra
[35], bilinear filter classes, cuckoo’s optimization
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algorithm or alternative approaches can be
used [36].

The advantage of using adaptive filters for arti-
fact removal in EEG signals is that they can be used
in real-time, which is crucial in the case of BCI stud-
ies, and the fast computation can also be beneficial for
offline analysis. The disadvantage of such adaptive fil-
ter approaches is that a good reference signal is neces-
sary to identify artifacts in the EEG signal. There-
fore, an appropriate selection of the reference signal
is important and significantly impacts the outcome of
the adaptive filter. In [35] three-axis head acceleration
values was used as a reference signal, which worked
well for removing movement artifacts from EEG sig-
nals during walking. In [34] a subset of electrode-
tissue impedance components such as magnitude, in-
phase, and quadrature per EEG channel was used for
removing movement artifacts during head shaking
and nodding.

Adaptive filtering can be sufficient for artifact
removal in movement EEG studies, but the selection
of the reference signal, the non-linear relationship
between the EEG signal and the artifact signal, and
optimal algorithm for parameter adaptation process
need to be considered. In [35] it was found that their
algorithm can clean EEG data from 60 electrodes in
real-time during walking at a different speed, but they
used it only on signals filtered between 0.3 and 15 Hz.
In [34] it was found that band-pass filter and adaptive
filtering can substantially reduce movement artifacts
produced by head movement, but they did not eval-
uate the extent to which movement artifacts are still
present in the cleaned signal. Adaptive filters in EEG
studies involving movement are also commonly used
in combination with other artifact removal methods
such as ICA and ASR only to remove ocular arti-
facts [14, 37]. Most critically, the described studies
do not investigate whether adaptive filters attenuate
functional neural correlates underlying cognitive pro-
cesses during active behaviors.

2.1.3. Bayesian filters
Bayesian filters use the recorded signal to estimate the
EEG state based on the probability. Thus, if the ori-
ginally recorded data includes artifacts, they will be
part of the probability distribution. Bayesian filters
then use a prediction-correction technique with two
models. The time update model describes how the
state updates from one time point to another. The
measurement model describes how the recorded data
relates to the internal state of the brain. This means
that the algorithm first estimates the state at one time
point and then obtains the feedback as a noisy meas-
urement, which is used to predict a new a priori estim-
ate. These filters work without a reference signal and
can be used online [38]. In EEG studies involving
movement, the Kalman filter is the most commonly
used Bayesian filter, especially for BCI, as the possibil-
ity of real-time application and no additional sensors

for the reference signal are vital for this type of studies.
The main assumption of the Kalman filter is that the
initial uncertainty is Gaussian and that the relation-
ship between the recorded data and the state is linear.
These assumptions prevent themethod to capture the
complex relationship between brain and artifactual
activity during dynamic movements. Therefore, an
improved version of the Kalman filter with nonlinear
estimation was developed, called the unscented Kal-
man filter. The latter filter was found to be effective
for BCI applications in movement studies [12, 37].

2.2. BSS methods
BSS methods solve the problem of reconstructing
statistically independent sources from a linear mix-
ture without the reference signal or any other prior
knowledge. Due to volume and capacitive conduc-
tion, many different sources are mixed before being
recorded with EEG. Thus, BSS methods have gained
popularity as they estimate the sources from the lin-
ear mixtures measured at the scalp providing insights
into different underlying brain or non-brain gener-
ators. In general, these methods try to find the mix-
ingmatrix of different sources and estimate the source
signal only by learning from the data, making differ-
ent assumptions. Usually, it is assumed that the num-
ber of sources is equal to the number of signals, that
the sources are statistically independent and that the
columns in the mixing matrix are linearly independ-
ent [39].

2.2.1. ICA
In recent years, the most popular method for arti-
fact removal in EEG studies, especially in EEG stud-
ies involving movement, has been ICA and other
improved variants based on this method. It is also
the most investigated method in the case of data pre-
processing and comparing its performance on dif-
ferent types of data [40]. Many variations of ICA-
based methods are used in movement studies, such
as InfoMax ICA, fastICA, RELICA, and AMICA
[24, 41–44].

The ICA method is solving the BSS problem
by assuming that the signals are a linear mixture
of statistically independent sources associated with
different physiological activities and artifacts. ICA
decomposes the observed signals into independent
components and after removing the unwanted com-
ponents, the clean signal is reconstructed from the
remaining independent components. It separates the
signal with a contrast function based on maximiz-
ing the non-Gaussian similarity and minimizing the
mutual information. Infomax ICA is a variation of the
method using the Infomax algorithm that works as
a line iteration learning algorithm with the contrast
function on the principle of information maximiza-
tion [39]. FastICA is a fast iteration algorithm with
an increased convergence speed. ORICA can estim-
ate the solution of BSS problem in almost real-time
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and therefore is useful for BCI experiments [45]. REL-
ICA or reliable ICA characterizes statistical reliability
within a dataset of independent components. AMICA
is an asymptotic Newton algorithm used to calcu-
late the maximum likelihood estimate for a mixed
model of independent components. It is a combina-
tion of Infomax and multiple mixture methods [22].
ICA-based algorithms usually provide similar res-
ults, but AMICA generally achieves a more accurate
ICA decomposition, which has been tested on EEG
data from static tasks [19, 46]. Additionally, Infomax
ICA and AMICA were tested on EEG datasets during
different exercises (isometric contractions, treadmill
running and ergometer cycling), and AMICA always
performed better or equally well as the Infomax ICA
[47]. AMICA requires more computational power
and time because it learns a more complex model
than other ICA algorithms. The removal of inde-
pendent components that reflect non-brain activity
(e.g. physiological activity or mechanical artifacts) is
not part of the ICA method. Traditionally, unwanted
independent components are manually removed by
an expert in the field. Since automatized removal is
more transparent and less subjective, classifiers are
used to identify and reject artifactual components.
Classifiers are usually pre-trained and do not adapt to
the dataset [48, 49]. Thus, if the classifier has not been
trained on data similar to the data being classified, it
may not produce as good results as manual classific-
ation by an expert. Some classifiers also require pre-
recorded artifact sections [50].

ICA algorithms tested at different walking speeds
showed that EEG data recorded at a faster walking
speed are more difficult to clean, to the extent that it
might not be sufficient for faster walking and running
[46]. Additionally, ICA algorithms perform worse
when walking overground in comparison to tread-
mill walking because of higher ground-reaction forces
and inconsistency of stepping frequency when walk-
ing overground, resulting in a quasi-periodic signal
that is more complicated to decompose using the ICA
method [40].

Preparation of the data before using ICA
algorithms is as important or maybe even more
important than the algorithm itself. High-pass fil-
tering of the data before using this method greatly
improves the quality of artifact separation [5, 51].
In [51] high-pass filtering was suggested where the
cut-off frequency is just below the frequency band
of interest while simultaneously using a low-pass fil-
ter. In [5] it was shown that for movement studies, a
high-pass filter with a cut-off frequency of at least 1.5
or even 2 Hz should be used before ICA is employed,
depending on the intensity of the movement and the
amount of noise in the signal. However, in contrast
to [51], the authors found no improvement when
using a much higher high-pass frequency. This might
be due to the difference in the low-pass filter set-
tings in the two studies with no low-pass filter in

[5]. The quality of the ICA decomposition is also
affected by the number of channels used. In [33] it
was found that 35 electrodes could be sufficient to
record the twomost dominant electrocortical sources
during walking with a concurrent cognitive task, but
they also found that additional electrodes at least up
to 125 improve ICA decomposition. Generally, it is
recommended to use 64 channels or more, and in
movement studies, it is good to increase the num-
ber of channels with increasing movement intensity
[5] to provide higher degrees of freedom for ICA to
explain the increasing numbers of potential artifac-
tual sources. Another method found to improve ICA
decomposition is first cleaning the data with ASR
[52], which we discuss below.

2.2.2. CCA
CCA is another technique that can solve the prob-
lem of BSS. It has been shown to successfully remove
muscle activity and gradient artifact from the brain
signal and to improve the signal-to-noise ratio in EEG
studies [21, 53, 54]. The occurrence of muscle activ-
ity and gradient artifact in brain signals is more fre-
quent when the subject is moving, therefore CCA can
be useful in movement studies [54, 55].

CCA decomposes the sources of signals in a way
that the source components are maximally auto-
correlated and mutually uncorrelated. It is a mul-
tivariate statistical method that maximizes the under-
lying correlation between two multivariate signals.
The first dataset is the recorded EEG signal and the
second dataset is a time-delayed versions of the same
signal. CCA seeks two vectors of weights that pro-
ject the input signals onto two canonical variables
in a way that the canonical correlation is maxim-
ized. Since muscle signals, unlike EEG signals, do not
have high autocorrelation, muscle activity is removed
by setting several of the least autocorrelated source
components to zero before reconstructing the signals.
CCA uses second-order statistics, resulting in lower
computational complexity compared to ICA, which
uses higher-order statistics [56, 57]. CCA has shown
to perform better or comparable to ICA in removing
muscle activity [53, 54].

There are some improved variants of this method.
For example, multiset CCA extends CCA to more
than two datasets. Instead of maximizing the canon-
ical correlation between two datasets, it attempts to
maximize the overall correlation of several canon-
ical variables with the intention of extracting source
components that are uncorrelated in each dataset but
well correlated acrossmultiple datasets [58]. In [53] it
was shown that CCA increases performancewhen fol-
lowed by rejection of spectral slope of its components.
They also found that CCA usage is limited to artifact
removal since its components are still mixtures from
different sources. In [54] authors proposed a CCA-
based framework that was evaluated on walking data
and found to be efficient for movement studies. It is
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recommended to use CCA in combination with other
methods for higher efficiency. The combination with
ICA could be beneficial since then both Gaussian and
non-Gaussian temporally correlated sources could be
separated [53]. Other combinations of CCA has also
been shown to be effective, such as EEMD-CCA [59],
singular spectrum analysis (SSA) [60], or Gaussian
mixture models (GMMs) [61].

2.3. ASR
Another method used in movement studies is ASR
[12, 62, 63]. The ASR method has several advantages
including the automated removal of artifactual com-
ponents, its usability for online applications, and the
ability to remove transient or large-amplitude arti-
facts that the ICA method struggles with [52]. This
method is relatively new, and its application to move-
ment EEG data is currently poorly evaluated.

ASR is an automatic non-stationary component-
based artifact removal method for removing artifacts
from multi-channel EEG data. It uses a sliding win-
dow on the EEG data and performs PCA decompos-
ition on each window. First, the ASR method auto-
matically extracts reference data from the raw data
based on the distribution of signal variance. Then, it
determines thresholds for artifact component iden-
tification based on the standard deviation across the
principal component space of all windows multiplied
by the cut-off parameter k, which must be defined by
the user. This means that a larger k parameter leads to
no ASR correction; for example, when k is more than
100, less than 3%of the data ismodified andwhen k is
between 5 and 7, 90% of data can be modified. In the
end, the ASR method rejects the artifact components
in each time window if the principal component is
larger than the rejection threshold. Subsequently, the
final reconstruction of the cleaned signals from the
remaining data was computed [20, 52]. Reimannian
ASR is an improved version of the ASR method that
uses Reimannian methods for covariance matrices
computation, which has been shown to be beneficial
for artifact removal [64].

In a case study with motor imagery EEG data
[20] it was found that the ASR method with default
parameters is more efficient in artifact removal com-
pared to ICA and PCA methods. In [52] it was found
that for optimal results of the ASR method, a cut-off
parameter between 20 and 30 should be used instead
of default values of 5–7 as previously recommended.
They found that the parameter 5–7 is too aggressive,
which means that brain activity is greatly removed
along with artifacts. When the parameter is less than
20, more brain components than artifact compon-
ents were affected by this method [52]. This could
explain the impressive results of ASR in [20]. In [65]
it was found that the quality of independent compon-
ents calculated after ASR is best with a cut-off para-
meter of 10 or higher which is lower than that in [52],
possibly due to different motor tasks [65]. In [52]

authors demonstrated that ASR is an effective auto-
matic method for artifact removal in EEG data from
attention tasks in a driving simulator, while in [65]
ASR was used with fast walking and single leg stance
EEG data. Further, in [65] it was found that ASR
performed better in motor tasks with more artifact
contamination compared to non-motor tasks. The
drawback of the ASR method is that without aggress-
ive cut-off parameters, it might not be as effective at
removing artifacts such as eye blinks that regularly
occur, and it might not remove movement artifacts
if they are present in the reference data. ASR can be
used in online applications, however, especially for
movement studies that typically use a large number
of channels, one should consider that the computa-
tion time grows quadratically or faster with the num-
ber of channels and one needs to use a longer time
window to compensate for this. In addition, user-
defined reference data is needed to use the method in
real-time [52].

2.4. Combinedmethods
We have mentioned only the most commonly used
and evaluated methods for artifact removal in move-
ment studies, although there are many other possible
techniques. All have their advantages and disadvant-
ages, and to avoid some of the downsides, combina-
tions of several methods have been proposed. Inmost
studies, artifact removal has been found to be more
effective when a combination ofmethods is used than
when only one method is used [60, 61, 66].

Many combinations with BSS techniques ICA
and CCA with other methods have been evaluated
for different purposes. It was found that ICA com-
bined with spatial filtering as a preprocessing method
(e.g. Laplacian filter, common average rejection fil-
ter) effectively suppresses artifacts even in very small
sets with only three EEG channels [67]. ICA has also
been combined with ASR to improve the quality of
the signal at different walking speeds [68] and to
improve ICA decomposition [52], with ASR as a pre-
processing method for ICA. ICA and CCA methods
are combined into a method called independent vec-
tor analysis. Their complementary exploited statist-
ical information benefits the removal of artifacts [66].

CCA has also been combined with EEMD, which
can be applied to individual channels. First, the
EEMDmethod is used to decompose a single-channel
signal into a multi-dimensional signal. Then, CCA
isolates the artifact components from the underlying
signal [56, 69]. In [70] authors used their version of
EEMD-CCA to remove artifacts in movement stud-
ies with perturbations. A combination of methods
that has been shown to be even more powerful than
EEMD-CCAwithmultichannel data is CCA and SSA,
with SSA being conducted before CCA. The recom-
mended window length parameter for SSA method is
between 50 and 100. It can take advantage of the mul-
tivariate statistics that SSA is based on, as well as the
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cross-channel information [60]. Another CCA com-
bination with GMMswas evaluated using GMM after
CCA decomposition to cluster extracted features into
groups to recognize and remove artifacts [61].

3. Summary and guidelines

Based on the reviewed literature on artifact removal
methods in EEG studies involving movement, we
cannot unambiguously conclude which method is
the most appropriate for removing artifacts from
locomotion EEG data, however some guidelines on
which method to choose in specific movement cases
can already be presented. We provide some general
recommendations based on studies that have invest-
igated methods to remove artifacts from EEG data
related to locomotion, which are discussed in this
paper. We summarized the guidelines on how to use
each method depending on the intensity of loco-
motion in table 1.

First, it is important to acknowledge that charac-
teristics of artifacts depend on the type and intens-
ity of movement. The most studied features of arti-
facts are those in EEG data that involve gait [17, 18].
These studies found that increased speed of walk-
ing enhances the occurrence of artifacts and increases
specific frequency parameters of artifacts. This shows
that artifact characteristics (e.g. timing and loca-
tion) depend on certain events in gait cycle. Artifact
characteristics of EEG data involving other types of
movement are poorly evaluated, therefore we cannot
provide recommendations depending on the type of
movement (e.g. walking vs cycling).

In locomotion EEG measurements, especially in
high-intensity locomotion, such as fast walking and
running, artifacts and other physiological signals
are more pronounced. Therefore, when recording
and analyzing locomotion EEG data, special atten-
tion must be directed to artifacts starting with the
setup of the experiment. First, the risk of artifacts
can be reduced with good preparation of the parti-
cipant, electrodes, and environment.Next to standard
procedures performed in static EEG measurements
[71, 72], it is recommended to set-up the artifact
removal methods preceding data recording because
some methods (e.g. adaptive filters, ASR) require
additional signals of artifacts or baseline periods that
are as clean as possible. The choice of the artifact
removal method depends on the type and intensity
of the movement, which affects the characteristics of
artifacts and EEG parameters of interest [46].

The most common methods for artifact removal
in movement studies are methods based on ICA. To
date, AMICA was found to be the best in stationary
tasks and at least as good as Infomax ICA or better
in treadmill running and ergometer cycling [19, 47].
However, not all existing ICA-based methods were
compared to each other, not allowing for a general-
ized conclusion. In low intensity locomotion defined

as slow to normal walking it is recommended to use
a high pass filter with a cut-off frequency around
1.5 Hz and no low-pass filter, while for higher intens-
ities (fast walking or running movement) this fre-
quency can be 2 Hz or more [5]. It is recommended
to use at least 35 electrodes; however, the decompos-
ition improves at least up to 125 electrodes, therefore
for higher intensity locomotion more than 64 elec-
trodes are recommended [5, 33]. For ASR it is recom-
mended to use cut-off parameter k from 10 to 30 for
low-intensity locomotion, and around 10 for high-
intensity locomotion [52, 65]. CCA is a promising
method to remove muscle artifacts, but it is recom-
mended to be used in combination with other meth-
ods (e.g. ICA, SSA, EEMD) to remove artifacts more
thoroughly. All the methods reviewed are commonly
used in combination with each other, which helps
to overcome some disadvantages of the same meth-
ods used alone. Therefore, it is recommended to use
the proposed combined methods when appropriate.
Parameter tuning in combinedmethods should be the
subject of future studies, as this topic has been poorly
investigated.

Another limitation in evaluating different meth-
ods for artifact removal is the lack of an objective
measure to compare the efficiency of the methods,
since the true value of brain activity is unknown. One
way to bypass this problem is to evaluate methods on
simulated data with known true brain activity, where
we can use standard measures such as the signal-to-
noise ratio [73, 74]. Simulations of EEG signals have
been improved by using 3D headmodels, which allow
linearmixing and spatial dependence of signals.How-
ever, some characteristics of the EEG signal are still
difficult to simulate, so evaluation using real data is
also important. On real data, estimation of true brain
activity is used, e.g. by baseline EEG measurements
with minimized artifacts (without movements, eyes
closed…) [47] or by ICA and automatic classification
of independent components is used to evaluate how
many artifactual components are in the signals before
and after artifact removal [52]. Further research is
needed to improve simulation of EEG signals and to
evaluate different objective measures for comparing
artifact removal methods on real data.

To sufficiently remove artifacts, especially in EEG
studies involving high-intensity locomotion, and to
clarify the problem of choosing the artifact removal
method depending on the type and intensity of
movement, different combinations of artifact remov-
ing methods applied to different types of move-
ment data should be further evaluated. Review stud-
ies similar to the current one would guide researchers
through different methods and would help to trans-
parently compare results of different artifact remov-
ing methods and to create pipelines for EEG data
processing. We focused mainly on the algorithms to
remove artifacts in the recorded signals, however joint
hardware and software solution improvements and
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implementations are the key to the advancement of
artifact removal in complex high intensity movement
EEG data. Currently, the state-of-the-art hardware
solution is probably a double-layer electrode system,
which includes electrodes recording only movement
artifacts and then removing them fromEEGmeasure-
ments [75]. However, this solution is for now unavail-
able on the market and is therefore not commonly
used.

In conclusion, artifact removal is a crucial pro-
cess to study brain dynamics in a natural everyday
environment or during high-intensity motor activit-
ies. Although the field of artifact removal methods is
rapidly advancing, further evaluation of methods on
locomotion EEG data is needed. Bottom-up recom-
mendations for adjusting the parameters of vari-
ous methods as a function of movement intensity
are formulated. Although we have focused on soft-
ware methods to remove artifacts, software and hard-
ware solutionsmust be combined to achieve sufficient
removal of unwanted signals from EEG measure-
ments in locomotion or other non-stationary EEG
experimental setups.
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