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Abstract: The European spruce bark beetle (Ips typographus L.) is an eruptive forest pest that has
caused a great deal of damage in the last decades because of increasing climatic extremes. In order to
effectively manage outbreaks of this pest, it is important to predict where they will occur in the future.
In this study we developed a predictive model of the sanitary felling of Norway spruce (Picea abies
(L.) H. Karst.) because of bark beetles. We used a time series of sanitary felling because of bark beetles
from 1996 to 2020 in Slovenia. For the explanatory variables, we used soil, site, climate, geographic,
and tree damage data from the previous year. The model showed that sanitary felling is negatively
correlated with slope, soil depth, soil cation exchange capacity, and Standard Precipitation Index
(less sanitary felling in wet years). On the other hand, soil base saturation percentage, temperature,
sanitary felling because of bark beetles from the previous year, sanitary felling because of other
abiotic factors from the previous year, and the amount of spruce were positively correlated with the
sanitary felling of Norway spruce due to bark beetles. The model had an R2 of 0.38. A prediction
was performed for 2021 combining an occurrence model and a quantitative model. The model can be
used to predict the amount of sanitary felling of Norway spruce due to bark beetles and to refine the
risk map for the next year, which can be used for forest management planning and economic loss
predictions.

Keywords: sanitary felling; prediction; Ips typographus; Picea abies; Slovenia; forecasting; insect
outbreak forest pest

1. Introduction

Bark beetles pose a significant threat to forest health in the light of climate change.
Many large-scale outbreaks have been recorded in Europe and North America [1,2], with
dramatic economic and carbon storage losses [3]. The main reasons for these outbreaks
are the type of forest management, invasion in new regions, and large-scale catastrophic
climatic events [1,4–8]. It is therefore important to develop an integrated system that takes
all phases of the population dynamics of bark beetles into account in order to combat
outbreaks [9].

The European spruce bark beetle (Ips typographus L. 1758) causes more damage to
European temperate forests than any other forest pest [2,10]. The main host plant is
Norway spruce (Picea abies (L.) H. Karst.), which is the most common tree species in
Europe and has important ecological and economic functions. Due to planting regimes
in secondary habitat and increasing temperature associated with many weather extremes,
trees are weakened and therefore susceptible to large-scale spruce bark beetle outbreaks.
An integrated management approach is therefore suggested for this species [2,9]. Damage
intensity can be reduced by a monitoring system for the early detection and survey of
spruce bark beetle outbreaks. When an outbreak is found, direct methods should be
used to reduce populations with the help of sanitation felling, trap trees, and pheromone

Forests 2022, 13, 319. https://doi.org/10.3390/f13020319 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f13020319
https://doi.org/10.3390/f13020319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-5721-6676
https://orcid.org/0000-0002-4058-9417
https://doi.org/10.3390/f13020319
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f13020319?type=check_update&version=1


Forests 2022, 13, 319 2 of 11

traps. It is important to take into account that these methods should be combined and
used in the correct stage of the phenology of the spruce bark beetle. In addition to direct
methods, silvicultural practices that increase the forest’s resistance to bark beetles should
be used [6,8,11,12]. One of the crucial aspects of direct methods is to detect an outbreak as
quickly as possible. Therefore, detection methods should be further developed.

Predictive models can be helpful for determining where to focus surveys of spruce
bark beetles [13]. There are phenological models that predict bark beetle phenology, such
as PHENIPS [14] and RITY [15]. On the other hand, there are ecological models which
take different variables into account [13,16–18]. These models have found that outbreak
potential is most affected by drought and high temperatures, the amount of spruce and
storm felled trees [5,19,20]. However, the majority of these models do not predict future
outbreaks in the short term or long term (for example, see [16,17,20,21]). Such models
can focus on predicting the occurrence of a potential outbreak or predicting the amount
of sanitary felling. Both outcomes are important in their own way. The prediction of
occurrence gives foresters the opportunity to locate areas which are under threat, while the
prediction of sanitary felling indicates how severe an outbreak will be.

Slovenia has a long history of bark beetle outbreaks. Several methods exist for the
short- and long-term predictive modeling of spruce bark beetles [15–17,22] and have been
implemented for several years [22–24]. However, a model that predicts short-term sanitary
felling is still lacking.

The aim of this study was to predict the amount (in m3) of sanitary felling of spruce
in Slovenia because of spruce bark beetles. This involved three steps: first, we created a
model of sanitary felling because of bark beetles on a test dataset based on different soil,
geographic, climate, and stand variables. Next, we validated the model on a validation
dataset. Finally, we created a risk map of sanitary felling because of bark beetles for the
year 2021.

2. Materials and Methods
2.1. Area Description

Slovenia is a small country in Central Europe. It lies at the intersection of the sub-
Mediterranean, Dinaric, sub-Pannonian, and Alpine biogeographical regions. More than
60% of Slovenia is covered with forests, which in 2020 consisted mainly of beech (32.9%),
Norway spruce (30.2%), and silver fir (7.4%) [25]. The country has a continental climate
with hot summers and cold winters, but the coastal area experiences milder winters. In the
last few decades there have been several large-scale climatic catastrophes. In 2003, there
was a severe drought which resulted in a long period of bark beetle outbreaks. In 2014,
a catastrophic ice storm catalyzed severe bark beetle outbreaks across the entire country.
Despite many small-scale windthrows in the last few years, bark beetle abundance dropped
in 2020 [25,26] (Figure 1).
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Figure 1. Sanitary felling because of bark beetles in the period 1994–2020 [25].
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2.2. Databases

For the model development we used the same database as in de Groot and Ogris [17]
but instead of the relative amount (cubic meters per hectare), the absolute amount (cubic
meters) of Norway spruce and sanitary felling was used.

For the dependent variable sanitary felling of spruce because of bark beetle outbreaks
in the current year (cubic meters) was used. Independent variables were as follows: amount
of spruce (cubic meters), altitude (meters above sea level), relief aspect (degrees), slope
(degrees), dominant geology type, exchangeable phosphorus (mg/100 g), soil depth (cen-
timeters), soil cation exchange capacity (mmolc/100 g), soil base saturation (percent) [16,27],
Standardized Precipitation Index (SPI—a proxy for drought) during the previous grow-
ing season, average temperature during the previous year (degrees Celsius), cumulative
amount of precipitation in the previous year (millimeters), amount of sanitary felling of
spruce because of bark beetle outbreaks in the previous year (cubic meters), amount of
weakened trees because of bark beetles in the previous year (cubic meters), amount of
sanitary felling because of abiotic factors in the previous year (cubic meters), and the
location (X and Y) of the model grid cell.

The spatial resolution of the data was 1 × 1 km (21,001 model cells). Sanitary felling
variables were extracted from the Timber database for the period 1996–2020, which was
provided by the Slovenia Forest Service [28]. The Timber database distinguishes between
sanitary felled trees due to bark beetle outbreaks and felled trees due to regular bark beetle
attacks of weakened trees. Sanitary felling is the felling of trees in the outbreak area, where
trees are damaged primarily because of bark beetle attack. It is used to prevent the further
spread of the outbreak to surrounding areas. Felling of weakened trees is used when
trees are weakened primarily because of other factors such as drought and other weather
extremes which make them susceptible to secondary bark beetle attacks. Every felled
tree is recorded at the forest sub-compartment level, which measures 22 ha on average
(N > 53,000). Additionally, the number of trees and their volume in m3 in different size
classes are also recorded, along with the reason (62 possible values) for felling and the
causative agent, e.g., I. typographus.

Altitude data were provided by the Surveying and Mapping Authority of the Republic
of Slovenia [29]. Data on the amount of Norway spruce were also provided by the Slovenia
Forest Service in the Forest Funds database [30]. Exposition and slope were calculated
with ESRI ArcGIS Desktop 10.6.1 on the basis of a digital elevation model with a spatial
resolution of 12.5 m [29]. Air temperature and precipitation were acquired from the Slove-
nian Environment Agency [31,32]. Soil data on exchangeable phosphorus (mg/100 g), soil
depth (centimeters), soil cation exchange capacity (mmolc/100 g) and soil base saturation
(percent) were prepared on the basis of a soil map [33] by Ogris [27].

2.3. Analysis

For the analysis only the data in which Norway spruce was present were taken into
account. The dataset was divided into a training dataset (80% of the data) and a validation
dataset (20% of the data). First, the data were explored for outliers, multicollinearity,
types of relationships and spatial autocorrelation, using plots to determine outliers and
relationship types, the variance inflation factor for multicollinearity and Moran’s I for
spatial autocorrelation [34]. A linear mixed model was used for the analysis. The dependent
variable was the amount of sanitary felling because of bark beetles in the current year. The
independent variables were the amount of spruce, altitude, exposition, slope, amount of
exchangeable phosphorus, soil depth, soil cation exchange capacity, soil base saturation
percentage, SPI during the previous growing season, average temperature during the
previous year, amount of sanitary felling of spruce because of bark beetles in the previous
year, amount of weakened trees of spruce because of bark beetles in the previous year,
amount of sanitary felling of spruce because of abiotic factors in the previous year, and
geographical coordinates. Due to outliers, sanitary felling, slope, sanitary felling because
of bark beetles, sanitary felling because of abiotic factors, and amount of spruce were log
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+ 1 transformed. Soil depth was square root transformed. The year and grid ID were
used as random effects. As temperature and altitude were multicollinear, altitude was
dropped from the analysis. Other variables were not multicollinear. There was no spatial
autocorrelation observed.

Before starting model selection, a complete model was built including all of the vari-
ables. Model selection was based on the Akaike Information Criterion (AIC). The best
model was the model with the lowest AIC. For the validation, the marginal R2 and con-
ditional R2, RMSE, MSE, and MAE were calculated for the validation dataset in order to
estimate how much of the variability was covered by the model. Lastly, the residuals were
checked for normality.

Predictions for 2021 were based on the final quantitative model and the probabilistic
model developed by de Groot and Ogris [17] and applied already for 2021 [23] (Figure 2).
We used 2020 data for all the variables which were included in the model. The prediction
was performed on the basis of fixed effects, and random effects were omitted. The final map
was prepared in two steps. First, the probabilistic predication was prepared to show the
potential for sanitary felling above the threshold. Validation of this model showed that the
optimal threshold for the prediction of actual sanitary felling occurrence was 0.55 [35]. For
the cells with a threshold of more than 0.55, the amount of sanitary felling was calculated
with the model described here. For the prediction, the minimum, maximum, mean, and
sum were calculated.
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For the analysis, the statistical program R [36] and the libraries “LME4” [37], “car” [38],
“spdep” [39,40], “adespatial” [41], “spatialreg” [39,40], and “MuMIn” [42] were used.

3. Results

The best model included the amount of Norway spruce, slope, amount of sanitary
felling of spruce in the previous year, amount of sanitary felling because of abiotic factors,
SPI, temperature, soil depth, soil cation exchange capacity, and soil base saturation percent-
age (Table 1). The amount of spruce, temperature, amount of spruce in the previous year,
amount of sanitary felling because of abiotic factors, and soil base saturation percentage
were positively correlated with sanitary felling because of bark beetles, while slope, soil
depth, soil cation exchange capacity, and SPI were negatively correlated with sanitary
felling because of bark beetles. The marginal R2 was 0.34 and the conditional R2 was 0.46
(Table 2).
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Table 1. Model of the prediction of the amount of sanitary felling because of bark beetles.

Parameters Estimate Std Error df T Value p

(Intercept) −2.2044 0.1219 53.0850 −18.0831 2.38 × 10−24

log(1 + slope) −0.0789 0.0087 12,250.3280 −9.1134 9.22 × 10−20

sqrt(soil depth) −0.0229 0.0036 11,199.1970 −6.3855 1.78 × 10−10

Soil cation exchange capacity −0.0104 0.0010 12,178.9620 −10.6647 1.95 × 10−26

Soil base saturation percentage 0.0067 0.0004 12,110.8650 15.6774 7.47 × 10−55

Temperature 0.0852 0.0043 15,433.4990 19.6619 5.01 × 10−85

SPI −0.2479 0.0088 110,276.0280 −28.0173 4.04 × 10−172

log(1 + sanitary felling because
of bark beetles) 0.4052 0.0026 149,932.8310 153.9234 0.00

log(1 + sanitary felling because
of abiotic factors) 0.2092 0.0026 159,012.0310 79.8858 0.00

log(1 + amount of spruce) 0.2996 0.0038 42,934.0320 77.8883 0.00

Table 2. Validation measures of the prediction model.

Validation Measures Marginal Model Conditional Model

RMSE 1.50 1.39
MSE 2.25 1.94
R2 0.38 0.46

MAE 1.23 1.12

The predicted sanitary felling for 2021 showed that the minimum sanitary felling was
1 m3 and the maximum was 780 m3 per 1 × 1 km cell, with a median of 3 m3. It was
predicted that there would be 243,655 m3 of sanitary felling because of bark beetles for the
whole of Slovenia in 2021. The combined prediction with the probabilistic model where
only cells with the probability of sanitary felling of Norway spruce due to bark beetles were
taken into account was 198,721 m3. The highest amount of sanitary felling was predicted to
be in the northwest, north, and south of the country. The actual amount of sanitary felling
of spruce due to bark beetles was 261,288 m3 (as of 31 December 2021). Differences at the
model cell level were also low, at only 0.02 m3 on average (RMSE = 57.7 m3). Differences
at the model cell level for the combined model were moderate, at −10.5 m3 on average
(RMSE = 114.8 m3) (Figure 3). Overall, there were no large spatial differences between
predicted and actual sanitary felling. Large differences between the predicted and actual
amount of sanitary felling were observed only in the west and north of Slovenia.
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4. Discussion

We created a model to predict the sanitary felling of spruce because of bark beetles.
The model included slope, soil depth, soil cation exchange capacity, soil base saturation
percentage, temperature, SPI, sanitary felling in the previous year, and the amount of
spruce. The model performed very well considering that it was prepared in an ecological
system with a large amount of background noise. Combining the probability and amount
model predicted that there would be a relatively low amount of sanitary felling in 2021 in
most parts of Slovenia.

The model previously developed for Slovenia for the occurrence of sanitary felling is
very similar to our new model of the amount of felling because of bark beetles ([17]; this
study, Table 3). There are some differences in the estimate values of the parameters, but
this has to do with the dependent variables: 0–1 and the amount of felling. However, for
some data there was a difference in the transformation of the variables. This was probably
due to additional data used in the amount model: the occurrence model was based on data
up to 2016, and the amount model was based on data up to 2020. Interestingly, the models
also differed with respect to the variables. For instance, the occurrence model included as
variables phosphorous in the soil and sanitary felling of weakened trees, while the amount
model included soil depth. The occurrence model is a probabilistic model which shows
the probability of the occurrence of sanitary felling, while the amount model predicts how
much sanitary felling will be performed in the next year. This difference in models also
explains why certain variables are included in the occurrence model or in the amount
model. For instance, there is a high chance that an attack will still occur in weakened
trees as they attract bark beetles. For the model of the amount of sanitary felling, these
weakened trees are less important. The amount of sanitary felling of weakened trees is not
very high and therefore does not strongly affect timber volume, while it still indicates the
occurrence of attacks. The influence of soil variables such as soil depth and phosphorus
are different for both models. The fact that phosphorus was only found in the occurrence
model could imply a negative association between phosphorus (representative also for
other nutrients such as nitrogen and potassium) and spruce bark beetle outbreaks and that
phosphorus potentially increases tree vigor [43]. This results in higher demand for water
and other nutrients, which increases tree stress and consequently increases the likelihood
(but not necessarily the amount) of sanitary felling. On the other hand, soil depth was an
important factor for the amount of sanitary felling. As soil depth reflects the availability of
nutrients, water storage and potential for root development [44,45], it seems that a lack of
nutrients, less water storage, and poor root development are associated with an increase in
the amount of sanitary felling, especially in extreme weather events such as drought and
windthrows.

Precipitation and SPI are important factors influencing the prediction of the sanitary
felling because of bark beetles. Previous research has shown that outbreaks are not nec-
essarily dependent on windthrows or the ice storm, but can also be due to acute drought
stress which affects host trees [46]. This also happened in the years after the 2003 drought
in Slovenia (see also Figure 1).

The slope was negatively associated with the sanitary felling because of bark beetles.
There are two possible explanations for this: the poor accessibility of steep, high-altitude
stands results in less sanitary felling in these regions. On the other hand there could also
be fewer attacks in spruce stands in mountainous/sub-alpine areas because of the less
appropriate climate for spruce bark beetles [4].

Other studies have found that forest structure and species composition; forest man-
agement; climate; soil; tree vitality; predisposition to storm, ice and snow damage; and
species-specific phenology affect bark beetle damage [5,6,11,19,47–49]. These results are
comparable with our results. Pasztor et al. [11] developed a similar model with a 10-year
time series in Austria which also used sanitary felling data. We had the opportunity to use
a 25-year time series in neighboring Slovenia. The main difference between the models is
that climate data were not included in the model of Pasztor et al. [11]. However, in that
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model, temperature is indirectly included in the number of generations and the altitude.
We decided not to include the number of generations or altitude because the number of
generations is a derivate of temperature. Altitude is strongly correlated with temperature
but is static. It has been shown that previous year temperature influences bark beetle
outbreaks [47]. Therefore, it is better for prediction models to include dynamic variables
such as temperature. In our model, forest structure was represented by the amount of
spruce, but species composition and stand age are also important [11,49] and could improve
the model when these data are available. However, the predictive power of our model is
quite high. We found that the model explained 38% of the variability, which is better than
the model from Austria (13%). Furthermore, the random effects of site and year accounted
for only 8% of the variability, which means that our variables were very well chosen. Given
that there was a great deal of ecological noise in the data, the total explained variability of
0.46 is very good.

Table 3. Estimates of the occurrence model and amount of sanitary felling model. * The variable was
not transformed. Occurrence model variables were taken from de Groot and Ogris [17].

Variable
Estimates

Occurrence Model Amount Model

Intercept −2.41 −2.2044
log(1 + slope) −8.21 × 10−3 −0.0789

sqrt(soil depth) −0.0229
Soil cation exchange capacity −1.77 × 10−2 −0.0104

Soil base saturation percentage 1.14 × 10−2 0.0067
Temperature 2.66 × 10−1 0.0852

SPI −3.88 × 10−2 −0.2479
log(1 + sanitary felling because of

bark beetles) 1.38 0.4052

log(1 + sanitary felling because of other
abiotic factors) 5.50 × 10−1 0.2092

log(1 + amount of spruce) 2.37 × 10−2 * 0.2996
cbind(x, y)x −4.43 × 10−6

cbind(x, y)y 4.00 × 10−6

Phosphorus −5.39 × 10−2

log(1 + amount of weakened spruce
in the previous year) 5.04 × 10−2

Implications for Forest Management

The combined model with occurrence and amount of sanitary felling predicts sanitary
felling on 1 × 1 km cells over the whole area of Slovenia. As shown, this yields a map
of predicted sanitary felling in the next year, which dramatically reduces the area, and
therefore a more targeted search for bark beetle infested trees can take place. The prediction
of the amount of sanitary felling makes it possible to (1) refine the risk map, (2) estimate the
economic cost of the damage in the next year, and (3) estimate the spatial distribution of
predicted sanitary felling. As already mentioned above, the occurrence map gives foresters
an indication of where to search for attacked trees in general irrespective of the number of
attacked trees on an area of 1 by 1 km. This is very important, because just a few attacked
trees have the potential to become large outbreaks if they are not found early enough.
The map produced based on the model of the amount of sanitary felling shows the areas
which are likely to be heavily affected by bark beetles. Foresters could therefore prepare
for larger outbreaks well in advance (up to half a year). This is important, as normal forest
management is not organized to carry out the intensive sanitary felling required after large-
scale outbreaks. Another aspect for which the map is a helpful tool is cost estimation and
actual cutting. The amount of sanitary felling reflects the lost yield of Norway spruce and
therefore can be taken into account for cost and yield estimation for the next year. On the
other hand, the activity of sanitary felling, especially in the case of large-scale outbreaks,
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might affect normal forest management. Such a map would indicate which areas will not
achieve the cutting quota. Therefore, the preparation of a map of the predicted amount of
sanitary felling could be beneficial in a number of ways.

5. Conclusions

In conclusion, we developed a model to predict the amount of sanitary felling of
spruce because of bark beetles. Many climate, forest structure, site specific, and biotic
and abiotic disturbance variables were included. This resulted in a model which, despite
the ecological background noise, explained a relatively high proportion of the variability.
Developing models and risk maps is a very important aspect of forest pest management as
they can enable foresters to respond quickly to potential outbreaks. In the era of climate
change and elevated probability of large-scale bark beetle outbreaks, such prediction maps
are of vital importance to reduce the risks of bark beetles, especially in large areas where
outbreaks might be missed.
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