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Abstract

Karst systems represent an important carbon sink worldwide. However, several phenomena

such as the CO2 degassing and the exchange of cave air return a considerable amount of

CO2 to the atmosphere. It is therefore of paramount importance to understand the contribu-

tion of the ecosystem to the carbon budget of karst areas. In this study conducted in a mid-

succession ecosystem developed on abandoned karst grassland, two types of model were

assessed, estimating the gross primary production (GPP) or the net ecosystem exchange

(NEE) based on seven years of eddy covariance data (2013–2019): (1) a quadratic vegeta-

tion index-based empirical model with five alternative vegetation indices as proxies of GPP

and NEE, and (2) the vegetation photosynthesis model (VPM) which is a light use efficiency

model to estimate only GPP. The Enhanced Vegetation Index (EVI) was the best proxy for

NEE whereas SAVI performed very similarly to EVI in the case of GPP in the empirical

model setting. The empirical model performed better than the VPM model which tended to

underestimate GPP. Therefore, for this ecosystem, we suggest the use of the empirical

model provided that the quadratic relationship observed persists. However, the VPM model

would be a good alternative under a changing climate, as it is rooted in the understanding of

the photosynthesis process, if the scalars it involves could be improved to better estimate

GPP.

Introduction

Within the context of global changes, the exchanges of carbon between the atmosphere and

ecosystems are of high importance for a better understanding of the biosphere’s carbon bal-

ance. An accurate quantification of carbon fluxes is essential for carbon budget studies at large

scales [1]. When grasslands used as pasture are abandoned, they naturally evolve into woody

systems and ultimately into forests [2], which leads to a change in the ecosystem carbon bal-

ance. This change is more beneficial in karst ecosystems where the CO2 originating from the

degassing of caves is absorbed more efficiently by plants, hence improving the carbon budget

of such ecosystems [3].
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The carbon balance of the ecosystem expressed as Net Ecosystem Exchange (NEE), being

the difference between the gross primary production (GPP) and the ecosystem respiration

(Reco), is often measured by the eddy covariance (EC) method. However, due to the mainte-

nance costs of an EC tower and its restriction to a limited footprint, large scale carbon fluxes

estimations must rely on remote sensing information. Vegetation indices (VI) have a good

empirical relationship with the fraction of absorbed photosynthetically active radiation

(fAPAR) [4–6]. Hence, they are often used as proxy of GPP.

For the estimation of GPP, remote sensing can be used through the application of different

models [7,8], such as VI-based empirical models [9–11] and light-use efficiency (LUE)-based

models [5,12–14]. VI-based empirical models rely mostly on regression whereas LUE models

are rooted in the LUE theory which states that GPP is related to the absorbed photosyntheti-

cally active radiation (APAR) and the LUE or photosynthetic efficiency by unit of photosyn-

thetically active radiation (PAR). LUE is obtained by reducing a maximum photosynthetic

efficiency (LUEmax) under environmental stress factors such as low/high temperatures or

water stress [4,5].

While several studies applied LUE models to estimate GPP, the estimation of NEE is usually

more critical since it also includes Reco [15]. In fact, Reco is one of the main sources of uncer-

tainty in the estimation of NEE [16]. To overcome this limitation, some studies attempted to

estimate NEE and GPP directly with simple empirical regression models especially in grass-

lands and croplands [10,11]. For evergreen systems where the seasonal decrease in photosyn-

thetic activity can occur without substantial declines in canopy greenness reflected by VI, this

approach is inadequate [17]. What about intermediary ecosystems with tree patches mixed

with a grassland? Would a VI-based empirical model help estimate NEE and GPP or do we

need to rely only on other approaches such as a LUE model?

The present study applied an empirical modelling approach to assess NEE in a mid-succes-

sion ecosystem developed on abandoned karst grassland. By applying the same for GPP, the

empirical approach was compared to a LUE model, the vegetation photosynthesis model

(VPM). The specific objectives were:

1. to compare the performance of different VI derived from Landsat images for estimating

NEE and GPP using the empirical model,

2. to compare the performance of the empirical model and the LUE model in assessing GPP.

Materials and methods

Study site

This study concerned a mid-succession ecosystem developed on abandoned karst grassland in

the Podgorski Kras plateau situated in the south-western part of Slovenia (longitude 13˚ 55’

0.12’’ E; latitude 45˚ 32’ 36.564’’ N). Despite a history marked by anthropic actions such as

intensive agriculture and grazing which led to eroded landscapes, the near abandonment of

agricultural practices that resulted from the economic development favoured the development

of different stages of vegetation succession, from grasslands to secondary oak forests. The soil,

made essentially of insoluble fractions of carbonates that originated from the karst phenomena

on a limestone bedrock, is superficial [18]. The climate is sub-Mediterranean, with minimum

and maximum mean daily temperatures of 1.8˚C and 19.9˚C respectively in January and June.

The mean annual temperature is 10.5˚C, and the average annual precipitation is about 1370

mm. These are statistics of 30 years (1971–2000) climate data from four different meteorologi-

cal stations of the area [11,19]. The study area (Fig 1) covers a diverse ecosystem where both
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grass, shrubs and tree patches coexist. Although pure grasslands still cover a non-negligible

part, in the last 30 years, over 20% of the former grasslands were transformed into mid and

late forest succession, with a mixture of grass, shrubs and trees. Woody plants encompass

shrubs of early successional stage and tree species, mainly Quercus pubescens Willd [18]. In a

previous study [18], the EC tower footprint (Fig 1) was estimated based on the contribution of

fluxes from a given distance from the tower [20], and the mean distance from where the tower

monitors 90% of fluxes was estimated to 1530 m. In the estimated footprint, grass/shrubs and

trees can be roughly estimated to cover 70% and 30% respectively, considering also grass

under tree patches.

Data acquisition

Eddy covariance and meteorological data. An EC system installed in 2008 at the study

site (Fig 1) provides continuous measurements of CO2 and H2O exchanges between the eco-

system and the atmosphere. More information about instrumentation can be found in a previ-

ous study [21]. Post processing of raw EC data was done in the EddyPro v6.2.1. software. The

weather station installed along with the EC system measures environmental variables includ-

ing soil temperature and soil water content (SWC) at 10 cm depth, incident global radiation

(Rg), air temperature (Tair), air humidity and precipitation (P). A gap-filling has been per-

formed for Tair and Rg based on nearby weather stations in Koper and Skocjan (located at 15

and 14 km from the tower, respectively). NEE data were gap-filled and partitioned into GPP

and Reco as in a previous study [22]. The gap-filling and partitioning were done using the REd-

dyProc online tool [23]. Additionally to the regular weather station measurements at the EC

tower, a setting (LI-190, Li-Cor, Lincoln, NE USA) installed above the ecosystem, below the

trees and above grassland allowed to measure respectively the incoming photosynthetic pho-

ton flux density (incPPFD, two sensors), the transmitted or below tree canopy PPFD (bcPPFD,

Fig 1. Study area. In red is the footprint of the EC tower (location marked with triangle) estimated in a previous study

[18,20].

https://doi.org/10.1371/journal.pone.0237351.g001
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two sensors) and the non-absorbed PPFD by the grass (naPPFD, one sensor), that can be used

to establish the relationship between fAPAR and VI [4–6].

Spectral vegetation indices. In this study, Landsat 8 operational land imager (OLI)

images (30m resolution) between April 2013 and December 2019 were processed to compute

five VI (Table 1) using google earth engine. Since we used surface reflectance data made avail-

able by the United States Geological Survey [24], the only processing carried out consisted in

masking out clouds, cloud shadow and snow before computing the VI with the formulas writ-

ten in Table 1. The downloaded VI clipped to the extent of the EC tower footprint were then

used to create half-monthly composite VI (1st to 15th of the month and 16th to end of the

month). Composite VI images with more than 5% of masked pixels in the EC tower footprint

were discarded before averaging the VI.

NEE and GPP estimation models

Empirical model. Multiple model comparisons suggested a quadratic model better fits

the relationship observed between GPP or NEE as response variable and VI as explanatory var-

iable in this study. The empirical model applied to estimate GPP and NEE is therefore a qua-

dratic model:

GPP or NEE ¼ a�VI2 þ b�VI þ c ð1Þ

Where VI represents the five alternative vegetation indices; a, b and c are regression

constants.

Vegetation photosynthesis model. The second model applied is the VPM model which is

a LUE model [30]. Three modifiers were considered: a water scalar, a temperature scalar and a

phenological scalar. The VPM model as applied in this study can be written as follows:

GPP ¼ PAR�fAPAR�LUEmax�Wscalar�Tscalar�Pscalar ð2Þ

Where GPP is the gross primary production (in gC.m-2.halfmonth-1), PAR is the photosyn-

thetically active radiation (in MJ.m-2.halfmonth-1), assumed here to be a constant fraction

(45%) of Rg [31,32]; fAPAR is the fraction of absorbed photosynthetically active radiation by

the ecosystem; LUEmax (in gC.MJ-1) is the potential LUE for the investigated ecosystem under

ideal environmental conditions; Wscalar, Pscalar and Tscalar represent modifiers for water, phe-

nology and temperature, respectively. They account for the reduction of photosynthetic activ-

ity under water and temperature stress according to the phenological stage of the vegetation.

The scalars range from 0 (non-vegetation phenophase, water or temperature is a limiting

Table 1. Vegetation indices explored in this study.

Index Formula Reference

NDVI (NIR–R) / (NIR + R) [25]

GNDVI (NIR—G) / (NIR + G) [26]

EVI (2.5 � (NIR–R)) / (NIR + 6�R– 7.5�B + 1) [27]

SAVI ((1 + L) (NIR–R)) / (NIR + R + L) [28]

LSWI (NIR–SWIR1) / (NIR + SWIR1) [29]

L is a vegetation cover-dependent constant ranging from 0 (i.e. very green vegetation) to 1 (i.e. areas with no green

vegetation), considered = 0.5 here. B, G, R, NIR and SWIR1 represent respectively the blue (0.452–0.512 μm), green

(0.533–0.590 μm), red (0.636–0.673 μm), near infrared (0.851–0.879 μm), and shortwave infrared (1.566–1.651 μm)

bands of the Landsat 8 image.

https://doi.org/10.1371/journal.pone.0237351.t001
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factor for photosynthesis) to 1 (phenological stage, water or temperature conditions are ideal

for photosynthesis).

Estimation of fAPAR from EVI. PPFD measurements available for the year 2019 were

used to compute fAPAR as in a previous study [33].

fAPAR ¼ 1 �
PPFDout

incPPFD
ð3Þ

Where incPPFD is the incoming PPFD and PPFD_out is the average below canopy PPFD

for trees (bcPPFD) or the non-absorbed PPFD for grass (naPPFD).

fAPAR was computed separately for grass and trees, and then averaged with weights of 70%

and 30%, respectively, to account for their relative landcover in the tower footprint. After-

wards, fAPAR was aggregated half-monthly like EVI, and a linear regression was performed to

establish the relationship between fAPAR and EVI in 2019. Finally, the established relationship

was applied to estimate fAPAR from EVI for the entire timeframe of the study (2013–2019).

Estimation of LUEmax. LUEmax was determined as the slope of the linear regression through

origin between GPP elaborated from EC and APAR for midday fluxes (11 am to 1 pm) of

uncloudy days during the growing season, as in a previous study [34]:

LUEmax ¼
GPP
APAR

; ð4Þ

Where GPP is the gross primary production (in gC.m-2.30min-1) and APAR is the absorbed

photosynthetically active radiation (in MJ.m-2.30min-1) obtained by multiplying fAPAR by

PAR.

The dataset used for the estimation of LUEmax was filtered to only use midday half-hourly

GPP values from the growing season (April to October) and when SWC is higher than 0.146

m3.m-3 and the VPD lower than 20 hPa, which are the non-drought conditions in our ecosys-

tem as reported in a recent study [35]. Uncloudy days were identified by finding days where

the curve of PPFD per half-hour from 7 am to 3 pm has a near-perfect downward quadratic

shape (y = x+x2, r2>0.95).

Estimation of the modifiers. The modifiers were estimated as in previous studies [36,37].

The water scalar was estimated as follows:

Wscalar ¼
1þ LSWI

1þ LSWImax
; ð5Þ

Where LSWI is the Land Surface Water Index and LSWImax is the maximum value of LSWI

over the entire seven years, during the growing seasons.

The phenological scalar (Pscalar) was also estimated from LSWI as developed in a previous

study [12]. Unlike in its original definition [36] where the phenological scalar was set to 1 dur-

ing the wet phase due to the retention of leaves during that period, Pscalar was left as calculated

in this study, due to the heterogeneity of the vegetation.

Pscalar ¼
1þ LSWI

2
; ð6Þ

The temperature scalar was estimated as described in a previous study [38]:

Tscalar ¼
ðT � TminÞðT � TmaxÞ

½ðT � TminÞðT � TmaxÞ � ðT � ToptÞ2�
; ð7Þ
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Where Topt, Tmin, and Tmax are optimal, minimum, and maximum air temperatures (˚C)

for photosynthesis, respectively and T is the average air temperature (from 11 am to 4 pm).

Topt was set to 20˚C, Tmin and Tmax were set to 0 and 35˚C respectively, and Tscalar was set to 0

when air temperature goes beyond these limits [39,40].

Data analysis

Gap-filled NEE and partitioned GPP as well as Rg were summed-up to obtain the half-monthly

aggregates, temporally matching the VI aggregates. For air temperature however, we used the

average to obtain half-monthly aggregates. Only temperatures measured between 11 am—4

pm were considered during the aggregation, because of a lot of noise caused by temperature

scalar when whole day air temperature was considered. For the empirical model development,

we used the data splitting approach, which consisted in splitting the dataset randomly into a

training set (70%) and a validation set (30%). This was repeated a thousand times, and average

regression coefficients were obtained as well as average regression accuracy metrics such as the

coefficient of determination (r2), the root mean square error (rmse) and the p-value, both

from training (Train) and validation (Test) sets, with their confidence intervals. Additionally,

the corrected Akaike Information Criterion (AICc) was computed for each empirical regres-

sion model using the “AICcmodavg” package in R. The choice of AICc over AIC was moti-

vated by the fact that AICc is corrected for small samples, and converges towards AIC for large

samples, making it always suitable for model selection. AICc differences (ΔAICc) were com-

puted between each candidate model and the model with the lowest AICc to support the other

accuracy metrics in choosing the best model. A model can be said to outperform the others if

the ΔAICc with all the other models is higher than 2, i.e. if the presumed best model has a

AICc lower than that of all the other models with at least 2 units of difference [41]. For the

VPM model, all the parameters were computed, and GPP was estimated. In order to correct

the estimated GPP that was found to be underestimated differently for the growing season

(April to October) and the non-growing season (November to March), correction factors were

computed in the same multiple data splitting setting described previously for the empirical

model, on the same training and validation sets. The growing and non-growing seasons were

treated differently and for each growing phase, the training dataset was used to estimate the

correction factors, and the validation dataset was used to assess the performance of the model

through accuracy metrics calculation. The comparison of the best empirical model for GPP

estimation with the VPM model was based on ΔAICc as described for the empirical model

selection. All the data were analysed with the R software v3.5.1.

Results

Carbon fluxes from the eddy covariance tower and satellite-derived

vegetation indices

Carbon fluxes from the EC tower and VI used in this study are reported in Fig 2. High photo-

synthetic activities occur in the studied ecosystem between May and July and is translated into

large negative values of NEE (Fig 2A), large values of GPP and Reco (Fig 2B) and generally

high values of VI (Fig 2C). In contrast, low photosynthetic activity could be observed from

October to March where GPP values are low and Reco reflects significantly in NEE values that

become mostly positive. A gap due to equipment failure and too large to be filled could be

noticed in fluxes during the year 2018 from May to August. All the VI considered in this study

show similar trends that match well with the trend of GPP. They all reach their maximum
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about the same time as GPP (between May and July) and reach their minimum almost at the

end of the non-growing season (around February).

Empirical model performance in estimating GPP and NEE

Results obtained from fitting the quadratic model to measured NEE and partitioned GPP are

presented in Fig 3. More information about the average “Train” and “Test” accuracy metrics

(rmse, r2, p-value and AICc) were obtained from the multiple data splitting setting (Table 2). It

appears that EVI is the best proxy for both NEE and GPP in this ecosystem with r2 of 0.73 and

0.82, respectively. In the case of GPP, SAVI showed performances comparable to that of EVI

(ΔAICc < 2), whereas other VI such as NDVI and GNDVI performed less. NEE generally

showed a lower correlation with all VI, compared to GPP.

The “Train” and “Test” accuracy metrics are comparable, which leads to conclude that

there was neither an over-fitting nor under-fitting of the model. In addition, all correlations

Fig 2. Fluxes & VI used in the study. (A) daily aggregates of NEE, (B) daily aggregates of partitioned GPP (negative values) and Reco (positive values),

and (C) Vegetation indices (NDVI, GNDVI, EVI, SAVI and LSWI). The red and green lines are the rolling means of the corresponding fluxes.

https://doi.org/10.1371/journal.pone.0237351.g002
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were very significant (both “Train” and “Test” p-values < 0.001) with the only exception of

NEE with GNDVI, where the correlation is still significant (p-value “Test” < 0.01) despite the

relatively low r2 value.

VPM model performance in estimating GPP

Estimated fAPAR. Based on the PPFD records in 2019, the calculated fAPAR shows that

there is an important difference between grass and tree phenology (Fig 4A). The grass species

Fig 3. Empirical model fitting of fluxes with VI. The red lines represent quadratic regression lines fitted to the cloud of points (flux~VI).

https://doi.org/10.1371/journal.pone.0237351.g003

Table 2. Accuracy metrics of the empirical model.

Flux VI Equation rmse_test r2_test p_test rmse_train r2_train p_train AICc ΔAICc

GPP EVI 919.41 � EVI2–298.13 � EVI + 46.58 19.08±5.31 0.82±0.12 ��� 18.58±2.11 0.83±0.04 ��� 541.02±50.73 0.00

GPP SAVI 1425.73 � SAVI2–571.3 � SAVI + 81.66 19.32±5.38 0.81±0.12 ��� 18.84±2.13 0.82±0.04 ��� 542.74±50.85 1.72

GPP LSWI 1177.37 � LSWI2 + 108.36 � LSWI + 27.81 20.09±6.81 0.8±0.14 ��� 19.67±2.73 0.81±0.05 ��� 547.91±52.21 6.89

GPP NDVI 1335.65 � NDVI2–1241.75 � NDVI + 311.81 21.89±6.46 0.76±0.15 ��� 21.56±2.55 0.77±0.06 ��� 559.25±52.69 18.23

GPP GNDVI 2873.12 � GNDVI2–2934.78 � GNDVI + 773.92 26.76±8.5 0.65±0.22 ��� 26.25±3.4 0.65±0.09 ��� 583.36±55.19 42.35

NEE EVI 574.74 � EVI2–206.4 � EVI + 2.47 14.54±3.1 0.73±0.15 ��� 13.85±1.16 0.75±0.05 ��� 498.92±47.39 0.00

NEE SAVI 874.28 � SAVI2–370.08 � SAVI + 23.97 14.96±3.26 0.72±0.15 ��� 14.24±1.22 0.73±0.05 ��� 502.25±47.77 3.33

NEE LSWI 804.61 � LSWI2 + 24.89 � LSWI—13.33 16.59±4.35 0.67±0.19 ��� 15.63±1.56 0.68±0.07 ��� 513.52±48.91 14.60

NEE NDVI 718.89 � NDVI2–670.56 � NDVI + 141.62 18.18±4.21 0.59±0.21 ��� 17.44±1.57 0.6±0.07 ��� 526.76±50.04 27.84

NEE GNDVI 1516.99 � GNDVI2–1550.72 � GNDVI + 382.49 20.18±4.53 0.49±0.22 �� 19.41±1.69 0.5±0.08 ��� 539.79±51.1 40.87

The suffixes “_test” and “_train” refer respectively to the accuracy metrics computed on the test/validation dataset and the training dataset, with their confidence

interval. The best selection of GPP and NEE regressions are highlighted in bold. p_values were transformed into correlation significance, i.e.

��� means a high significance (p_value < 0.001), and

�� means a medium significance (p_value < 0.01).

https://doi.org/10.1371/journal.pone.0237351.t002
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did not show a clear change in PAR absorption throughout the year, whereas fAPAR for tree

patches showed a typical trend that can be used to split the considered period into four phases.

Data was only available from February, but a dormancy can be noticed until March, character-

ized by a relatively low and steady absorption of PAR. In our ecosystem in 2019, the vegetation

started to absorb more PAR in April till the second half of May, which can be called the green-

up phase. This phase is characterized by an important increase in fAPAR. The vegetation

reaches maturity towards end of May after which the fAPAR stays almost constant. Finally,

early in November, fAPAR starts to decrease more substantially through winter, and this

phase can be called senescence. These phenological phases, although mostly related to the tree

species, are reflected in the average ecosystem fAPAR (Fig 4B).

The relationship between NDVI or EVI and fAPAR is generally considered to be linear or

near-linear [34]. The established quadratic relationship between fAPAR and EVI in this study

(Fig 5), with a high r2 (0.93) and a relatively low rmse (0.09), made it possible to estimate

fAPAR for years with no available PPFD measurements for direct fAPAR calculation.

Estimated LUEmax

The concept of LUE, which is the amount of carbon produced by APAR unit is usually

assumed to have a maximum value (LUEmax), representing the maximum conversion rate of

APAR into biomass under optimal environmental conditions (i.e. Tair, SWC, VPD and PAR).

The relationship between midday GPP and APAR for the growing season during uncloudy

days (Fig 6) allowed to estimate LUEmax to 0.85 gC.MJ-1.

GPP estimates. The VPM model was applied on the entire dataset after preparing all the

required inputs (fAPAR, PAR, LUEmax, Wscalar, Tscalar and Pscalar) described earlier. The model

output shows a clear difference between growing and non-growing season (Fig 7A). Addition-

ally, there is an underestimation of GPP by the VPM model differently according to the

Fig 4. Daily fraction of absorbed PAR (fAPAR) in 2019. (A) daily grass (red) and tree (black) fAPAR. (B) daily ecosystem average

fAPAR, assuming 70% and 30% cover of grass and trees, respectively. The phenophases (dormancy, green-up, maturity and

senescence) refer to development stages of the deciduous tree species of the study area.

https://doi.org/10.1371/journal.pone.0237351.g004
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growing phase of the vegetation. Therefore, a seasonal correction factor was determined

through multiple data splitting, and the final VPM model was validated by computing “Train”

and “Test” accuracy metrics (Table 3). The wider confidence interval obtained for the correc-

tion factor during the non-growing season (November to March) reflects a larger fluctuation

partly due to the low amount of data available during that period.

The average correction factors obtained from the training sets are 2 ± 0.08 and 2.51 ± 0.37

respectively for the growing and non-growing seasons. The corrected estimated GPP values were

plotted against observed values (Fig 7B), with an overall coefficient of determination of 0.77.

Fig 5. Relationship between half-monthly fAPAR and EVI. The red line is the quadratic regression line fitted to the

cloud of points. The resulting equation is: fAPAR = -1.62 � EVI2 + 1.70 � EVI + 0.44.

https://doi.org/10.1371/journal.pone.0237351.g005

Fig 6. Relationship between half-hourly GPP and APAR. The red line is the linear regression line through origin

fitted to the cloud of points (black dots), representing midday data for uncloudy days during the growing season. The

resulting equation is: GPP = 0.85 �APAR.

https://doi.org/10.1371/journal.pone.0237351.g006
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Best models selection

In the light of Table 2, the best empirical model for NEE was the one with EVI as proxy since

the ΔAICc was higher than 2 between the best model (with EVI as proxy) and the other mod-

els. In the case of GPP however, there was no substantial difference between the model with

the lowest AICc (with EVI as proxy of GPP) and the model based on SAVI since the ΔAICc

between these two models was lower than 2. SAVI can therefore be used as an alternative to

EVI in the estimation of GPP using the empirical model. The lower r2 and higher rmse and

AIC (ΔAICc > 2, Table 3) obtained in the case of the VPM model in comparison with the best

empirical model for GPP suggests that the empirical model performed better than the VPM

model. Based on the selection of the best models among the empirical models (Table 2) and

the VPM model, estimated fluxes were plotted along with measured values (Fig 8).

Discussion

Empirical relationship between carbon fluxes and vegetation indices

The empirical relationship between GPP and VI has been proven in several studies, but limited

mainly to grasslands and croplands [10]. Different VI proved to be good proxies for GPP in

different ecosystems [42,43]. While NDVI is a widely used VI in the estimation of GPP due to

its capability to discriminate seasonal changes related to photosynthetic activity [10], several

other VI are being used recently, in order to find the one that better suits a particular ecosys-

tem. Among the five VI explored for estimating GPP and NEE in the present study, EVI was

found to be the best VI proxy for both GPP and NEE. This seems adequate since the ecosystem

addressed is not a pure grassland as it was the case in a previous study where NDVI was the

best proxy for GPP [11]. The heterogeneous nature of the ecosystem in this study, made of a

Fig 7. Observed vs. modelled GPP using the VPM model. (A) uncorrected VPM output, (B) seasonally corrected

VPM output (correction factors of 2 and 2.51 for growing and non-growing season, respectively).

https://doi.org/10.1371/journal.pone.0237351.g007

Table 3. Accuracy metrics and seasonal correction factors for GPP estimated with the VPM model.

rmse_test r2_test p_test rmse_train r2_train p_train fact_non_growing fact_growing AICc ΔAICc

22.55 ± 5.91 0.77 ± 0.14 ��� 22.04 ± 2.31 0.78 ± 0.05 ��� 2.51 ± 0.37 2 ± 0.08 554.71 ± 74.22 13.69

The suffixes “_test” and “_train” refer respectively to the accuracy metrics computed on the test/validation and the training datasets. p_values were transformed into

correlation significance, i.e. ��� means a high significance (p_value < 0.001).

https://doi.org/10.1371/journal.pone.0237351.t003
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mix of tree patches and grassland, partly explains why EVI performed better than NDVI. In

fact, EVI proved to be a better proxy for GPP in forest ecosystems where NDVI can get satu-

rated [42,44]. Although r2 and rmse suggested EVI to be the best proxy for GPP, the low

ΔAICc between the EVI and SAVI-based models led to conclude that there was no substantial

difference of performance between the two models [41]. The better performance of SAVI com-

pared to NDVI can be supported by the fact that in some open ecosystems, the sensitivity of

NDVI to soil background brightness makes it less performant [42,45], and SAVI is an opti-

mized VI to account for soil background reflectance [28].

Several studies have proved that there exists, to a certain extent, a coupling between GPP

and Reco, especially in ecosystems of shrublands [46], heathlands [47], and different forest

ecosystems [48,49]. This coupling is characterized by different slopes of the GPP ~ Reco rela-

tionship, depending on vegetation species and the timescale considered, i.e. daily, monthly, or

yearly. Additionally, the relationship is weak in nutrient-rich forests and very strong in nutri-

ent-poor forests. In fact, poor soils result into lower heterotrophic respiration, which is the

complex part of ecosystem respiration [50]. Our study area, being a karstic ecosystem with

shallow soils and therefore relatively nutrient-poor, it was possible to also estimate half-

monthly aggregates of NEE using a direct VI-based model, with EVI as the best proxy.

fAPAR, LUEmax and modifiers in the VPM model

The calculation of fAPAR requires continuous measurements of incoming and below canopy

PAR, which are most of the time unavailable. In this study, we used one-year measurements of

incoming and below tree canopy PPFD as well as the non-absorbed portion of PPFD by grass-

land, to establish a relationship with satellite-derived EVI data. Despite the low number of

available pairs of “EVI, fAPAR” for only one year, the high correlation observed (r2 = 0.93)

confirms the previous findings on the linear relationship between fAPAR and VI. In a compar-

ative study, EVI was found to be the best proxy for fAPAR in drought conditions in a maize

Fig 8. Observed (black lines) and modelled (red dots) half-monthly fluxes. The top panel represents GPP from empirical model, the middle panel

represents GPP from VPM model and the bottom panel represents NEE from empirical model.

https://doi.org/10.1371/journal.pone.0237351.g008
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field, with r2 = 0.69 [51]. A good quadratic relationship (r2 = 0.88) was found between fAPAR

and EVI for maize and soya fields, even though NDVI performed better in those ecosystems

[52]. Thanks to the good relationship between fAPAR and EVI, the latter has been used in

LUE models as a proxy of fAPAR, assuming a linear relationship across various ecosystems,

from grasslands to different forest types [53].

The LUEmax term is very important in the VPM model, as it is the starting point of LUE cal-

culation. Based on the fact that LUE is at its maximum when plants are in their best environ-

mental condition, considered in this study as periods during the growing season when SWC

and VPD are not limiting, i.e. SWC > 0.146 m3.m-3 and VPD < 20 hPa [35], the high correla-

tion (r2 = 0.97) obtained between midday GPP and fAPAR confirms the adequacy of the esti-

mation of LUEmax from EC data [34,54]. LUEmax values of 3.68 ± 1.98 gC.MJ-1 and 0.84 ± 0.82

gC.MJ-1 have been reported in Canadian grasslands and forests respectively [54], whereas a

LUEmax value of 1.61 gC.MJ-1 has been reported in an alpine grassland [55]. Although reported

LUEmax values by different studies usually show large differences, the estimated LUEmax of

0.85 gC.MJ-1 in the ecosystem of the present study (tree patches mixed with shrubs and grass)

seems to be a fair estimate. This LUEmax value is however slightly higher than that of the

biome properties look-up table for MOD17 which reports 0.768 gC.MJ-1 for wooded grass-

lands and 0.8 gC.MJ-1 for grassy woodlands [56], which can be considered as ecosystems simi-

lar to the one of our study area.

LUEmax estimation is determinant in the accuracy of GPP estimates. The fact that the VPM

model underestimated GPP and required a correction factor can be partly due to an underesti-

mation in LUEmax. A possible underestimation of MOD17 GPP values due to an underestima-

tion of LUEmax has been reported in a previous study [55]. A constant LUEmax is usually a

source of error in some LUE models [57], and should rather be considered variable since it

depends not only on temperature, water stress and phenology as in the VPM model, but also

on plant physiological characteristics (e.g., leaf nitrogen), light intensity (e.g., diffuse radia-

tion), and landscape feature (e.g., spatial scales) [58,59]. Another important source of error in

LUE models originates from the estimation of modifiers (i.e. temperature and water scalars for

instance), which can bias the resulting actual LUE. For instance, Tscalar can be overcorrected

(low values) for months with high PAR values, but low air temperatures [12], hence emphasiz-

ing the importance of a careful choice of the minimum temperature value used in the VPM

model.

Other challenges of the VPM model

The VPM model like many other LUE models has been reported to make GPP predictions

that agree well with observations in some forest ecosystems such as evergreen needleleaf and

deciduous broadleaf forests [5,12]. However, in other ecosystem types such as evergreen

broadleaf forests and shrublands, generally low performances were observed in predicting

GPP using LUE models [5]. In our ecosystem which encompasses grass and shrub species as

well as deciduous forest species, the VPM model underestimated GPP differently between

growing and non-growing season. The higher correction factor required for the non-growing

season (end of autumn to winter) reflects a higher underestimation of GPP. While the under-

estimation during non-growing season can be partly explained by an overcorrection of Tscalar,

errors introduced by the estimation of fAPAR [5,60] in addition to the possibility that in the

studied ecosystem, LUE scalars considered in the VPM model might have overestimated the

actual environmental stress-induced reduction of LUEmax, are possible reasons for the under-

estimation of GPP. Additionally, the heterogeneity of the study area (coexistence of grass,

shrubs and tree patches) would lead to different and complex physiological processes, that
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could explain the differences observed in growing vs. non-growing season VPM estimates of

GPP [35,61]. This heterogeneity was observed in our study through the estimation of fAPAR,

which changed very little throughout the year for grassland, whereas important changes could

be noticed for tree patches. The resulting estimated average ecosystem fAPAR could also be an

important source of error in the modelled GPP values. It is also important to mention flux par-

titioning as a possible source of error in some ecosystems [62], which can cause a discrepancy

between partitioned and modelled GPP [12].

The VPM model was applied in this mixed system composed of tree patches, grass and

shrubs. In this study, Pscalar was not used exactly as in the original model in which Pscalar is set

to 1 upon full leaf expansion. The reason for that is simply the fact that we obtained better

results in our ecosystem by adopting a variable Pscalar even during the growing season, which

would reflect the changing phenology and physiology of plants throughout the growing sea-

son. This is further justified by the heterogeneity of the study area, shown by the different

activity patterns reflected by an almost constant fAPAR in grassland, and a seasonal fAPAR for

tree patches.

VPM vs empirical model

The best empirical model (quadratic model) obtained with EVI (r2 = 0.82, rmse = 19.08 and

AICc = 541.02) performed better than the VPM model after correcting GPP estimates (r2 =

0.77, rmse = 22.55 and AICc = 554.71). In addition, the quadratic relationship established

between NEE and EVI makes it much easier to estimate the carbon balance, without necessar-

ily having to estimate Reco, which is needed in the case of the VPM model. Several studies

reported a better performance of VPM model over VI-based empirical models [37,63] in eco-

systems such as grasslands and deciduous forests. To our knowledge, no previous studies com-

pared the VPM and VI-based model in an ecosystem very similar to the one of this study in

which vegetation (grass, shrub and tree patches) combines with the karstic heterogeneous

environment to make a complex system with specific water availability conditions. In our

study, the empirical (VI-based model) performed slightly better than the VPM model as the

latter was found to underestimate GPP. However, under changing climate, the VPM model

could capture better the uncertainty that could arise from the use of an empirical model which

could fail to produce reliable GPP estimates in future if the relationship between GPP and EVI

would change. A possible improvement of the VPM model in the particular case of our study

area could focus on improving the estimation of the scalars by integrating the simultaneous

effects of SWC, Tair and VPD on photosynthesis, in order to capture the currently unex-

plained error in the GPP estimates.

Limitations of the study

In this study, VI have been used in both VPM and empirical models, in attempt to estimate

GPP and NEE. To overcome the limitation of the number of available pairs of half-monthly

aggregated fluxes and VI, the multiple data splitting approach has been applied, allowing to

develop the models on the training set and validate the results on the validation or test set by

computing different accuracy metrics. By applying a simple regression to estimate NEE, the

possible complexity of the Reco component is being simplified. Therefore, more uncertainties

could arise when applying the developed model to estimate NEE if the coupling of GPP and

Reco will become weak in the future, which could happen if the heterotrophic part of ecosys-

tem respiration will become more important for instance due to global warming [64]. Another

limitation was related to the fact that LUEmax was developed only based on one year (2019)
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available data. However, the relatively good performance of the best models covers up for the

previously mentioned limitations.

Conclusion

Among the several existing models used to estimate carbon fluxes, a quadratic VI-based model

and a LUE model, the VPM model were evaluated in a mid-succession ecosystem developed

on abandoned karst grassland. It was possible to estimate both GPP and NEE with the qua-

dratic model, whereas the VPM model underestimated GPP. The results suggest therefore the

use of EVI to estimate carbon fluxes using the quadratic VI-based model. However, empirical

models must be checked overtime, to make sure that the relationship persists, i.e. the regres-

sion constants have not changed. On the other hand, an improved VPM model with better

estimates of LUE scalars for the area investigated in this study would be more advisable for

long term application in the context of climate changes.
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44. Gilabert MA, Sánchez-Ruiz S, Moreno álvaro. Annual gross primary production from vegetation indices:

A theoretically sound approach. Remote Sens 2017; 9. https://doi.org/10.3390/rs9030193.

45. Huete AR, Jackson RD, Post DF. Spectral response of a plant canopy with different soil backgrounds.

Remote Sens Environ 1985; 17:37–53. https://doi.org/10.1016/0034-4257(85)90111-7.

46. Jia X, Mu Y, Zha T, Wang B, Qin S, Tian Y. Seasonal and interannual variations in ecosystem respira-

tion in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland. Sci Total

Environ 2020; 709:136210. https://doi.org/10.1016/j.scitotenv.2019.136210 PMID: 31905552

47. Larsen KS, Ibrom A, Beier C, Jonasson S, Michelsen A. Ecosystem respiration depends strongly on

photosynthesis in a temperate heath. Biogeochemistry 2007; 85:201–13. https://doi.org/10.1007/

s10533-007-9129-8.

48. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, et al. Productivity over-

shadows temperature in determining soil and ecosystem respiration across European forests. Glob

Chang Biol 2001; 7:269–78. https://doi.org/10.1046/j.1365-2486.2001.00412.x.

PLOS ONE Empirical vs. light-use efficiency modelling for estimating carbon fluxes on a karst succession ecosystem

PLOS ONE | https://doi.org/10.1371/journal.pone.0237351 August 7, 2020 17 / 18

https://doi.org/10.1016/J.RSE.2004.12.009
https://doi.org/10.1016/J.RSE.2004.12.009
https://doi.org/10.1890/04-0470
https://doi.org/10.1890/04-0470
https://doi.org/10.2134/agronj1984.00021962007600060018x
https://doi.org/10.2134/agronj1984.00021962007600060018x
https://doi.org/10.1186/s13021-015-0013-x
https://doi.org/10.1186/s13021-015-0013-x
https://doi.org/10.1016/j.rse.2009.02.001
https://doi.org/10.1016/j.agrformet.2006.11.008
https://doi.org/10.1016/j.agrformet.2006.11.008
https://doi.org/10.1016/j.rse.2004.03.010
https://doi.org/10.1016/j.rse.2015.02.022
https://doi.org/10.2307/1941899
https://doi.org/10.2307/1941899
http://www.ncbi.nlm.nih.gov/pubmed/27755669
https://doi.org/10.1016/j.agrformet.2006.12.001
https://doi.org/10.1016/j.ecolmodel.2003.11.004
https://doi.org/10.3390/rs11151823
https://doi.org/10.5194/bg-7-683-2010
https://doi.org/10.5194/bg-7-683-2010
http://www.ncbi.nlm.nih.gov/pubmed/24339832
https://doi.org/10.3390/rs9030193
https://doi.org/10.1016/0034-4257(85)90111-7
https://doi.org/10.1016/j.scitotenv.2019.136210
http://www.ncbi.nlm.nih.gov/pubmed/31905552
https://doi.org/10.1007/s10533-007-9129-8
https://doi.org/10.1007/s10533-007-9129-8
https://doi.org/10.1046/j.1365-2486.2001.00412.x
https://doi.org/10.1371/journal.pone.0237351


49. YU G-R, ZHANG L-M, SUN X-M, FU Y-L, WEN X-F, WANG Q-F, et al. Environmental controls over car-

bon exchange of three forest ecosystems in eastern China. Glob Chang Biol 2008; 14:???-??? https://

doi.org/10.1111/j.1365-2486.2008.01663.x.

50. Fernández-Martı́nez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, et al. Nutrient avail-

ability as the key regulator of global forest carbon balance. Nat Clim Chang 2014; 4:471–6. https://doi.

org/10.1038/nclimate2177.

51. Zhao L, Liu Z, Xu S, He X, Ni Z, Zhao H, et al. Retrieving the Diurnal FPAR of a Maize Canopy from the

Jointing Stage to the Tasseling Stage with Vegetation Indices under Different Water Stresses and Light

Conditions. Sensors 2018; 18:3965. https://doi.org/10.3390/s18113965.

52. Gitelson AA. Remote estimation of fraction of radiation absorbed by photosynthetically active vegeta-

tion: generic algorithm for maize and soybean. Remote Sens Lett 2019; 10:283–91. https://doi.org/10.

1080/2150704X.2018.1547445.

53. Liu Z, Wang L, Wang S. Comparison of Different GPP Models in China Using MODIS Image and China-

FLUX Data. Remote Sens 2014; 6:10215–31. https://doi.org/10.3390/rs61010215.

54. Schwalm CR, Black TA, Amiro BD, Arain MA, Barr AG, Bourque CPA, et al. Photosynthetic light use

efficiency of three biomes across an east-west continental-scale transect in Canada. Agric For Meteorol

2006; 140:269–86. https://doi.org/10.1016/j.agrformet.2006.06.010.

55. Niu B, He Y, Zhang X, Fu G, Shi P, Du M, et al. Tower-Based Validation and Improvement of MODIS

Gross Primary Production in an Alpine Swamp Meadow on the Tibetan Plateau. Remote Sens 2016;

8:592. https://doi.org/10.3390/rs8070592.

56. Heinsch FA, Reeves M, Votava P, SKang I, Milesi C, Zhao M, et al. User’s Guide GPP and NPP

(MOD17A2/A3) Products NASA MODIS Land Algorithm Gross Primary Production (GPP) 1-km MODIS

image Global GPP image created 2003: 57. http://giscenter-sl.isu.edu/AOC/AOC_Satellite/MODIS/

MOD17UsersGuide.pdf (accessed March 11, 2020).

57. Dong T, Liu J, Qian B, Jing Q, Croft H, Chen J, et al. Deriving Maximum Light Use Efficiency from Crop

Growth Model and Satellite Data to Improve Crop Biomass Estimation. IEEE J Sel Top Appl Earth Obs

Remote Sens 2017; 10:104–17. https://doi.org/10.1109/JSTARS.2016.2605303.

58. Hilker T, Coops NC, Wulder MA, Black TA, Guy RD. The use of remote sensing in light use efficiency

based models of gross primary production: A review of current status and future requirements. Sci Total

Environ 2008; 404:411–23. https://doi.org/10.1016/j.scitotenv.2007.11.007 PMID: 18063011

59. Madani N, Kimball JS, Affleck DLR, Kattge J, Graham J, Van Bodegom PM, et al. Improving ecosystem

productivity modeling through spatially explicit estimation of optimal light use efficiency. J Geophys Res

Biogeosciences 2014; 119:1755–69. https://doi.org/10.1002/2014JG002709.
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