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Abstract. It is common in practice, an optimal solution of a decision-maker to depend heavily
on the response of another decision-maker, formulating a bilevel optimization problem. The op-
timization of a bilevel problem aims to achieve the optimum solution of the upper-level, taking
into consideration the optimal lower-level values too. When the lower-level problem is multi-
modal, meaning that it has several global optima, an ambiguity about the optimal upper-level
solution appears. The optimistic approach assumes that the follower will respond with an op-
timal solution, that is favorable by the upper-level as well. In the pessimistic approach, the
upper-level is optimising for the worst case. Various evolutionary algorithms have been imple-
mented successfully to solve the optimistic approach of the bilevel problem. To the best of our
knowledge, these algorithms have not been extended to the pessimistic approach. In this paper,
we use a multi-population nested Differential Evolution to solve the pessimistic bilevel problem
when the lower-level has multiple global optima. The performance of the algorithm is examined
by solving a test-problem taken from the literature.
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1 INTRODUCTION

The bilevel optimization problem is an optimization problem, operating as the upper-level,

that has another optimization problem as a constraint, at the lower-level. Bilevel problems

present many difficulties in its mathematical formulation, as they typically do not obey simplis-

tic properties such as convexity or continuity. Moreover, it is proven that even the simple case

of a linear bilevel optimization problem is NP-hard [1]. The bilevel optimization problem can

be also interpreted as a non-cooperative static Stackelberg game, as firstly introduced by von

Stackelberg in 1934 in the context of unbalanced economic markets [2].

When the lower-level problem is multimodal, meaning that it has several global optima, an

ambiguity about he optimal upper-level solution appears. The community has identified two

approaches to tackle this uncertainty, the optimistic and the pessimistic approach [3]. When

adopting an optimistic stance, the upper-level assumes that the lower-level will select the most

optimal solution that is also optimal for it. In the pessimistic approach, the upper-level is opti-

mising her objective making the worst-case assumptions about the decision of the lower-level.

The methods of solving the bilevel optimization problem can be divided into two main cate-

gories [3]. The first one refers to classical approaches, based on mathematical derivation meth-

ods, such as branch and bound [1], and is usually applied to well-behaved bilevel problems with

specific properties. The second one is based on hybrid and evolutionary approaches, which have

become more popular in the last years. Metaheuristic and evolutionary algorithms, in general,

do not need to make any assumptions about the objective functions of the problem and can

be applied to general bilevel problems [3]. Examples of this kind of Bilevel Evolutionary Al-

gorithms (BLEAs) are BlDE with Differential Evolution (DE) in both levels[4], NBLEA with

Genetic Algorithm in both levels[5], a memetic approach in [6], BLEAQ with genetic algorithm

and quadratic approximations [7], BL-CMA-ES with CMA-ES in both levels [8], etc. However,

all these evolutionary algorithms are adopting the optimistic approach for solving the BOP, as

it is easier to track.

While indeed the solution of the optimistic approach is much more tractable, it comes with

a drawback: the assumptions in the model, that a cooperation of the lower- with the upper-level

exists without any reward considered in her objective, are not realistic. On the contrary, the

pessimistic approach, while more conservative, can be interpreted as a bound and minimize

the risk of the worst case and give more robust solutions. Therefore, finding solutions for

the pessimistic case is of great importance in practice, when optimizing under uncertainty and

especially under worst-case scenario optimization.

The pessimistic approach is generally considered much more difficult to solve, and the solu-

tion methodologies made for the optimistic approach are not directly applicable to it. A survey

about the pessimistic bilevel optimization problem and its optimality conditions can be found

in [9, 10, 11]. There are several studies in the classical category, proposing solution methods

for pessimistic bilevel problems with specific mathematical properties, for example for the pes-

simistic bilevel linear problem [12], or a reduction method for the pessimistic quadratic-linear

bilevel[13]. From the hybrid and evolutionary approaches, the semivectorial pessimistic bilevel

problem has been approached with PSO [14] and Differential Evolution [15], with a multi-

objective problem in the lower-level. To the best of our knowledge, there is no Evolutionary

Algorithm studied to solve the general pessimistic bilevel optimization problem.

In this study, we aim to solve the pessimistic BOP by adopting EAs at both levels. The

algorithm has a nested structure. Therefore, for solving each upper-level candidate solution,

a lower-level optimization is conducted. The lower-level optimization algorithm has a multi-
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population schema, that can be evaluated in parallel mode to decrease the computational cost.

For each upper-level sample point, this generates a number of lower-level solutions-one for

each population-, that are further evaluated according to the upper-level fitness function. From

these solutions, the ones giving the minimum and maximum upper-level value (optimistic and

pessimistic) are then passed to the upper-level. In the upper-level, a 2-ranking system is applied,

where the best optimistic and pessimistic solutions are co-evolving. To further improve the

accuracy and efficacy of the algorithm, a local search is conducted for every best solution found.

The algorithm gives two final best solutions, one for the optimistic and one for the pessimistic

approach. To test the method, the algorithm is tested on benchmark test-functions with known

global optima.

The rest of the paper is organized as follows. Firstly, the optimistic and pessimistic problem

are defined in Section 2. In Section 3 the proposed method and the steps of the algorithm are

explained. In section 4 the experimental setup is reported along with the test function used and

the relevant results. Finally, in Section 5 we conclude the paper and give some future steps of

the research.

2 DEFINITIONS OF THE BILEVEL OPTIMIZATION PROBLEM

The bilevel optimization problem consists of two levels of optimization tasks, where two

different sets of variables belong to each of these tasks. The mathematical representation is as

follows :
min
x

F (x, y)

s.t. Gk(x, y) ≤ 0, y ∈ Ψ(x)
(1)

where Ψ(x) is the set of solutions of the following lower-level problem:

min
y

f(x, y)

s.t. g(x, y) ≤ 0
(2)

where y is the solution of the lower-level problem from the set of solutions y ⊆ Rm, with

regard to solution from upper-level, x from set of solutions x ⊆ Rn,where F represents upper-

level’ s objective function, while f represents the lower-level’ s objective function. When more

than one lower-level optimal solutions for all or some upper-level variables exist, the bilevel

problem becomes ill-defined. To tackle this, the community is employing two approaches. In

the optimistic approach, the upper-level is optimising expecting that the lower-level reaction

will be optimal for her as well. In the pessimistic case, the upper-level is optimising under the

worst-case scenario of the lower-level reaction. The general pessimistic bilevel problem can be

formulated as follows:
min
x∈X

max
y∈Ψ(x)

F (x, y)

s.t. G(x, y) ≤ 0
(3)

where X := x : G(x) ≤ 0, and Ψ(x) is the set of solutions opf the lower-level problem

min y f(x, y)

s.t. g(x, y) ≤ 0
(4)

Here x ∈ Rn and y ∈ Rm. More about the definitions of both the approaches can be found in

[16, 3].
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3 PROPOSED METHOD: P-BLDE

The proposed method is an implementation of a Bilevel Differential Evolution algorithm

with multi-population and aims to provide both the optimistic and pessimistic solutions of the

bilevel problem. Therefore we call this algorithm Pessimistic Bilevel Differential Evolution

(P-BLDE).

In the nested algorithm, for each upper-level individual, a lower-level optimization procedure

is conducted. A flowchart of the upper- level and lower-level P-BLDE is presented in the Fig-

ures 1 and 2. A co-evolutionary DE is implemented for the upper-level optimization problem,

and with the upper-level variables fixed for the population of optimistic and pessimistic individ-

uals, a lower-level optimization DE is conducted, passes its optimistic and pessimistic optimal

values to the upper-level, and then the sample points are evaluated. The constraint handling for

both levels is done by ranking the individuals with the less violation as the best. More precisely,

the steps of the algorithm are the following:

Figure 1: upper-level DE flowchart.

For the upper-level DE:

Step 1: Initialization: The algorithm starts by sampling in upper-level feasible space with a

population of NP size for the optimistic and pessimistic sub-population respectively.

Note that the populations are co-evolving independently. The lower-level variables are

then found by the lower-level optimization procedure (the lower-level DE). For each
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individual, lower-level DE responds with an optimistic and a pessimistic solution that

is used to further evaluate the upper level.

Step 2: Upper-level mutation and recombination (crossover): The upper-level individuals of

each population are evolved with DE/rand/1/bin mutation strategy.

Step 3: Upper-level fitness evaluation: For each upper-level individual evolved, their fitness

is then evaluated. For this to happen, the lower-level optimal variables are needed.

Therefore, the lower-level optimization procedure is activated.

Step 4: Lower-level DE: for the fixed upper-level variables, a DE for lower-level is conducted,

including its initialization, evolution, and final lower-level optimistic and pessimistic

solutions.

Step 5: Upper-level termination: After the lower level is conducted, the upper-level fitness

is evaluated and then the termination criteria are checked. If they are satisfied, the

procedure stops and a final solution is given. Otherwise, the upper-level population is

Figure 2: lower-level DE flowchart.
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updated with the best solution found so far and we go to step 2 again. The best solution

found for the pessimistic popupper levelation is further refined by local search (Interior

Point) using the fmincon of Matlab.

For the lower-level DE (Input: x vector from upper level):

Step 1: Initialization: The algorithm starts by sampling in a lower-level feasible space with

a population of NP size. The lower-level variables are then found by the lower-level

optimization procedure (the lower-level DE).

Step 2: Lower-level mutation and recombination (crossover): The optimistic lower-level indi-

viduals are evolved with DE/rand/1/bin, while the pessimistic population with DE/best/1/bin.

Step 3: Lower-level fitness evaluation: For each lower-level individual evolved, their fitness is

then evaluated in terms of both lower- and upper-level fitness function.

Step 4: Lower-level termination: After the lower-level is conducted, the lower-level fitness is

evaluated and then the termination criteria are checked. If they are satisfied, the pro-

cedure stops, and two final solutions are given. The minimum and maximum solutions

are labeled as optimistic or pessimistic respectively and passed to the upper-level. Oth-

erwise, the lower-level population is updated with the best solution found so far and we

go to step 2 again. For the optimistic population, the best solution found so far is the

one that is minimum for the lower-level function. For the pessimistic population, the

best solution found so far is the one that is minimum for the lower-level function and

maximum for the upper-level function.

The termination criteria are the maximum number of generations for both levels. The control

parameter values used are shown in Table 1. The population size refers to each sub-population

for both upper- and lower-level DE, while number of generations is for the whole procedure.

The parameter values were selected empirically, and no parameter tuning was conducted.

Table 1: Selected control parameters that are used in all of the reported results.

upper-level lower-level

Population size 10 30

Number of Generations 5 10

Crossover 0.9 0.9

Mutation uniformly(0.2,0.8) uniformly(0.2,0.8)

4 EXPERIMENTAL RESULTS

In this Section, we provide results for one test-problem, to illustrate the ability of the algo-

rithm to reach the optimistic and the pessimistic solutions of the problem. The test function

used is called mb 1 1 17, has multiple global minima in the lower-level, and is taken from

[11]. The optimistic problem has the following formulation:

min
x,y∈Y (x)

x2 − y

s.t. x ∈ [0, 1], y ∈ [0, 3]

where Y (x) = arg min
z∈[0,3]

[z − 1− x/10]2 − x/2− 1/2]2
(5)
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while pessimistic problem is as follows:

min
x

max
y∈Y (x)

x2 − y

s.t. x ∈ [0, 1]

where Y (x) = arg min
z∈[0,3]

{[z − 1− x/10]2 − x/2− 1/2]2}
(6)

In Table 2 the known global optima for the optimistic and pessimistic approach of the problem

are reported. We also mention the pessimistic solution of the optimistic approach, which is

different than the global pessimistic solution.

Table 2: Known optima for the test function mb 1 1 17.

Solutions x y F

Optimistic 0.2106 1.799 -1.755

Optimistic-Pessimistic 0.2106 0.243 -0.1987

Pessimistic 0 0.2929 -0.2929

The test function has been independently run 30 times on an Intel(R) Core(TM) i7-7500

CPU @ 2.70GHz, 16 GB of RAM, and the Windows 10 operating system. The algorithm is

implemented in Matlab R2018b without any parallelization. In Table 3, the optimal values for

the optimistic and pessimistic solutions of the 30 runs of the P-BLDEA are reported. Also,

we report the min, median, and max of each solution and the runtime of the run in seconds.

We can see, that the solutions found for the optimistic approach, in general, reach the known

optimal solution with an accuracy of 0.0002 and for the pessimistic with 0.02. The runtime

is approximately 40 seconds per run. This relatively high number is justified if we take into

account that we are solving two problems at the same time (the optimistic and the pessimistic)

and given that the results are without any parallelization. Moreover, no parameter tuning or

adjustment of the population size is done for this experiment, while any tuning might lead to a

dramatic decrease in the runtime. In Figure 3 the upper- and lower-level 3D mesh and contour

plots are presented. Green dots are the known optimistic and pessimistic optima, while the red

stars show the median values of the optima found from P-BLDE. We can see that the algorithm

approximates the known solutions, managing to overcome the local optima of the lower-level

problem.

5 CONCLUSIONS AND FUTURE WORK

In this paper we proposed a nested EA to solve the pessimistic BOP. Firstly, we introduced

the topic and the motivation behind our research. Then, we gave the definitions of both the

optimistic and the pessimistic bilevel optimization problem. Next, the proposed method was

explained. The algorithm has a multi-population DE in each level, where an optimistic and pes-

simistic population co-evolve. The accuracy of the pessimistic lower-level solution is boosted

by a local search for every best solution found. The algorithm gives two final best solutions,

one for the optimistic and one for the pessimistic approach. The algorithm is tested in bench-

mark test-functions with known global optima, where it was shown to approximate well both

the optimistic and pessimistic known global optima.

Tuning of the parameters of the algorithm’s values, such as the population size and mutation

strategy to decrease the number of function evaluations and make the convergence faster is what
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Table 3: Numerical results for P-BLDE for the 30 runs for test function mb 1 1 17.

Optimistic Pessimistic Runtime

Run F x y F x y (secs)

1 -1.7548 0.25883 1.8218 -0.23591 0.00064378 0.23591 41.5709

2 -1.7548 0.18484 1.7889 -0.28388 0.00064378 0.28388 40.7871

3 -1.7546 0.22197 1.8039 -0.28627 0.00064378 0.28627 39.6872

4 -1.7492 0.28308 1.8293 -0.27532 0.00054351 0.27532 38.7187

5 -1.7531 0.17097 1.7823 -0.23037 0.00064756 0.23037 39.1808

6 -1.7544 0.18277 1.7878 -0.29213 0.00064378 0.29213 38.2499

7 -1.7554 0.18815 1.7908 -0.2928 0.00064378 0.2928 42.3118

8 -1.7546 0.19378 1.7921 -0.29264 0.00064378 0.29264 37.9264

9 -1.7547 0.22099 1.8035 -0.25513 0.0006468 0.25513 42.5849

10 - 1.7526 0.1622 1.7789 -0.28134 0.00053724 0.28134 41.1649

11 -1.7553 0.1681 1.7835 -0.27213 0.00064378 0.27213 41.6821

12 -1.7546 0.18886 1.7903 -0.26977 0.00055272 0.26977 40.2938

13 -1.7538 0.2367 1.8098 -0.27128 0.00054427 0.27128 37.604

14 -1.7548 0.22897 1.8073 -0.29355 0.00064378 0.29355 37.5585

15 -1.7548 0.21446 1.8008 -0.2276 0.00054055 0.2276 37.7102

16 -1.7552 0.2127 1.8004 -0.27017 0.00053614 0.27017 37.4811

17 -1.755 0.22051 1.8037 -0.29301 0.00064378 0.29301 38.0905

18 -1.7561 0.19796 1.7952 -0.28992 0.00054281 0.28992 40.0531

19 -1.755 0.1998 1.7949 -0.1681 0.00053696 0.1681 48.6323

20 -1.7556 0.23253 1.8097 -0.28668 0.00053577 0.28668 46.1897

21 -1.7543 0.22525 1.805 -0.27192 0.00064378 0.27192 43.55

22 -1.7544 0.18446 1.7884 -0.20746 0.00064347 0.20746 49.4864

23 -1.7545 0.19986 1.7944 -0.28558 0.00064378 0.28558 51.1232

24 -1.7545 0.19628 1.7931 -0.29185 0.00064378 0.29185 51.7637

25 -1.7552 0.23102 1.8085 -0.28905 0.00064378 0.28905 57.5057

26 -1.7583 0.19052 1.7946 -0.20317 0.00064378 0.20317 62.2715

27 -1.7542 0.22883 1.8066 -0.23595 0.00053797 0.23595 51.1604

28 -1.7561 0.20439 1.7979 -0.2693 0.00054018 0.2693 49.5794

29 -1.7548 0.20328 1.7962 -0.26064 0.00054826 0.26064 50.1431

30 -1.7552 0.1851 1.7894 -0.29031 0.00053981 0.29031 53.1746

Min -1.7492 0.1622 1.7789 -0.29355 0.00053577 0.1681 37.481

Median -1.7548 0.20157 1.7957 -0.27372 0.00064378 0.27372 41.626

Max -1.7583 0.28308 1.8293 -0.1681 0.00064756 0.29355 62.272

we are working on at the moment. The immediate next step of this research is to take advantage

of the high parallelization of EAs, which will dramatically decrease the computational cost and

reach higher accuracy. Also, methods known to work well for reducing the computational cost

in the optimistic approach state-of-the-art methods, such as the use of surrogates and several

mappings between the upper- and the lower-level solutions, are under investigation. Moreover,

the strategy can work independently of the EA used, meaning that other evolutionary algorithms

more suitable for multimodal problems in the lower-level can be tested, and/or known BLEAs

from the literature can be implemented to find the optimistic solution.
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Figure 3: Upper- and lower-level 3D mesh and contour plots. Green dots are the known opti-

mistic and pessimistic optima, while with red stars the median values of the optima found from

P-BLDE.
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