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Abstract—The Ground station Scheduling Problem refers to
the allocation of the communication tasks, among the ground
stations and satellites. In general, the problem is formulated
as a many-objective problem. The NSGA-III is an algorithm
developed to solve such problems. Due to its selection operator
that uses a number of reference points, the NSGA-III gives users
the option to specify their own reference points. In this paper, we
use this opportunity by generating distributed reference points,
shifted depending on weights. A specific weight is assigned to
each objective that corresponds to reference points for preferred
solutions. The generation of these reference points and their effect
on the final objective function values of the Pareto front are first
tested on the DTLZ2 test function with 4 objectives and for
a different combination of weights. Finally, various weights are
applied to an instance of the Ground station Scheduling Problem,
leading to Pareto fronts that favor specific objectives and feasible
schedules.

Index Terms—many-objective, satellite scheduling problem,
NSGA-III, preferred solutions

I. INTRODUCTION

The development of space science and technology has

increased the number of satellites orbiting the earth. At the

same time, the network of ground stations available to commu-

nicate with these satellites remains rather limited. The service

of satellites relies on this communication between ground

stations and satellites. Therefore, an appropriate allocation of

the time for satellites communicating ground stations is very

important for the space industry. This gives rise to particularly

challenging scheduling problems as the resources between

space and ground entities are limited.

The Ground station Scheduling Problem (GSP) involves

reasonable arrangements of satellites, time windows for com-

pleting tasks, e.g., telemetry tasks, and maximizing the ground
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funding No. P2-0098), by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 692286 (SYNERGY), and
under the Marie Skłodowska-Curie grant agreement No. 722734 (UTOPIAE).

station usage. The GSP is a many-objective problem in its

general formulation [1]. It has been solved among others by

weighted-sum methods [2], multi-objective approaches such as

with a memetic algorithm [3] or genetic algorithm [4], an ant

colony optimization [5] and heuristic and local search methods

[6]. These methods find either one solution of the Pareto front

or several well-spread solutions of the Pareto front.

The optimization methods for multi/many-objective op-

timization problems are divided into 3 categories from a

decision-making point of view. When no prior information

about the preferred solutions exist, the whole Pareto front

needs to be explored, and the decision-maker is choosing one

or more preferred optima from the Pareto-optimal solution set

at the end of the optimization (a posterior method), which

is basically any traditional multi/many-objective evolutionary

algorithms, such as NSGA-II [7], MOEA/D [8], etc. When

some information regarding the preferred region of a Pareto

Front is known in advance, the decision-makers are usually

interested in exploring only that small part of the front and

a priori optimization methods can be applied, such as [9].

Lately, interactive preference methods have been proposed,

e.g. in [10], where the decision maker’s preferences are

taken into account dynamically during the optimization, saving

computational cost.

The formulation of GSP we adopt in this paper is the

one used in [2], considering the following objectives: 1)

maximizing the events that fall inside the available Access

Windows of the ground stations, 2) minimizing the clashes

when more than one satellite is communicating with the same

ground station, 3) maximizing the time that is required to

finalize specific telemetry tasks, such as the download of

images, and finally, 4) taking advantage as much as possible

from the ground station network by minimizing their idle time.

As we have already noted in [11] and [12], the objectives

of access windows and clashes are in fact constraints. By

simultaneously solving this many-objective problem, it may

lead to solutions of the Pareto front, that result in infeasible

final schedules. Therefore one is interested in a particular part978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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of the Pareto-optimal front, that gives priority to these two

objectives.

The NSGA-III [13] algorithm is similar to the NSGA-II [14]

in its behavior but is further adapted to better solve many-

objective problems, where the main difference is the changed

selection operator, that uses a number of reference points. It

should be noted that the reference points in the NSGA-III play

a similar role with that of searching directions of subproblems

in the MOEA/D. More specifically, the use of multiple refer-

ence points in the NSGA-III guides the population to converge

towards the Pareto Front along with different search directions.

The NSGA-III can therefore be regarded as a combination of

Pareto-based algorithm and decomposition-based evolutionary

algorithm [15]. The NSGA-III gives users the option to specify

their own reference points and therefore can be used as apriori

preference-based optimization algorithm. The idea is to find

Pareto optimal points that are closer to these supplied reference

points, focusing on the specific region of interest.

In this paper, we use this option by modifying the uniformly

distributed reference points sampled from Das and Dennis’s

method, shifting them depending on the specific weights of the

objectives for preferred solutions. Then, NGSA-III is applied

to the real-world problem of the GSP problem. The rest of

the paper is organized as follows. Firstly, the NSGA-III and

the proposed reference point generation are described and

explained in Section II. In Section III the notation and the

mathematical formulation of the Ground station Scheduling

Problem are presented, along with the specific implementation

with the NSGA-III. In section IV the experimental setup is

reported along with the experiments and the relevant results.

Finally, in Section V we conclude the paper and give some

future steps of the research.

II. NSGA-III AND PREFERRED SOLUTIONS

A. NSGA-III

The NSGA-III consists of a framework similar to the

NSGA-II, where crossover and mutation operators are applied

to generate offspring population and employ a fast non-

dominated sorting approach to determine the non-dominated

rank of individuals. An elite preservation strategy is utilized

to select a new generation from the parent and offspring

population. The main difference between these two algorithms

is the selection mechanism, which is modified to work better

with many-objective problems. The crowding distance of the

NSGA-II is replaced in the NSGA-III with a number of

reference points that improve the diversity and the spreadiness

of the Pareto optimal fronts.

At first, the algorithm generates an initial population of size

N and a series of well-spread reference points on a hyperplane.

The points are placed on the normalized hyperplane – (M-

1)-dimensional unit simplex – by using Das and Dennis’s

systematic approach [16]. Let p be the division and is specified

by the user. Then the total number of reference points (H) in

an M -objective problem is:

H =

(

M + p− 1
p

)

(1)

A solution of the population during the optimization process

is then associated with a reference point according to the

shortest perpendicular distance between its solution and the

reference line, starting from the origin and passing through

the corresponding reference point. In the case of these widely

distributed points, the obtained solutions have more chances

to be diverse on the Pareto-optimal front. More about the next

steps of NSGA-III can be found in papers [13], [17].

B. Generating reference points for preferred objectives

The NSGA-III gives the option to the users to mark their

own preferred reference points, to obtain near Pareto-optimal

solutions close to these reference points. In this section, we

explain the reference point sampling method used in this paper.

Das and Dennis’s method is adopted and modified in the last

step, giving preference to a specific area of the Pareto front

that favors specific objectives, depending on some weights that

are decided in advance.

Each objective has importance translated to a weight wi

that is a positive real value. These values are used to trans-

form the reference points space toward objectives with higher

importance (greater weights). Let r = (r1, r2, . . . , rM ) be a

single reference point out of H generated reference points in

an M -objective problem by the Das and Dennis’s method and

let w = (w1, w2, . . . , wM ) be the real-valued weighting vector

that signals the importance of individual objectives. Each point

r from a reference point set is moved to a new location in the

following way:

rnew =

(

r1/w1
∑M

q=1 rq/wq

,
r2/w2

∑M

q=1 rq/wq

, . . . ,
rM/wM

∑M

q=1 rq/wq

)

(2)

Figure 1 illustrates an example of reference points distri-

bution sampled on a two objective unit simplex before (black

points) and after (green points) using weights, using divisions

p = 6 and weights = (0.2,0.8). The shifting of the original

points to the new positions, that are favoring the objective with

the higher weights can be easily seen. For example, when we

have the reference point r = (0.5, 0.5), then the new position

of the reference point is:

rnew =

(

0.5/0.2

3.125
,
0.5/0.8

3.125

)

= (0.8, 0.2) (3)

Please note that the NSGA-III by default is used for

minimization problems. Therefore, we seek points that are

minimizing the preferred objective function.

In Figure 2 the initial reference points are shown with

orange colour, while with blue colour the final Pareto front

solutions are shown, for the baseline case (Fig.2a) and the case

with weights (0.6,0.2,0.3) (Fig.2b) for the DTLZ2 with three

objectives. The reference points dictate the final solutions on

the Pareto front. The well spread Pareto front of the baseline

1841
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case is clearly shifted to favor the objective with higher weight,

seen as denser points on the right side of the Pareto front in

(Fig.2b).

III. GROUND STATION SCHEDULING PROBLEM

In this section, the GSP is described shortly. The mathemat-

ical formulation and notation of the problem are presented,

along with the parameters, variables, and objective functions

used for the optimization problem.

A. Problem Description

The GSP has a goal to optimize the schedule of the com-

munication between satellites (SCs) and the ground stations

(GSs). The formulation of the objectives corresponds to the

input and output parameters of the benchmark instance from

Xhafa et. al [1], [2]. The mathematical notation is the same

as presented in papers [11] and [12]. We assume that ground

stations can communicate at most with one satellite at a time.

B. Mathematical Formulation

The notation and the mathematical problem is presented as

follows:

Parameters

• s ∈ 1, . . . , S satellite set, index s;

• g ∈ 1, . . . , G ground station set, index g;

• h ∈ 1, . . . , H set of available Access Windows for a

specific g and a specific s for all days of the schedule,

index h;

• d ∈ 1, . . . , D & set of days, index d;

• twh
sg: hth time window between a specific g and a specific

s;

• TAOS(tw
h
sg), TLOS(tw

h
sg) are the visibility and losing

signal times of a g from a s;

0.0 0.2 0.4 0.6 0.8 1.0
Objective 1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je
ct
iv
e 
2

Normalized Reference Points
Modified Reference Points

Fig. 1: Illustration of reference points sampled by Das and Dennis’s method
before and after using weights on a two objective unit simplex. The example
is for divisions p = 6 and weights = (0.2, 0.8).
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(a) Standard NSGA-III

Obj 1

0.0
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0.0 0.2 0.4 0.6 0.8 1.0

Obj 3

0.0

0.2

0.4

0.6

0.8

1.0

(b) NSGA-III with weights (w1 = 0.6, w2 = 0.2, w3 = 0.2)

Fig. 2: Final solutions (blue) and reference points (orange) obtained by
(a) standard NSGA-III and (b) NSGA-III with weights (w1 = 0.6, w2 =

0.2, w3 = 0.2) for the DTLZ2 problem with 3 objectives, p = 12.

• ∀g ∈ G, s ∈ S AWs,g =
H
⋃

h=1

[TAOS(tw
h
sg), TLOS(tw

h
sg)]

where AW defines all the time periods s and g can

communicate;

• kds ∈ 1, . . . ,K are requirements for each s each day d;

• Tbeg(k
d
s ), Tend(k

d
s ) are the beginning and ending time

of a requirement where connection has to be established

for at least Treq(k
d
s ) during a specified period d.

Decision Variables

• nm
sg ∈ N an event of the schedule, where m ∈ M

is the consecutive number of event when a specific g
communicates with a specific s, N is the total number of

events of the schedule;

• Tstart(n
m
sg), Tdur(n

m
sg) Starting and Duration time

between s and g.
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Objective Functions

Access windows fitness function: Maximizing the visibility

windows or Access Windows of SCs and GSs, meaning

maximizing the time windows during which a g can establish

communication with an s. For a specific schedule, this means

that we aim to maximize the number of events that fall into

these time windows. Events outside these time windows lead

to infeasible schedules. ∀g ∈ G, s ∈ S,m ∈ M

fAW (nm
sg) =

{

1 if [Tstart(n
m
sg), Tstart(n

m
sg) + Tdur(n

m
sg)] ⊆ AWs,g

0 else

(4)

FitAW =

∑M

m=1

∑G

g=1

∑S

s=1 fAW (nm
sg) ∗ 100

N
(5)

Communication clash fitness function: A communication

clash occurs when different satellites are communicating

with the same Ground Station at the same time, leading

to infeasible schedules. To minimize infeasible events, the

clashes that are produced between several SCs to one GS

are minimized. From nm
gs we create the sets ∀s : nl

g ∈ N
where l ∈ L ⊂ N is the index of the mth event of a

specific g to all the s, after its events are sorted in ascending

order for a fixed g and ∀s according to their Tstart(n
m
s ) Then:

fsc(n
l
g) =

{

−1 if Tstart(n
l+1
s ) < Tstart(n

l
s) + Tdur(n

l
s)

0 else
(6)

FitCS =
N +

∑G

g=1

∑L

l=1 f(n
l
g) ∗ 100

N
(7)

Communication time requirements fitness function:

Some tasks, e.g., data download tasks, need some minimum

time requirements in order to be completed. The starting and

ending times of these tasks for each day and satellite are

known in advance. The final schedule should satisfy as much

as possible these requirements. The fitness function is the

following:

∀n ∈ N and ∀k ∈ K

f(kds , n
m
sg) = ‖[Tstart(n

m
sg), Tstart(n

m
sg) + Tdur(n

m
sg)]

∩ [Tbeg(k
d
s ), Tend(k

d
s )]‖

(8)

fTR(k
d
s ) =

{

1 if (
∑G

g=1

∑M

m=1 f(k
d
s , n

m
sg)) ≥ TReq(k

d
s )

0 else
(9)

Ground Station usage fitness function: With this fitness

function, we are maximizing the percentage of the GSs busy

time to the total available communication time of the GS. The

idea behind this is to minimize the GSs idle time.

FitGU =
‖
⋃M

m=1

⋃G
g=1

⋃S
s=1

[Tstart(n
m
gs),Tstart(n

m
gs)+Tdur(n

m
gs)]‖∑

G
g=1

Ttotal(g)
∗ 100

(10)

where Ttotal(g) is the total available time of the GS, in this

case the number of days of the schedule.

C. Implementation of NSGA-III for solving GSP

For solving the GSP with the NSGA-III, the following

representation of the chromosome was adopted. Each chromo-

some encodes a schedule as a list of communication events,

where each event is represented by five binary variables. I is

a binary variable that indicates whether the specific event is

taken into account or not. SCs represents the satellites with

their corresponding GSs and their starting tStart and duration

times tDur. One chromosome consists of a number of these

tuples/events to create a whole schedule. The structure of the

tuple can be expressed by a matrix of decision variables as:

X =
(

I, SC,GS, tStart, tDur

)

(11)

As a crossover operator the HUX was selected, while the

Bit-Flip mutation was used as a mutation strategy for the

specific implementation.

As mentioned also in our earlier paper [11], the objec-

tives FitAW and FitCS are a measure of the feasibility of

the schedule. By solving the problem simultaneously and

obtaining well-spread Pareto front, many of the solutions of

the optimization will result in a different final schedule. The

events that are giving 0 values to these objectives, such as

the ones that are outside the AW, will be omitted. The lesser

of these events there are, the more representative to the final

feasible schedule the Pareto front is. Taking this into account,

we are employing weights to reference point distribution on

the NSGA-III, that favor these objectives. The final goal is to

obtain a Pareto front around the feasible region of the final

schedules. Therefore, the combination of weights used in this

implementation are the following:

• GSP Baseline Instance

• GSP Instance 1 with the weights (1.5, 0.1, 1.0, 0.01).

With these weights, we test the Pareto Front solutions

favoring the FitAW and the FitTR objectives. These are

the same weights that were applied in the objectives in

the reference paper [1] for solving the problem as a single

objective problem with the weighted-sum method.

• GSP Instance 2 with the weights (1.5, 1.0, 0.1, 0.01). Here

the weights are chosen such as to give higher importance

to the FitAW and the FitCS, which are the objectives that

are actually constraints.

• Instance 3 with weights (0.85, 0.05, 0.05, 0.05). Here

we give the priority to the FitAW objective since all the

events should firstly fall inside the AW.
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(a) Baseline Instance. (b) Instance 1 (0.85,0.05,0.05,0.05).

(c) Instance 2 (0.4,0.4,0.1,0.1). (d) Instance 3 (0.32,0.32,0.32,0.04).

Fig. 3: Parallel coordinate plots of non-dominated solutions of one-run obtained by different instances of the NSGA-III on 4-objective DTLZ2 test problem.
(a) no weights, (b) higher weight for objective 1, (c) higher weights for objectives 1 and 2, and (d) higher weights for objectives 1, 2, and 3.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

For the implementation of the NSGA-III, the platypus1

framework in python is used. The first series of experiments

refers to the DTLZ2 test function with 4 objectives, found

at the platypus framework as well. The second series of

experiments are those of the GSP problem instances. The first,

small size, of the benchmarks generated by Xhafa et al.from

STK toolkit2, where there are 5 Ground Stations, 10 Spacecraft

and the number of days is 10 is used in our experiments.

The instances are independently run 30 times on an Intel(R)

Xeon(R) CPU E5-2680 v3 @ 2.50GHz, 1 TB of RAM, and

the Fedora operating system.

In Table I, the control parameter values used in our exper-

iments are reported. The relevant code can be found at the

gitlab repository3.

TABLE I: CONTROL PARAMETERS USED IN THE REPORTED RESULTS.

DTLZ2 GSP

Crossover rate SPX(0.3) HUX(0.3)
Mutation rate Uniform(0.001) BitFlip(0.001)
Population size 84 84
Function Evaluations 30000 120000
Division (p) 6 6

1https://platypus.readthedocs.io/en/latest/getting-started.html
2https://www.researchgate.net/publication/260086344 GS Scheduling Inputs
3https://repo.ijs.si/e7/scheduling/cec-2021-satellites-scheduling-nsgaiii

B. Results for DTLZ2 with 4 objectives

To confirm and test the method explained in Section II, we

solve the DTLZ2 [18] test problem with 4 objectives 30 times

with the standard version of the NSGA-III and the weight

reference point version of the NSGA-III. To understand better

the influence of the weights, we use different combinations of

weights and report the results. In Table II we report the mean,

median and the standard deviation of each objective after 30

runs, along with the minimum and maximum values obtained.

To demonstrate the influence of the weights on the values

of the objectives, we report the relative mean improvement

of each objective. The Relative Mean Improvement (RMI) is

computed as follows:

RMI = 100 ∗
(meanw −meanb)

meanb

(12)

where meanw is the mean value of the final objective values

obtained by the weighted NSGA-III instance and meanb is

the mean value of the final objective values obtained by

the standard NSGA-III in the baseline instance. Note that

”negative improvement” means deterioration for the specific

objective values.

The combination of weights used in this experiment are the

following:

• Baseline Instance: No weights (or equal weights), corre-

sponding to the standard NSGA-III

• Instance 1: weights (0.850, 0.050, 0.050, 0.050). In this

instance, we test the influence of the weights when one
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TABLE II: STATISTICAL RESULTS OF THE OBJECTIVES FOR THE DIFFERENT REFERENCE POINTS INSTANCES OF THE NSGA-III AFTER 30 RUNS FOR THE

DTLZ2 WITH 4 OBJECTIVES.

Instances Mean Median Min Max std % RMI

Baseline Instance

Obj 1 0.368 0.270 0.000 1.017 0.340
Obj 2 0.368 0.270 0.000 1.015 0.340
Obj 3 0.367 0.269 0.000 1.013 0.340
Obj 4 0.367 0.268 0.000 1.015 0.339

Instance 1
w[0.850,0.050,0.050,0.050]

Obj 1 0.052 0.016 0.000 1.044 0.122 +85.931
Obj 2 0.432 0.408 0.000 1.049 0.377 -17.519
Obj 3 0.431 0.408 0.000 1.012 0.377 -17.261
Obj 4 0.431 0.407 0.000 1.051 0.377 -17.450

Instance 2
w[0.400,0.400,0.100,0.100]

Obj 1 0.202 0.108 0.000 1.036 0.253 +45.078
Obj 2 0.202 0.109 0.000 1.035 0.253 +45.108
Obj 3 0.490 0.578 0.000 1.069 0.397 -33.286
Obj 4 0.488 0.578 0.000 1.022 0.396 -32.920

Instance 3
w[0.320,0.320,0.320,0.040]

Obj 1 0.220 0.111 0.000 1.062 0.286 +40.310
Obj 2 0.219 0.111 0.000 1.017 0.286 +40.410
Obj 3 0.219 0.111 0.000 1.009 0.286 +40.367
Obj 4 0.638 0.913 0.000 1.008 0.453 -73.698

Ba
se

In
st

. 1

In
st

. 2

In
st

. 3

Instances

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Obj 1 Obj 2 Obj 3 Obj 4

Fig. 4: Boxplot of objective values obtained by the different instances of the
NSGA-III for the 4-objective DTLZ2 problem.

objective is set up to be clearly more important than the

rest 3 objectives.

• Instance 2, weights (0.400, 0.400, 0.100, 0.100), where 2

objectives are equally more important than the other two.

• Instance 3: weights (0.320, 0.320, 0.320, 0.040), where 3

objectives are equally more important than the last one.

The shape of the Pareto front is affected by the weights

used, which is illustrated in Figure 3. This Figure depicts the

parallel coordinate plot of non-dominated solutions of one-

run obtained by different reference points instances of the

NSGA-III on the test problem is presented. The values of

Table II are illustrated in Fig.4 as a boxplot. It is worth noting,

that for Instance 1, where objective 1 has a weight of 0.85,

there is an 84.931% improvement in the mean value. For the

Instance 2, the first 2 objectives with weights 0.4 and 0.4

share an almost 45% improvement of their mean objective

values, while for Instance 3, the first 3 cases share a 40% of

improvement of their mean objectives values. Moreover, the

objectives with lower weights result in the deterioration of

their mean objectives values. This is expected for the specific

problem, as its Pareto Front is concave and the objectives can

be regarded as separable [19].

C. Results for Ground Station Scheduling Problem

The combinations of weights mentioned in Section III are

used for these experiments and their statistical results are

reported in Table III. A boxplot of these results is presented

in Figure 6. A large number of outliers in the values of

each objective in all cases is justified since we take into

account the solutions on the whole Pareto Front. In Figure

5 parallel coordinate plots of non-dominated solutions of one

of the 30 runs are plotted for the different instances. As

we can see from the GSP Baseline Instance results, FitAW

and FitCS seem to be non-conflicting objectives. This leads

to results such as in the GSP Instance 3, wherein a mean

improvement of 21.011% of the FitAW objective is obtained

and a 6.552% improvement of the FitCS objective, despite the

higher weights being assigned only to FitAW. It is obvious

that the weights have a different influence on the objectives,

compared to the DTLZ2 problem. For example, for Instance 1,

where objective 1 (FitAW) and objective 3 (FitTR) have higher

weights, their mean improvement is 9.537% and 0.166%

respectively, while for objective 2 that has a lower weight, the

mean improvement reaches 2.036%. This further implies the

collaborative nature of objective 1 and objective 2. Therefore,

giving higher importance to FitAW, leads to solutions that are

solving to (near)-optimality FitCS as well, reaching the target

of finding solutions of this region of the Pareto Front. For the

GSP Instance 2, where priority is given to FitAW and FitCS,

they show a small improvement of 0.8 and 1.6% in their mean

values. This difference of the influence of weights on the final

results is related to the complexity of the problem, being large

scale, and the shape of the Pareto Front (which is not known

in advance for this problem).

V. CONCLUSIONS AND FUTURE WORK

The paper presents the application of the NSGA-III on the

GSP, by using the option of selecting the reference points for

preferred solutions. The reference point generation is based

on the importance of the objectives, specified by the user as

weights at the beginning of the optimization. This method
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(b) GSP Instance 1 with AW = 1.5 CS = 0.1, TR = 1.0, GU = 0.01)
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(c) GSP Instance 2 with AW = 1.5 CS = 1.0, TR = 0.1, GU = 0.01).
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(d) GSP Instance 3 with AW = 0.85 CS = 0.05, TR = 0.05, GU = 0.05).

Fig. 5: Parallel coordinate plots of non-dominated solutions of one run obtained by different instances of the NSGA-III on 4-objective Ground Station
Scheduling Problem.

TABLE III: STATISTICAL RESULTS OF THE OBJECTIVES FOR THE DIFFERENT REFERENCE POINTS INSTANCES OF THE NSGA-III AFTER 30 RUNS FOR THE

GSP.

Instances Mean Median Min Max Std % RMI

GSP Baseline Instance

Obj 1 68.937 69.643 27.778 97.561 11.479
Obj 2 78.925 80.000 45.283 97.561 9.020
Obj 3 76.242 76.596 29.787 100.000 15.031
Obj 4 86.898 91.973 18.317 99.840 13.542

GSP Instance 1
w[1.5,0.1,1.0,0.01]

Obj 1 75.512 77.273 35.938 97.500 10.747 +9.537
Obj 2 80.532 81.356 55.319 100.000 7.843 +2.036
Obj 3 76.368 78.723 31.915 100.000 14.441 +0.166
Obj 4 86.031 94.674 21.068 99.949 16.654 -0.997

GSP Instance 2
w[1.5,1.0,0.1,0.01]

Obj 1 69.537 71.698 34.545 89.796 11.087 +0.870
Obj 2 80.214 81.818 48.333 97.872 8.441 +1.633
Obj 3 75.581 75.532 37.234 100.000 11.928 -0.866
Obj 4 93.496 97.597 39.536 99.963 9.148 +7.593

GSP Instance 3
w[0.850,0.050,0.050,0.050]

Obj 1 83.421 85.455 38.776 100.000 9.616 +21.011
Obj 2 84.096 85.417 56.140 100.000 9.427 +6.552
Obj 3 62.793 61.702 26.596 97.872 16.274 -17.639
Obj 4 73.013 78.015 14.399 99.122 19.599 -15.979

Ba
se

In
st

. 1

In
st

. 2

In
st

. 3

Instances

20

40

60

80

100

Va
lu

e

Obj 1 Obj 2 Obj 3 Obj 4

Fig. 6: Boxplot of objective values obtained by the different instances of the
NSGA-III for the GSP problem.

is first tested for a combination of weights on the DTLZ2

test problem, to evaluate their influence on the final solutions.

Then it is applied to one instance of the GSP problem, with a

combination of weights motivated by the importance of the

objectives interpreted as constraints. The applied algorithm

indeed shifts the Pareto Front to the preferred solutions, when

high weights are assigned.

Further testing on the method to different test problems

could be interesting, as the influence of weights changes
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depending on the nature of the Pareto fronts. Moreover, the

algorithm could be tested on different real-world problems,

where the users know in advance a part of the region of the
Pareto front they are interested in.
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