
applied
sciences

Article

Generalization-Based Acquisition of Training Data for Motor
Primitive Learning by Neural Networks

Zvezdan Lončarević 1,2,*, Rok Pahič 1,2, Aleš Ude 1,3 and Andrej Gams 1,2

����������
�������

Citation: Lončarević, Z.; Pahič, R.;

Ude, A.; Gams, A. Generalization-

Based Acquisition of Training Data

for Motor Primitive Learning by

Neural Networks. Appl. Sci. 2021, 11,

1013. https://doi.org/10.3390/

app11031013

Academic Editor: Daniel A. Vera

Received: 24 December 2020

Accepted: 20 January 2021

Published: 23 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Humanoid and Cognitive Robotics Lab, Department of Automatics, Biocybernetics and Robotics,
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; rok.pahic@ijs.si (R.P.); ales.ude@ijs.si (A.U.);
andrej.gams@ijs.si (A.G.)

2 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
3 Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
* Correspondence: zvezdan.loncarevic@ijs.si

Abstract: Autonomous robot learning in unstructured environments often faces the problem that the
dimensionality of the search space is too large for practical applications. Dimensionality reduction
techniques have been developed to address this problem and describe motor skills in low-dimensional
latent spaces. Most of these techniques require the availability of a sufficiently large database of
example task executions to compute the latent space. However, the generation of many example
task executions on a real robot is tedious, and prone to errors and equipment failures. The main
result of this paper is a new approach for efficient database gathering by performing a small number
of task executions with a real robot and applying statistical generalization, e.g., Gaussian process
regression, to generate more data. We have shown in our experiments that the data generated this
way can be used for dimensionality reduction with autoencoder neural networks. The resulting
latent spaces can be exploited to implement robot learning more efficiently. The proposed approach
has been evaluated on the problem of robotic throwing at a target. Simulation and real-world results
with a humanoid robot TALOS are provided. They confirm the effectiveness of generalization-based
database acquisition and the efficiency of learning in a low-dimensional latent space.

Keywords: autoencoders; robot learning; statistical generalization; dimensionality reduction

1. Introduction

Robot learning, a process where the robot improves its performance by executing
the desired task many times to update the principal skill representation, is one of the
main technological enablers that can take robots into unstructured environments [1,2].
Nevertheless, robot learning can be a complicated and lengthy process, which requires
numerous iterations, trials, and repetitions, all of which might not be safe for the robot or
its immediate environment. This is specifically the case when the robot needs to learn a
new task from scratch—the search space is simply too large [3]. This is also the case for
monolithic problems where only one type of solution is possible (in our practical example,
only one way of throwing) [4]. Intuitively, by reducing the dimension of the search space
for learning, more successful autonomous learning algorithms can be implemented [5].

The learning process can be made more efficient in different ways. For example,
learning by demonstration (LbD) may provide an initial approximation, which is used to
initiate the selected learning algorithm [6]. As a human expert can demonstrate the task only
for the finite number of states of the real world, the accumulated robot knowledge cannot
be applicable in all possible states unless the robot can generalize from it [7]. Statistical
generalization can be and has been applied for generation of actions from a set of example
executions of a task [8–10]. This generation is possible only if the example executions are
related through a known set of parameters, e.g., a parametrized goal of the action, and
if they are continuous. For example, in an action of reaching for an object, one cannot

Appl. Sci. 2021, 11, 1013. https://doi.org/10.3390/app11031013 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3677-3972
https://orcid.org/0000-0002-9803-3593
https://doi.org/10.3390/app11031013
https://doi.org/10.3390/app11031013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031013
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1013?type=check_update&version=2

Appl. Sci. 2021, 11, 1013 2 of 17

easily generalize between reaching for an object from the left and from the right, but only
separately between examples of reaching from the same class (same side) of reaching
movements [11].

If the action computed by statistical generalization does not provide a policy that suc-
cessfully executes the task in the current state of the environment, it needs to be improved.
This can be done with Reinforcement Learning (RL), which provides a methodology and
toolkits for the design of hard-to-engineer, complex behaviors [12]. Policy search is a sub-
field of Reinforcement Learning [13] with the focus on finding parameters for a given policy
parametrization. In policy search, no analytical model is available [14], but learning a policy
is often easier than learning an accurate forward model [13]. The drawback of this approach
is that each sampled instance of execution needs to interact with the robot, which can be
time-consuming and challenging in practice—every example movement takes some time to
execute. Even though parametrized policies scale continuous actions in high-dimensional
spaces for RL, the dimensionality of the search space is often still beyond the range of
practical applications. This is often referred to as the curse of dimensionality [15].

The search space thus needs to be reduced as much as possible. One possibility is
to project data onto the vector space spanned by basis vectors defined by the variance of
the data, known as Principal Component Analysis (PCA) [16]. Another possibility is to
use latent space of autoencoders. Autoencoders (AEs) are artificial neural networks used
to learn efficient data encoding in an unsupervised manner. They push data through the
layers of the neural network, and the layer with the smallest number of neurons—the latent
space—can be of smaller dimensionality than the input data. While PCA provides a linear
transformation of the data, AEs provide a nonlinear transformation, which has been shown
to be more appropriate for the nonlinear world we live in [17]. In order for their respective
transformations to be trained, both PCA and AEs require a database of actions. There is
always some loss of information when parameterizing actions. It is therefore important to
compute high-quality latent spaces that provide good representation of robot movements
and contain the optimal movement for the given task.

1.1. Problem Statement

It was shown in the literature that learning in autoencoder latent space outperforms
learning in the full policy space [5] and learning in PCA latent space [17,18]. This paper
explores the usage of statistical generalization to create the database, i.e., training samples
required to train autoencoder neural networks for dimensionality reduction, thus reducing
the required real-world policy executions. Additionally, the paper explores the required
number of training samples and dimension of autoencoder latent space.

To corroborate the results, we evaluated the proposed training sample acquisition
method and investigated the required number of training samples for real-world learning
of ball throwing at a target with a TALOS humanoid robot [19]. The experimental setup is
depicted in Figure 1.

1.2. Related Work

As outlined in the introduction, the topic of this paper is learning in a reduced space,
addressing the issue of how to obtain a suitable action database. It has been shown that
learning of robot actions can be more effective in a smaller search space [15]. Therefore,
different dimensionality reduction techniques were used to reduce the search space, for ex-
ample, PCA, discriminant function analysis—such as linear discriminant analysis (LDA),
kernel PCA, and AE. The first two are linear in nature, while kernel PCA and AE are not.
These methods were applied in various robotic applications. As an example, PCA was
used to reduce the amount of training data for learning the behavior of an articulated body
in [20] and to obtain optimal robot motion in real-time [21]. These two works both say that
obtaining a suitable database and working with high amounts of data are among the key
problems. LDA, on the other hand, is typically applied for classification, but not necessarily
better than PCA [22].

Appl. Sci. 2021, 11, 1013 3 of 17

Figure 1. TALOS humanoid robot in the throwing posture with the projected saggital (x− z) plane
(left); the robot in GAZEBO simulation (right).

Linear approximation of real-world actions might not be the best for the nonlinear
world. It has been shown that AEs work much better than PCA to reduce the dimensionality
of the data [17]. Similar results were reported in [18], where generalization of throwing
actions in either PCA latent space or AE latent space were compared, with the database
acquired in simulation. Kernel PCA [23] can provide for a nonlinear reduction of dimension-
ality of data. Among the issues that need to be addressed to implement kernel PCA are the
storage of a large kernel matrix and the selection of the nonlinear kernel. The utilization of
different kernels was investigated for modeling of humanoid robot motions in [24]. Given
that we are dealing with a nonlinear task in a nonlinear world, we chose autoencoders for
dimensionality reduction.

All dimensionality reduction techniques require a database. It is often not feasible to
record thousands of robot actions that are needed to train neural networks. To illustrate,
in order to learn proper grasping techniques, close to a million of repetitions were carried
out with a cluster of robots [25]. The question of database acquisition was tackled also
in other settings, e.g., for statistical generalization that typically requires less data than
neural network training. In [26], the authors investigated how many example executions
and in which order they need to be added to enable meaningful generalization. Pahič
et al. [18] studied how many database entries are required for generalization of real-world
actions using a simulated database. Other instances of database learning for generalization
include the work in [27], where the authors autonomously added database entries after
generalization and adaptation. Similar ideas were investigated in [28,29]. In this paper, we
use a different approach. We first record a small number or real-world actions and generalize
to a larger set. We use this larger set to train autoencoder, and then implement learning
methodologies in its latent space. Action representations and Reinforcement Learning (RL)
are discussed in, for example, [5,18,30,31]. Furthermore, action generalization in feature
space of a quadruped robot is discussed in [32].

RL and especially Deep Reinforcement Learning (DRL) achieved great results in
simulated environments [33,34]. Nevertheless, all these achievements depend on the ability
to collect large amounts of accurate data. For the robots that are equipped only with noisy
sensors data and are supposed to work in everyday and ever-changing environments,
the application of such learning algorithms might be difficult. A promising method is
to train control policies in simulated environments, where data generation is safe and
convenient, and then transfer the learned policies to the real world [35]. This process is
called transfer learning (TL). Several methods were developed in order to bridge the gap

Appl. Sci. 2021, 11, 1013 4 of 17

between the simulation and real-world [36,37], but it still remains an open topic of research.
Creating the simulated environment for some more complex tasks is often not feasible. This
is the reason why in this paper we examine the possibility of using generalization over a
small set of real-world example executions to acquire larger datasets instead of simulation.

2. Methods and Data Acquisition for Learning

In the following, we first describe the proposed methodology to solve the above-stated
problem. We start by defining the learning space and then explain how to implement
dimensionality reduction of the learning space using autoencoders. We further discuss
database construction by the application of statistical generalization methodologies.

These techniques are needed to derive the main contributions of this paper: a new
methodology for obtaining samples trajectories grounded in the real-world data by means
of statistical generalization and the analysis of the required number of training samples for
autoencoder-based dimensionality reduction. In short, this paper proposes the following
methodology to improve the accuracy of robot behavior and the speed of RL convergence.
We first record a small number of real-world actions and generalize to a larger set. We
then use this larger set to train an autoencoder. The latent space of the autoencoder is
smaller than the full action representation space, which provides for a faster convergence
of Reinforcement Learning. Because the data for autoencoder training are grounded in a
small set of real-world actions, it is also closer to real-world actions than an autoencoder
trained with only simulated data. As explained above, the consequence is that we reduce
the amount of real-world robot executions to acquire a dataset suitable for autoencoder
training and then learn faster because RL is performed in a smaller search space defined by
the latent space of the autoencoder.

2.1. Dimensionality Reduction of Policy Parameter Space with Autoencoders

Let us consider parametric policies Π(θ), where θ ∈ Θ are the policy parameters
and Θ ⊂ Rd is a d dimensional space formed by all valid policy parameters θ. Kober and
Peters [15] noted that the dimensionality of Θ can be problematic when learning optimal
policies for a given task. Intuitively, learning should become easier and faster to perform
if we could implement it in a lower-dimensional parametric space. For this purpose, we
must first embed all valid policies for the given task into a lower-dimensional parametric
space. This is often possible because the space of all valid policies for the given task forms
a low-dimensional manifold in the full parameter space Θ [9].

As shown in [30], deep autoencoder neural networks enable dimensionality reduction
while retaining the most pertinent information in the low-dimensional policy representa-
tion. The autoencoder neural network is trained so that its input data matches its output
data as precisely as possible. The input data are pushed through the network layers until
they reach the bottleneck—the layer with the least number of neurons, also called the latent
space. We denote the values of the neurons in the bottleneck layer by θAE. The part from
the input to the bottleneck is called the encoder part. The second part of the autoencoder,
called the decoder, pushes data from the bottleneck through expanding layers, so that
the outputs θ̃ of the autoencoder match the input data θ as closely as possible. Thus,
the encoder and the decoder functions are nearly inverse Fdec ≈ F−1

enc. The dimensionality
of the data is now defined by the number of neurons in the bottleneck layer—the latent
space (also referred to as code). Its dimensionality dAE is usually significantly lower than
the dimensionality of the original space, i.e., dAE < d.

Thus, given an input data, the values of the neurons in the latent space are affected
by the activation functions of the other hidden layers. These activation function can be,
for example, the hyperbolic tangent (tanh), the sigmoid function, or a rectified linear
unit [38]. For the tanh function, the output values of neurons at layer n are given by
hn = tanh(Wnhn−1 + bn), where hn−1 are the input values for the neurons at layer n
and Wn, and bn are autoencoder parameters. Their values are determined by training.

Appl. Sci. 2021, 11, 1013 5 of 17

To train the AE network, that is to compute the appropriate autoencoder parameters ζ?,
we minimize

ζ? = arg min
ζ

1
Ns

Ns

∑
i=1

L(ζ; θi, Fdec(Fenc(θi)), (1)

where ζ =
⋃

n ζn, ζn = {Wn, bn}, combines all the parameters defining the autoencoder
network, θi are the example policy parameters, L is the Euclidean distance between the
input and output of the autoencoder network, and Ns is the number of samples, i.e., in
our case this is the number of trajectories. We use stochastic gradient descent to train the
network, thus the results of optimization depend on the initialization of the optimization
process. For this reason, the network is trained several times using different initial pa-
rameters. The results are then averaged. The training of each autoencoder network is
terminated if the results do not improve in 60 consecutive validation steps. This number
was determined empirically.

Upon training of the network, the latent space representation of a robot movement,
which is specified by policy Π(θ), can be computed by applying the encoder part of the
network,

θAE = Fenc(θ). (2)

In the same manner, the mapping from the autoencoder latent space θAE back to policy
parameters is given by the decoder part of the network,

θ̃ = Fdec

(
θAE

)
. (3)

2.2. Database Acquisition by Generalization

As in all neural networks, autoencoders also require a large amount of samples for
training. Obtaining such an amount of samples with a robot is a time-consuming job that
causes too much wear and tear of the equipment and might even damage the robot itself.
One way to address these issues is to gather data in simulation. However, there is always a
discrepancy between the simulation dynamics and the real system. The main contribution
of this paper is a way to synthetically form the training samples without the need for many
thousands of repetitions with a real system.

To compute the autoencoder network defining the AE-based latent space, we must
first acquire a training dataset of robot motion trajectories

{θi}Ns
i=1, (4)

where Ns is the number of trajectories and θi are the parameters representing the i-th
trajectory. The trajectories can be acquired either in simulation or in the real world. The for-
mer does not require task executions with a real robot but might result in an inaccurate
description of the task because no model is fully accurate. Moreover, it is sometimes
difficult to construct mathematical models needed to generate simulated data. The latter
will faithfully describe the behavior, but requires many task executions with a real robot,
which is very time-consuming, to the point that it might not be practically feasible.

In this paper, we propose a new approach to generate data for learning autoencoders
using statistical generalization methods, e.g., Gaussian Process Regression (GPR) [39]. The
idea is to start by collecting a relatively small number of task executions with a real robot
and then apply GPR to generate a larger set of synthetic data based on the available real
data. Among many possible statistical learning methods, we selected GPR because it has
been demonstrated [39] that in many practical problems GPR achieves better performance
than other methods for robot learning. For example, GPR has been shown to be effective
when estimating the inverse dynamics of a seven DOF robot arm [40].

Appl. Sci. 2021, 11, 1013 6 of 17

Let us assume that the robot performed a relatively small number of tasks. We denote
the associated movements and task descriptors as θi and qi, respectively. From these data
we form a dataset

D = {θi, qi}Ns
i=1. (5)

New data points can be generated by selecting a new desired task descriptor qd and
computing the associated motion policy by GPR, i.e.,

G(D) : qd → θd. (6)

For the sake of completeness, we provide the formulas to implement GPR in Appendix B.
Note that it is not necessary to execute the task with the robot or to simulate the task

execution in a simulation system when generating new data couples θd, qd. Thus new data
can be computed very efficiently. The robot only executes a few shots at different targets
while the rest of the data are generated by GPR. Our assumption, which is confirmed in
our experiments, is that the training data obtained with this approach will perform as well
or better than the data obtained in simulation. Consequently, a better initial approximation
reduces the number of RL iterations.

3. Experimental Setup and Protocol

In our evaluation experiments, we first studied the required size of the database
of example task executions, which was used to compute latent spaces. The goal was to
represent motion policies in latent spaces without loosing much information. We tested
several networks with different dimensions of the latent space and trained them on different
number of actions. The following sections provide a detailed description of experiments
and confirm that our method for the generation of data for latent space computation results
in good latent space representations that significantly improve the overall performance of
robot learning.

3.1. Task and Robot

We performed the experimental evaluation of the proposed methodology by imple-
menting the task of throwing a ball at a target (basket) with a robot arm. We assume that the
orientation of the robot in the horizontal plane (x− y, see Figure 1) is correct. This assump-
tion does not reduce the generality because correcting the orientation in the horizontal plane
can take place before the actual throwing. Thus, the throwing is a planar problem in the
vertical (saggital) plane of the robot (x− z, see Figure 1). The target of throwing, which in
our case is a basket, is located in the saggital plane and can be described by two parameters,
i.e., distance and height from the robot’s base.

We used the full-sized humanoid robot TALOS in our experiments. They were per-
formed both in Gazebo simulation [41] and on a real robot. Out of 32 robot DOFs, we used
7 DOFs of its left arm to generate the throwing motions. The movements where specified
in task space and generated using inverse kinematics. All 6 DOFs in the task space were
controlled. Inverse kinematics was implemented using a null-space controller to keep the
joints as much as possible in the middle of the joint limits. To extend the range of throwing,
the robot held in its hand a passive elastic throwing spoon. The humanoid robot was
standing upright in a static posture, which ensured that the center of mass projection was
between the two feet. The throw itself was considered as a perturbation and no active
measures were undertaken to counter its effects on the stability.

The robot held the aforementioned spoon with its hand, but the ball was not firmly
attached to the spoon. Thus, during the throwing action, the ball detached itself on its own
from the holder once the hand motion started to slow down, i.e., when the arm acceleration
became negative. This approach was taken both in dynamic simulation and on the real
robot. Note that this is different from humans who usually firmly hold the ball during
the throwing movement and determine the release point by letting the ball go. An image
sequence of a successful throw in simulation is shown in Figure 2.

Appl. Sci. 2021, 11, 1013 7 of 17

Figure 2. Image sequence of a throw in GAZEBO simulation environment.

3.2. Policy Parameter Space and Latent Space

In our experiments, we represented a throwing trajectory with a Cartesian space
dynamic movement primitive (CDMP) [42]. Thus, the full parameter space of throwing
trajectories is defined by the free CDMP parameters. CDMPs encode the motion of each
robot degree of freedom with a nonlinear dynamic system. While positions are encoded
in the same manner as, for example, joint space trajectories (see [43]), Cartesian space
orientations in the form of unit quaternions are encoded differently in order to maintain
the unit norm [42]. The free CDMP parameters consist of the starting position p0 and
orientation o0, weights defining the dynamic of motion for the position and orientation
wp

k , wo
k ∈ R3, k = 1, . . . , N, trajectory duration τ, and the final (desired) position gp

and orientation go of the robot arm motion. If, for example, the number of weights is
N = 25 (this is usually sufficient for good accuracy, see in [9]), we obtain a 165 dimensional
parameter space. For clarity, we provide a short recap of CDMPs in Appendix A. Further
details are available in [42]. The application of neural networks for the generation of
dynamic movement primitives has been analyzed in detail in our previous work [44].

In our experiments, throwing is a planar problem in the x− z plane. Thus, only three
Cartesian space degrees of arm motion must be specified: the positional motion along the
x and z axis and the rotational motion around y axis. The other three degrees of freedom
are fixed. In our experiments, we also kept constant the initial and goal position of the arm
motion (position and orientation of the throwing spoon). Thus, the throwing movement
always starts and ends in the same poses. The relevant DOFs and their parameters are the
following.

θCDMP =
[
wT

x , wT
z , wT

roty , τ
]T

. (7)

By setting the number of weights to N = 25, the dimension of the policy space
becomes dCDMP = 76.

We applied an autoencoder neural network to further reduce the dimensionality of
the full CDMP parameter space. The parameters specified in Equation (7) represent the
inputs and outputs of the autoencoder network. The autoencoder structure depends on
the task and the manner in which the data are encoded. It needs to be chosen in such a
way that the difference between training inputs and outputs is as low as possible. Typically,
the autoencoder network structure is empirically determined by the network designer,
keeping in mind the potential of vanishing or exploding gradients [45].

In our experiments, the autoencoder network was a fully connected, 5-layered neural
network with 76-20-L-20-76 neurons. This means that there were 3 hidden layers with 20, L,
20, neurons. In order to determine the appropriate latent space layer, we varied L between
2 and 10. Section 4.1 provides the results of the autoencoder network approximation
depending on the dimension of the latent space and the number of samples used in the
training process. Figure 3 shows an illustration of the used autoencoder structure, but keep
in mind that we varied the number of latent space neurons.

Appl. Sci. 2021, 11, 1013 8 of 17

76

20

Input

L

20

Output
76

Figure 3. Illustration of the selected AE neural network structure. Dimension of the latent space was
varied between 2 and 10.

3.3. Database for AE Training

For evaluation purposes we collected several databases. The first database was used
to assess the accuracy of AE training. It should be noted that just to assess the accuracy of
AE training, arbitrary throwing trajectories can be used as input data, as only the control
policy parameters are important for this purpose. We computed 800 simulated throwing
trajectories and formed the database

DAE =
{

θCDMP
j , qAE

j

}800

j=1
. (8)

Different random subsets of DAE were used to evaluate the accuracy of AE training.
For the next database, we computed 625 evenly distributed targets {qg

j }
625
j=1 (located

in-between targets qAE
j) and applied generalization to compute the appropriate throwing

policies
G(DAE) : qg

j 7→ θCDMP,s
j . (9)

Simulated data (8) were used to train GPR. Here, generalization was used because the
policy parameters that match the given queries cannot be easily computed. To compute
them, one would need to run an optimization procedure that would determine the appro-
priate robot arm velocities so that the ball is detached from the hand (remember, it is not
held firmly) at an appropriate point and with an appropriate velocity. Moreover, the arm is
part of the humanoid robot body, which might also move during the throwing motion so
that the robot remains stable. All these effects are difficult to model and one might need RL
to produce each throwing motion. That, on the other hand, would take a very long time
for the 625 targets even in simulation. Nonetheless, given the relatively large amount of
data in DAE, the generalized trajectories produce accurate simulated throws that are very
similar to the simulated ones. Thus, using the data computed by Equation (9), we formed
the dataset

Ds =
{

θCDMP,s
j , qg

j

}625

j=1
, (10)

which we call Ds the simulated database.
The last database was generated by first programming 25 robot throwing movements

with parameters θr
j and executing them with a real robot. The locations qr

j where the ball
landed were measured and we formed the dataset of real robot throws

Dr =
{

θr
j , qr

j

}25

j=1
. (11)

Appl. Sci. 2021, 11, 1013 9 of 17

We then applied GPR trained with data specified in (11) to compute new throws for
the same locations qg

j as used when generating the simulated database (10)

G(Dr) : qg
j 7→ θ

CDMP,g
j . (12)

Using the parameters computed by applying Equation (12), we formed the dataset

Dg =
{

θ
CDMP,g
j , qg

j

}625

j=1
. (13)

We call Dg the generalized database. Note that Ds and Dg consist of the same targets
qj but different throwing policy parameters. The throwing policies in Ds and Dg were
generated computationally and were never executed with the real robot. The aim was
to assess the effectiveness of such an approach for database collection. The targets of the
autoencoder database, real-world throws, the simulated, and generalized databases are
depicted overlaid in Figure 4.

0.5 1 1.5 2 2.5 3 3.5
0.2

0.3

0.4

0.5

0.6

0.7

Figure 4. Targets contained in DAE (black circles), real-world database Dr (cyan dots), and general-
ized databases Dr and Dg (red dots). The three blue crossed circles depict the queries which served
as starting points for RL in latent space, as described in Section 4.2.

3.4. Evaluation Metrics

Several metrics were used for evaluation of throwing trajectories. To evaluate the
error of the autoencoder network, we used mean squared error (MSE) for positions, orien-
tations, and for the difference between the policy parameters (CDMP weights). As in our
experiments the position has two degrees of freedom, MSE for position is defined as

MSEpos =
1
K

K

∑
k=1

1
nk

nk

∑
i=1
‖[xi,k, zi,k]

T − [x̃i,k, z̃i,k]
T‖, (14)

where [xi,k, zi.k]
T is the position at sample i on the trajectory generated by the k-th input

parameters of AE, [x̃i,k, z̃i,k]
T the position at sample i on the trajectory generated by the k-th

output parameters of AE, nk the number of time samples on the k-th trajectory, and K the
number of test trajectories. In order to obtain the same number of samples on the trajectory
generated by input and output parameters of the autoencoder, the integration time step
of the output trajectory was appropriately scaled: ∆̃t = (τ̃/τ)∆t. As in our experiments

Appl. Sci. 2021, 11, 1013 10 of 17

the orientation had only one degree of freedom, we only take into consideration the angle
around the y axis, here denoted by ϕ:

MSEϕ =
1
K

K

∑
k=1

1
nk

nk

∑
i=1
||ϕi,k − ϕ̃i,k||. (15)

For the difference in policy parameters, we used the mean squared error of policy
parameter vectors without the duration τ, i.e., θ′k = θCDMP

k \τk

MSEθ =
1
K

K

∑
k=1
||θ′k − θ̃′k||. (16)

To compare the simulated and the generalized databases we used the error of the
throw

e = ||qd − qa||, (17)

where qd is the desired target landing spot (location of the basket) and qa the actual landing
spot of the throw. The error metric defined in (17) was used to evaluate the throwing
motions computed by GPR or by the selected RL algorithm, which in our case was reward-
weighted policy learning with importance sampling [18].

4. Results
4.1. Effect of Database Size and Latent Space Dimension on the Quality of AE Approximation

We first tested the effect of the latent space dimension and the number of database
entries on the training of the autoencoder network. The accuracy of the trained network
was evaluated by varying the amount of training data and the dimensionality of the latent
space (L). Database defined by Equation (8) was used for this purpose. We trained M = 10
(determined empirically) networks for each tested pair of training data and dimensionality
of the latent space. For the training data, an appropriately sized random subset of database
given by Equation (8) was chosen for each of the M networks. Additionally, each of the
M networks was trained with a different random initialization of the parameters and
tested using Equations (14)–(16) with K = 40 randomly selected throwing trajectories
from the database specified in Equation (8), which were not included in the training
dataset. Thus, we obtained M results describing the error of each autoencoder network:
MSEpos,m, MSEϕ,m, MSEθ,m, m = 1, . . . , M, all calculated according to Equations (14), (15),
and (16), respectively. The final evaluation results were then obtained by averaging

MSEpos =
1
M

M

∑
m=1

MSEpos,m, (18)

MSEϕ =
1
M

M

∑
m=1

MSEϕ,m, (19)

MSEθ =
1
M

M

∑
m=1

MSEθ,m. (20)

Figure 5 shows the error of autoencoder trajectory encoding. The left plot shows the
difference in policy parameters, while the right-two plots show the errors for position and
orientation, as defined in Equations (20), (18), and (19), respectively. By comparing the three
graphs, we can notice that the differences in quality of approximation are most pronounced
in the left-most graph, that is, in the approximation of CDMP parameters. A significant
decrease in error with both increasing database size, i.e., training samples, and latent space
dimension can be observed. A sort of plateau is roughly reached with L = 4 and 300
training samples, and the error only marginal decreases afterwards. Therefore, we used
these values in our next experiments. Note also that the error in the estimation of the

Appl. Sci. 2021, 11, 1013 11 of 17

position trajectory, shown in the center plot of Figure 5, is slightly larger than 1 cm, whereas
the error in the orientation trajectory (right plot) is about 3 degrees.

2
0

0.02

4200

0.04

6400

0.06

0.08

8600

0.1

10800

2
0.01

0.012

4200

0.014

6400

0.016

8600

0.018

10800

2
0.045

0.05

4200

0.055

0.06

6400

0.065

0.07

8600

10800

Figure 5. Mean squared error of AE approximation for position (left), orientation around the y axis (center), and Cartesian
space dynamic movement primitive (CDMP) parameters (right), all with respect to the amount of training data and
dimensionality of the latent space.

4.2. RL in AE Latent Spaces

We first tested whether RL in a low-dimensional latent space defined by an autoen-
coder is advantageous compared to RL in the full CDMP parameter space, which has a
much higher dimension. We also evaluated the performance of RL in AE latent space
computed from the generalized dataset (13) compared to RL in the latent space computed
from the simulated dataset (10). Note that in each RL trial, the current policy parameters are
modified by adding random noise. However, the full CDMP parameter space contains all
smooth movements in the Cartesian coordinate system, not just the throwing movements.
Thus, the modification of policy parameters in the CDMP space can result in movements
that are not throwing movements, including movements that are not safe for the robot.
On the other hand, a low-dimensional latent space typically contains only throwing move-
ments; thus, if we first project the current CDMP parameters to the latent space using
Equation (2), add random noise to the projected parameters, and backproject the modified
autoencoder policy parameters to the CDMP parameter space using Equation (3), we are
much more likely to obtain a valid throwing movement that is safe for the robot to perform.
This is how RL in latent spaces is carried out.

The comparison of RL in CDMP parameter space and AE parameter space was carried
out in simulation, while the comparison between RL in AE spaces trained with either the
simulated or the generalized dataset was performed in real robot experiments. Having
determined the appropriate dimension of the latent space in Section 4.1, we used L = 4
to train all autoencoder networks. For RL testing, we applied reward-weighted policy
learning with importance sampling method [18].

The first experiment was conducted in simulation in order to compare the performance
of RL in the full CDMP parameter space and in AE latent space when learning to throw at
25 randomly selected targets. The initial throw to start the learning process was always the
same and a “hit” was reported if the ball landed within 0.09 m of the target. We analyzed
the evolution of the error of throwing for RL in the full CDMP parameter space and the AE
latent space, where the error is given as the distance to the target at the height of the target.
The results are shown in Figure 6. The faster convergence of learning in autoencoder latent
space is evident. The left top plot in Figure 7 shows the average number and standard
deviation of iterations required to compute accurate throws. Note that learning in the
CDMP parameter space takes longer on the average, but the standard deviation is quite
high in both cases. The one-way analysis of variance (ANOVA) between the two processes
confirms that learning in latent space is statistically significantly faster (p = 0.0457) than

Appl. Sci. 2021, 11, 1013 12 of 17

learning in the CDMP space. The right top plot in Figure 7 verifies the benefits of using
AE latent space over full CDMP space by showing the worst case of 25 learning iterations.
The results presented in Figures 6 and 7 are consistent with the literature where it has
been reported that learning is faster in a low-dimensional latent space [5]. However, more
experiments are needed to confirm that learning in AE latent spaces is faster also in general.

Figure 6. [SIM] Error of throwing and its variance for 25 instances of RL in AE latent space and
CDMP space.

Figure 7. (Left top): [SIM] Average number and standard deviation of iterations required to hit a target for RL in AE latent
space and in CDMP space. (Right top): [SIM] The highest number of iterations required to hit the target. All top row results
were obtained in simulation. (Left bottom): [REAL] Average number and standard deviation of RL iterations required to hit
a target in AE latent space where the AE was trained with either the simulated (red) or generalized (blue) dataset. (Right
bottom): [REAL] The highest number of iterations required until a hit.

In the next experiment, we used a real robot to compare the performance of learning
in autoencoder spaces computed using two different datasets: simulated dataset (10) and
generalized dataset (13). Figure 8 shows a sequence of still images depicting a successful
throw with the humanoid robot TALOS, which was used for this experiment. Three targets
were used to test the learning of throwing, marked with blue, crossed circles in Figure 4.

Appl. Sci. 2021, 11, 1013 13 of 17

For each of the targets, we performed RL three times in both types of latent spaces. In order
to have a good initial policy, and therefore reduce the number of RL iterations, we first
generated throwing trajectories for each of these targets using GPR in the CDMP space and
then performed RL in both AE spaces to refine the throw and hit the given targets.

Figure 9 shows the results for real-system learning in autoencoder latent spaces
trained on simulated and generalized data, respectively. A somewhat faster convergence is
observed when using the generalized database, with at most 14 shots needed for learning
in latent space associated with the simulated dataset, and at most 13 for the generalized
dataset. The real-system results shown in the bottom plots of Figure 7 confirm faster
convergence of RL in AEg even when the conditions were most favorable for the simulated
database—that is, in the area where the generalization using the simulated database
performed most accurately. The targets were all in the central range of the target area,
where generalization already produces throws with low error. Consequently, the required
number of trials was small and the difference between the applied autoencoder latent
spaces was not statistically significant (p > 0.05). It should be noted, though, that larger
exploration noise was required to achieve convergence when learning in the latent space
trained on the simulated dataset. This confirms that the generalized dataset represents the
actual state of the world more faithfully.

Figure 8. Image sequence of executing a learned throw at a target on with the TALOS robot.

0 2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

Figure 9. [REAL] Convergence of RL in AE latent spaces computed from either the simulated or the
generalized dataset.

5. Conclusions

Efficient data representation with autoencoders, as has already been discussed in the
literature [5,17,30,31], can reduce the dimension of the learning space. In our experiments,
we have shown the effectiveness of dimensionality reduction for RL of motor skills such
as throwing.

Appl. Sci. 2021, 11, 1013 14 of 17

It is clear that learning of autoencoders requires the acquisition of a sufficient amount
of data. This is often challenging and time-consuming if data acquisition takes place in the
real world. Simulation is the most obvious substitute for real-world experiments. Still, no
matter how good, simulation can never fully replicate the physics of the real world [46].
In this paper, we propose an alternative approach, i.e., to acquire data for training autoen-
coders by generalizing from a small number of real robot performances of the task. Our
experiments show that in the case of robotic throwing, the data obtained this way can better
capture the physics of the real-world. Consequently, the Reinforcement Learning of throwing
becomes faster.

The task itself determines how many samples are required for training an autoencoder
network for dimensionality reduction while still maintaining an accurate representation of
the motor skill. We have shown that relatively few datapoints are needed to improve the
Reinforcement Learning of throwing. Other tasks might require more example executions.
The proposed methodology, while only shown on a relatively straightforward example,
can be applied for more complex tasks, where otherwise thousands of real-world examples
might be needed.

While generating the database in simulation has been shown less effective than using
a generalized database, we have shown elsewhere [18] that learning in simulation can
also reduce the number of required real-world task executions. These two approaches are
complementary and can benefit from each other.

In the future, we plan to combine the proposed methodology with other methods
that can transfer latent space actions from one robot to another and with methods that
bridge the sim-to-real gap in motor learning. The proposed methodology is the first step in
this direction.

Author Contributions: Conceptualization, methodology, investigation, and writing—original draft
preparation: Z.L., R.P., and A.G.; writing—review and editing: A.U. and A.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Horizon 2020 RIA ReconCycle, GA no. 871352, and program
group Automation, robotics, and biocybernetics (P2-0076) supported by the Slovenian Research
Agency.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Cartesian Dynamic Movement Primitives—CDMPs

Cartesian space Dynamic Movement Primitive (CDMP) separately provide the po-
sition and orientation trajectories. The positions are specified in the same way as in,
for example, joint space DMPs [43]. The orientations are specified by unit quaternions and
therefore require different parameter computation and integration.

A CDMP does not directly depend on time. The phase system provides indirect time
dependency and synchronization of position and orientation degrees of freedom along the
trajectory. The phase system is defined with

ẋ = −αxx, (A1)

where x is the phase that starts at 1 and converges to 0 as the trajectory goal is reached. αx
is a positive constant.

The positions p and orientations Φ are specified by

ν(x)ż = αz(βz(gp − p)− z) + fp(x), (A2)

ṗ = z, (A3)

η̇ = αz
(

βz2 log
(

go ∗Φ
)
− η
)
+ fo(x), (A4)

Φ̇ =
1
2

η ∗Φ, (A5)

Appl. Sci. 2021, 11, 1013 15 of 17

where gp ∈ R3 is the goal position and go ∈ R4 the goal orientation of the movement.
The orientation is in the form of unit quaternion Φ ∈ R4. The parameters z, η ∈ R3 denote
the scaled linear and angular velocity (z = ν(x)ṗ, η = ν(x)ω). Additional details on
quaternion operations, such as product ∗, conjugation Φ, and the quaternion logarithm
log(Φ), see in [42]. The so-called forcing terms fp, fo : R 7→ R3 are given with

fp(x) = Dp
∑N

i=1 wp
i Ψi(x)

∑N
i=1 Ψi(x)

x, (A6)

fo(x) = Do
∑N

i=1 wo
i Ψi(x)

∑N
i=1 Ψi(x)

x. (A7)

where the weights wp
i , wo

i ∈ R3, i = 1, . . . , N, encode the positions and orientations,
respectively, and N is the number of radial basis functions. The weights have to be learned,
for example, directly from an input Cartesian trajectory {pk, Φk, ṗk, ωk, p̈k, ω̇k, tk}K

k=0.
For Dp, Do ∈ R3×3, we can use I, see in [42] for further possibilities. The forcing terms are
composed from a linear combination of nonlinear radial basis functions (RBF) Ψi

Ψi(x) = exp
(
−hi(x− ci)

2
)

. (A8)

The RBF are centered at ci = exp
(
−αx

i−1
N−1

)
, while their width is hi =

1
(ci+1 − ci)2 ,

i = 1, . . . , N, hN = hN−1 [9]. The goal position and orientation are usually set to the final
position and orientation on the desired trajectory, i.e., gp = ptK and go = ΦtK . For more
details and auxiliary math see in [42].

Appendix B. Gaussian Process Regression

A Gaussian process is defined as

g(q) ∼ GP
(
m(q), k(q, q′)

)
, (A9)

where m(q) = E(g(q)) is the mean function and k(q, q′) = E((g(q) − m(q))(g(q′) −
m(q′))) the covariance function of the process. Let us assume that we have a set of noisy
observations {qk, θk}m

k=1, θk = g(qk) + ε, ε ∼ N (0, σ2
n), where N denotes the Gaussian

distribution. In our experiments, θk is one of the parameters describing the motion (one of
the CDMP parameters), q is the desired target of the throw, and g is the unknown nonlinear
function mapping query points to the parameters of the throwing motion. Subtracting the
mean from the training data, we can assume that m(q) = 0. If we are given a set of m2 new
query points Q∗ = {q∗k}

m2
k=1, then the joint distribution of all outputs is given as [39][

ϑ
ϑ∗

]
∼ N

(
0,
[

K(Q, Q) + σ2
nI K(Q, Q∗)

K(Q∗, Q) K(Q∗, Q∗)

])
, (A10)

where Q = {qk}m
k=1, Q∗, ϑ = [θ1, . . . , θm]T, ϑ∗, respectively, combine all inputs and outputs

and K(·, ·) are the joint covariance matrices calculated according to the model (A9). Based
on joint distribution (A10), the expected value ϑ̄∗ ∈ Rm2 can be calculated as [39]

ϑ̄∗ = E(ϑ∗|Q, ϑ, Q∗) = K(Q∗, Q)[K(Q, Q) + σ2
nI]−1ϑ, (A11)

with the following estimate for the covariance of the prediction,

cov(ϑ∗) = K(Q∗, Q∗)−K(Q∗, Q)[K(Q, Q) + σ2
nI]−1K(Q, Q∗).

Appl. Sci. 2021, 11, 1013 16 of 17

One commonly used covariance function is

k(q, q′) = σ2
f

Dq

∑
i=1

exp

(
−1

2
(qi − q′i)

2

l2
i

)
, (A12)

which results in a Bayesian regression model with an infinite number of basis functions.
Dq denotes the dimension of the query point space. σ2

n , σ2
f , and li are the hyperparameters

of the Gaussian process that need to be estimated in the training phase. See in [39] for
more details.

References
1. Kroemer, O.; Niekum, S.; Konidaris, G.D. A review of robot learning for manipulation: Challenges, representations, and

algorithms. arXiv 2019, arXiv:1907.03146.
2. Peters, J.; Kober, J.; Muelling, K.; Kroemer, O.; Neumann, G. Towards Robot Skill Learning: From Simple Skills to Table Tennis.

In Proceedings of the European Conference on Machine Learning (ECML), Prague, Czech Republic, 23–27 September 2013;
pp. 627–631.

3. Schaal, S. Is Imitation Learning the Route to Humanoid Robots? Trends Cogn. Sci. 1999, 3, 233–242. [CrossRef]
4. Kaelbling, L.P. The foundation of efficient robot learning. Science 2020, 369, 915–916. [CrossRef] [PubMed]
5. Pahič, R.; Lončarević, Z.; Ude, A.; Nemec, B.; Gams, A. User Feedback in Latent Space Robotic Skill Learning. In Proceedings of

the IEEE-RAS International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 270–276.
6. Dillmann, R. Teaching and learning of robot tasks via observation of human performance. Robot. Auton. Syst. 2004, 47, 109–116.

[CrossRef]
7. Nemec, B.; Vuga, R.; Ude, A. Efficient sensorimotor learning from multiple demonstrations. Adv. Robot. 2013, 27, 1023–1031.

[CrossRef]
8. Matsubara, T.; Hyon, S.H.; Morimoto, J. Learning parametric dynamic movement primitives from multiple demonstrations.

Neural Netw. 2011, 24, 493–500. [CrossRef]
9. Ude, A.; Gams, A.; Asfour, T.; Morimoto, J. Task-specific generalization of discrete and periodic dynamic movement primitives.

IEEE Trans. Robot. 2010, 26, 800–815. [CrossRef]
10. Zhou, Y.; Gao, J.; Asfour, T. Movement primitive learning and generalization: Using mixture density networks. IEEE Robot.

Autom. Mag. 2020, 27, 22–32. [CrossRef]
11. Forte, D.; Gams, A.; Morimoto, J.; Ude, A. On-line motion synthesis and adaptation using a trajectory database. Robot. Auton.

Syst. 2012, 60, 1327–1339. [CrossRef]
12. Kober, J.; Bagnell, D.; Peters, J. Reinforcement Learning in Robotics: A Survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [CrossRef]
13. Deisenroth, M.P.; Neumann, G.; Peters, J. A Survey on Policy Search for Robotics. Found. Trends Robot. 2013, 2, 388–403.
14. Sigaud, O.; Stulp, F. Policy search in continuous action domains: An overview. Neural Netw. 2019, 113, 28–40. [CrossRef] [PubMed]
15. Kober, J.; Peters, J. Policy Search for Motor Primitives in Robotics. Mach. Learn. 2011, 84, 171–203. [CrossRef]
16. Bishop, C.M. Pattern Recognition and Machine Learning; Springer-Verlag New York, 2006.
17. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.

[CrossRef] [PubMed]
18. Pahič, R.; Lončarević, Z.; Gams, A.; Ude, A. Robot skill learning in latent space of a deep autoencoder neural network. Robot.

Auton. Syst. 2021, 135, 103690. [CrossRef]
19. Stasse, O.; Flayols, T.; Budhiraja, R.; Giraud-Esclasse, K.; Carpentier, J.; Mirabel, J.; Del Prete, A.; Souères, P.; Mansard, N.;

Lamiraux, F.; et al. TALOS: A new humanoid research platform targeted for industrial applications. In Proceedings of the
IEEE-RAS International Conference on Humanoid Robots (Humanoids), Birmingham, UK, 15–17 November 2017; pp. 689–695.

20. Xianhua Jiang.; Yuichi Motai. Learning by observation of robotic tasks using on-line PCA-based Eigen behavior. In Proceedings
of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Espoo, Finland, 27–30
June 2005; pp. 391–396.

21. Kim, S.; Park, F.C. Fast Robot Motion Generation Using Principal Components: Framework and Algorithms. IEEE Trans. Ind.
Electron. 2008, 55, 2506–2516.

22. Martinez, A.M.; Kak, A.C. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 228–233. [CrossRef]
23. Schölkopf, B.; Smola, A.; Müller, K.R. Kernel principal component analysis. In Proceedings of the International Conference on

Artificial Neural Networks, Lausanne, Switzerland, 8–10 October 1997; pp. 583–588.
24. Mi, J.; Takahashi, Y. Humanoid Robot Motion Modeling Based on Time-Series Data Using Kernel PCA and Gaussian Process

Dynamical Models. J. Adv. Comput. Intell. Intell. Inform. 2018, 22, 965–977. [CrossRef]
25. Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning

and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [CrossRef]

http://doi.org/10.1016/S1364-6613(99)01327-3
http://dx.doi.org/10.1126/science.aaz7597
http://www.ncbi.nlm.nih.gov/pubmed/32820109
http://dx.doi.org/10.1016/j.robot.2004.03.005
http://dx.doi.org/10.1080/01691864.2013.814211
http://dx.doi.org/10.1016/j.neunet.2011.02.004
http://dx.doi.org/10.1109/TRO.2010.2065430
http://dx.doi.org/10.1109/MRA.2020.2980591
http://dx.doi.org/10.1016/j.robot.2012.05.004
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1016/j.neunet.2019.01.011
http://www.ncbi.nlm.nih.gov/pubmed/30780043
http://dx.doi.org/10.1007/s10994-010-5223-6
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1016/j.robot.2020.103690
http://dx.doi.org/10.1109/34.908974
http://dx.doi.org/10.20965/jaciii.2018.p0965
http://dx.doi.org/10.1177/0278364917710318

Appl. Sci. 2021, 11, 1013 17 of 17

26. Petrič, T.; Gams, A. Effect of Sequence Order on Autonomous Robotic Database Expansion. Advances in Robot Design and
Intelligent Control. In Proceedings of the 25th Conference on Robotics in Alpe-Adria-Danube Region (RAAD16), Torino, Italy,
21–23 June 2017; pp. 405–412.

27. Muelling, K.; Kober, J.; Kroemer, O.; Peters, J. Learning to Select and Generalize Striking Movements in Robot Table Tennis. Int. J.
Robot. Res. 2013, 32, 263–279. [CrossRef]

28. Petrič, T.; Gams, A.; Colasanto, L.; Ijspeert, A.J.; Ude, A. Accelerated Sensorimotor Learning of Compliant Movement Primitives.
IEEE Trans. Robot. 2018, 34, 1636–1642. [CrossRef]

29. Calinon, S.; Alizadeh, T.; Caldwell, D.G. On improving the extrapolation capability of task-parameterized movement models.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November
2013; pp. 610–616.

30. Chen, N.; Bayer, J.; Urban, S.; van der Smagt, P. Efficient movement representation by embedding Dynamic Movement Primitives
in deep autoencoders. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids), Seoul,
Korea, 3–5 November 2015; pp. 434–440.

31. Chen, N.; Karl, M.; van der Smagt, P. Dynamic movement primitives in latent space of time-dependent variational autoencoders.
In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November
2016; pp. 629–636.

32. Yamamoto, H.; Kim, S.; Ishii, Y.; Ikemoto, Y. Generalization of movements in quadruped robot locomotion by learning specialized
motion data. ROBOMECH J. 2020, 7, 29. [CrossRef]

33. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

34. Vinyals, O.; Babuschkin, I.; Czarnecki, W.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.; Powell, R.; Ewalds, T.; Georgiev, P.; et al.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef] [PubMed]

35. Liu, N.; Cai, Y.; Lu, T.; Wang, R.; Wang, S. Real–Sim–Real Transfer for Real-World Robot Control Policy Learning with Deep
Reinforcement Learning. Appl. Sci. 2020, 10, 1555. [CrossRef]

36. Zhang, J.; Tai, L.; Yun, P.; Xiong, Y.; Liu, M.; Boedecker, J.; Burgard, W. VR-Goggles for Robots: Real-to-Sim Domain Adaptation
for Visual Control. IEEE Robot. Autom. Lett. 2019, 4, 1148–1155. [CrossRef]

37. Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain randomization for transferring deep neural networks
from simulation to the real world. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 23–30.

38. Hahnloser, R.; Sarpeshkar, R.; Mahowald, M.; Douglas, R.; Seung, H. Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature 2000, 405, 947–951. [CrossRef]

39. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning); The MIT Press:
Cambridge, MA, USA, 2005.

40. Williams, C.; Klanke, S.; Vijayakumar, S.; Chai, K. Multi-task Gaussian Process Learning of Robot Inverse Dynamics. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 265–272.

41. Aguero, C.; Koenig, N.; Chen, I.; Boyer, H.; Peters, S.; Hsu, J.; Gerkey, B.; Paepcke, S.; Rivero, J.; Manzo, J.; et al. Inside the Virtual
Robotics Challenge: Simulating Real-Time Robotic Disaster Response. Autom. Sci. Eng. 2015, 12, 494–506. [CrossRef]

42. Ude, A.; Nemec, B.; Petrič, T.; Morimoto, J. Orientation in Cartesian space dynamic movement primitives. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2997–3004.

43. Ijspeert, A.; Nakanishi, J.; Pastor, P.; Hoffmann, H.; Schaal, S. Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviors. Neural Comput. 2013, 25, 328–373. [CrossRef]

44. Pahič, R.; Ridge, B.; Gams, A.; Morimoto, J.; Ude, A. Training of deep neural networks for the generation of dynamic movement
primitives. Neural Netw. 2020, 127, 121–131. [CrossRef]

45. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
46. Gams, A.; Mason, S.A.; Ude, A.; Schaal, S.; Righetti, L. Learning Task-Specific Dynamics to Improve Whole-Body Control.

In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November
2018; pp. 280–283.

http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1109/TRO.2018.2861921
http://dx.doi.org/10.1186/s40648-020-00174-1
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://dx.doi.org/10.3390/app10051555
http://dx.doi.org/10.1109/LRA.2019.2894216
http://dx.doi.org/10.1038/35016072
http://dx.doi.org/10.1109/TASE.2014.2368997
http://dx.doi.org/10.1162/NECO_a_00393
http://dx.doi.org/10.1016/j.neunet.2020.04.010

	Introduction
	Problem Statement
	Related Work

	Methods and Data Acquisition for Learning
	Dimensionality Reduction of Policy Parameter Space with Autoencoders
	Database Acquisition by Generalization

	Experimental Setup and Protocol
	Task and Robot
	Policy Parameter Space and Latent Space
	Database for AE Training
	Evaluation Metrics

	Results
	Effect of Database Size and Latent Space Dimension on the Quality of AE Approximation
	RL in AE Latent Spaces

	Conclusions
	Cartesian Dynamic Movement Primitives—CDMPs
	 Gaussian Process Regression
	References

