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Abstract: WorldClim version 1 is a high-resolution, global climate gridded dataset covering 1961–1990;
a “normal” climate. It has been widely used for ecological studies thanks to its free availability and
global coverage. This study aims to evaluate the quality of WorldClim data by quantifying any
discrepancies by comparison with an independent dataset of measured temperature and precipitation
records across Europe. BIO1 (mean annual temperature, MAT) and BIO12 (mean total annual
precipitation, MAP) were used as proxies to evaluate the spatial accuracy of the WorldClim grids.
While good representativeness was detected for MAT, the study demonstrated a bias with respect to
MAP. The average difference between WorldClim predictions and climate observations was around
+0.2 ◦C for MAT and −48.7 mm for MAP, with large variability. The regression analysis revealed a
good correlation and adequate proportion of explained variance for MAT (adjusted R2 = 0.856) but
results for MAP were poor, with just 64% of the variance explained (adjusted R2 = 0.642). Moreover
no spatial structure was found across Europe, nor any statistical relationship with elevation, latitude,
or longitude, the environmental predictors used to generate climate surfaces. A detectable spatial
autocorrelation was only detectable for the two most thoroughly sampled countries (Germany and
Sweden). Although further adjustments might be evaluated by means of geostatistical methods
(i.e., kriging), the huge environmental variability of the European environment deeply stressed the
WorldClim database. Overall, these results show the importance of an adequate spatial structure of
meteorological stations as fundamental to improve the reliability of climate surfaces and derived
products of the research (i.e., statistical models, future projections).

Keywords: spatial analysis; 1961–1990 normal period; spatial interpolation; geostatistics; ecological
mathematics

1. Introduction

Easy access to standardized climate data with global coverage is paramount for the advancement of
many ecological studies and to understand future ecosystem services provided by forest systems [1–3]
and productive lands in agriculture [4,5]. One of the main aims for researchers dealing with
environmental resources has become to forecast possible impacts of climate change on organisms and
to evaluate possible mitigation [6–9]. In the past few decades, many conservation strategies have been
suggested in order to maintain human well-being and ensure an adequate level of welfare [10] from
(relatively) simple management strategies [4,11], including “assisted migration” [12–14], a controversial
protocol that includes translocating more adapted or resilient genotypes for conservation or to improve
the resilience of ecosystems. Such efforts are often driven by statistical models [14–17] and management
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simulators [18,19], with both genetic variation and phenotypic plasticity included in the statistical
models as covariates [20–22]. However, despite modelling efforts, such studies always require
absolutely reliable climate data to be used as both baseline (e.g., 30-year average climate data) and
for future predictions. Furthermore, while the uncertainty around GCMs and future trajectories
is well known [23–25], information on current ecological limits of forest tree species has also been
questioned [26]. In this context, the interest of researchers in gridded climate datasets has grown strongly.

The interpolation method, the spatial resolution and the coverage are the three main features that
researchers use to select the most suitable datasets for their research [27–30]. The first release of the
WorldClim dataset [31] is probably the most famous gridded climate dataset, widely used for ecological
studies and freely available from (www.worldclim.org). Thanks to its high resolution (30 arc-second in
the WGS84 reference system and approximately 1 km at the equator), global coverage, and availability,
it has been used and cited more than 5200 times since publication [31]. The dataset is suitable for
basic and applied studies in ecology, including forestry and ecological modeling [32–34], as well
as to construct related datasets such as bio-geographical zones or environmental stratifications [35].
One of the main products of this database is “version 1”, representative of the 1961–1990 climate
normal period for the whole globe, including Antarctica. This version 1 dataset was generated by
interpolating weather station data with the ANUSPLIN software (version 4.3) using latitude, longitude,
and elevation as independent variables. The software implements a thin-plate smoothing spline
procedure, using every station as a data point. A second-order spline function was fitted by the
Authors using the above three variables, which produced the lowest overall cross-validation errors [31].
Considering the ANUSPLIN program creates a continuous surface projection, the LAPGRD program
was used to create a global grid of climate surfaces with 30 arc-seconds horizontal and vertical resolution
commonly referred to as 1 km2 resolution. Raster maps for monthly precipitation amount and mean,
maximum, and minimum air temperature were then provided. Raw data came from weather stations
retrieved from various databases including GHCN, WMO climatological normals, FAOCLIM 2.0,
CIAT, and regional databases and, where possible, restricted to the period 1950–2000. Quality control
measures were taken to remove duplicate records, giving precedence to the GHCN database. After the
quality control check and cleaning, the database consisted of precipitation records from 47,554 locations
and mean air temperature from 24,542 locations [31]. Then elevation bias in weather stations was
related to latitude and presence of mountain ranges. However, local records from many European
countries were not easily accessible and WorldClim climate surfaces for Europe were constructed using
1263 records for air temperature and 2116 for precipitation.

WorldClim version 1 has recently been acknowledged to be representative of the 1961–1990 climate
normal period. This time-slice has been widely used as the pre-industrial climate in many papers
about the potential impact of climate change on ecosystems [1,3,26,28,36,37] and other ecological fields.
Nevertheless, given the detailed description provided by the Authors in their paper, the question
remains whether the quality of the WorldClim climate surfaces as a proxy of the climate baseline is
adequate in complex environments such as, for instance, the European environment.

The present study aims to assess and quantify the reliability of WorldClim climate raster maps
for Europe. We compared WorldClim with observed average values for mean annual temperature
and total annual precipitation for the period 1961–1990. Data were retrieved for the whole of Europe
building an independent dataset with data from many meteorological services. Then statistical analysis
was run in order to evaluate the reliability of this dataset across the study area.

2. Materials and Methods

2.1. Construction and Description of the Database Used for Comparison

To investigate WorldClim’s reliability in predicting baseline climate conditions we compiled
an independent climate dataset by collecting data from weather services across Europe which were
already freely available or delivered upon request (Table 1). All data were specifically requested or

www.worldclim.org
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downloaded as monthly averaged values over the 30-year normal period (1961–1990). Local monthly
air temperature averages (MAT) and precipitation sums (MAP) were aggregated to calculate annual
values. In total we retrieved data from 6659 meteostations across Europe, with 1759 records for
temperature and 6526 records for precipitation (Figure 1). Most of the records were retrieved for
Germany and Sweden with 4825 and 1391 meteostations, respectively, while for some countries, records
were much fewer (e.g., Spain, France, Italy) or totally absent (e.g., Serbia, Poland, Romania).

Nevertheless, even if not equally distributed geographically, neither balanced concerning the
ecological regions of Europe, we considered the distribution of the collected data as adequate for the
purpose. Despite the lack of uniform coverage of both geography and ecological regions, we considered
the data collected to be adequate for subsequent analysis.

Moreover we tested the random distribution of MAT and MAP with the randtest package of
the R statistical language [38]. The database was carefully checked and cleaned to remove entries
with missing data and to geo-reference each record. Very few points (112), corresponding to less than
1% of all the records, lay outside country borders or land masses due to coordinate uncertainties,
which reflects the high-quality of the new database. Such records were removed completely from the
database in order to avoid any influences on the calculations.
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Figure 1. Spatial distribution of the compiled dataset for: (a) temperature records and (b) precipitation 
records. Each dot represents a meteorological station. The darker the area, the more data were 
retrieved. 

2.2. Comparisons and Statistical Procedures 

The BIO1 (mean annual air temperature) and BIO12 (mean total annual precipitation) variables 
of WorldClim were used as proxies to evaluate the spatial accuracy of raster surfaces. The strata were 
first downloaded from the official WorldClim web portal. Then, using an overlay function, the 
corresponding values of the two climate variables were extracted for each meteorological station in 
our database. A linear regression analysis was then applied to analyze the relationships between the 
predicted WorldClim value and the observed value in our dataset. The adjusted R2 was used to 
measure the amount of environmental variability expressed by WorldClim. Then the difference 
between the WorldClim value and the observed value (30-years normal value from our database) 
was calculated for each location of our database. To avoid confusion and mathematical balancing 
between positive and negative values, which might seriously affect the analysis, both the raw 
discrepancy (BIAS) and its absolute value (ABIAS) were calculated. To study possible trends across 
the data, we looked at the relationships between BIAS and the predictors used by the authors of 
WorldClim during the spatial interpolation process (i.e., latitude, longitude, elevation). Then, we 
retrieved the complete database of meteorological stations used by the WorldClim authors from 

Figure 1. Spatial distribution of the compiled dataset for: (a) temperature records and (b) precipitation
records. Each dot represents a meteorological station. The darker the area, the more data were retrieved.
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Table 1. Structure of the compiled database.

Country Total Meteostations MAT Records MAP Records Data Source

Albania 3 3 3

[39]

Austria 23 21 23

Belgium 9 9 9

Bulgaria 18 18 18

Croatia 1 1 1

Czech 20 19 20

Denmark 4 4 4

Finland 18 17 18

France 76 75 76

Germany 4825 719 4733 [40]

Greece 26 25 26 [41]

Hungary 9 9 9

[39]

Ireland 6 6 6

Italy 30 30 30

North Macedonia 1 1 1

Montenegro 1 1 1

Netherlands 5 5 5

Norway 18 18 18

Portugal 18 18 18

Slovakia 14 14 14

Slovenia 42 42 42 [42]

Spain 51 51 51 [39]

Sweden 1391 604 1351 [43]

Switzerland 12 11 12 [39]
United Kingdom 38 38 37

TOTAL 6659 1759 6526

MEAN 266 70 261

ST. DEV 988.64 179.54 969.08

2.2. Comparisons and Statistical Procedures

The BIO1 (mean annual air temperature) and BIO12 (mean total annual precipitation) variables
of WorldClim were used as proxies to evaluate the spatial accuracy of raster surfaces. The strata
were first downloaded from the official WorldClim web portal. Then, using an overlay function,
the corresponding values of the two climate variables were extracted for each meteorological station
in our database. A linear regression analysis was then applied to analyze the relationships between
the predicted WorldClim value and the observed value in our dataset. The adjusted R2 was used
to measure the amount of environmental variability expressed by WorldClim. Then the difference
between the WorldClim value and the observed value (30-years normal value from our database)
was calculated for each location of our database. To avoid confusion and mathematical balancing
between positive and negative values, which might seriously affect the analysis, both the raw
discrepancy (BIAS) and its absolute value (ABIAS) were calculated. To study possible trends across
the data, we looked at the relationships between BIAS and the predictors used by the authors
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of WorldClim during the spatial interpolation process (i.e., latitude, longitude, elevation). Then,
we retrieved the complete database of meteorological stations used by the WorldClim authors
from www.arcgis.com/home/item.html?id=7644c6e78c1644b4bde2edfc44787520) and clipped to the
European environment (Table 2).

We calculated the average distance of each meteorological station in our database from the
geographically closest five stations in the WorldClim dataset. We expected a smaller difference where
WorldClim stations were denser. Finally, the spatial autocorrelation of BIAS was evaluated using
geostatistical analysis implemented in R using the gstat package [44] and modelling the semivariance
of BIAS as a function of the spatial distance between records.

The whole structure of the data collection and analysis procedure is graphically reported on
Figure 2.

Table 2. Number of meteorological stations per country used by Hijmans et al. [31] in Europe.

Country Temperature Precipitation Country Temperature Precipitation

Albania 0 7 Latvia 3 9

Andorra 0 0 Liechtenstein 0 0

Armenia 2 2 Lithuania 16 19

Austria 3 25 Luxembourg 1 6

Belarus 8 22 North Macedonia 7 7

Belgium 3 18 Malta 1 3

Bosnia and Herz. 7 10 Moldova 2 3

Bulgaria 4 15 Monaco 0 0

Croatia 13 13 Montenegro 5 2

Czech Republic 7 16 Netherlands 7 10

Denmark 19 41 Norway 8 54

Estonia 3 12 Poland 18 63

Faeroe Islands 1 1 Portugal 16 18

Finland 19 32 Romania 11 28

France 82 107 Russia 44 124

Georgia 1 20 San Marino 0 0

Germany 89 116 Serbia 23 12

Gibraltar 0 1 Slovakia 3 10

Greece 26 48 Slovenia 6 2

Guernsey 0 0 Spain 60 117

Hungary 8 20 Sweden 16 60

Ireland 16 51 Switzerland 8 20

Isle of Man 0 1 Turkey 513 548

Italy 133 151 Ukraine 22 81

Jersey 0 3 UK 29 188

Summary statistics Temperature records Precipitation records

TOTAL 1263 2116

MEAN 25 42

SD 74.86 84.89

www.arcgis.com/home/item.html?id=7644c6e78c1644b4bde2edfc44787520


Sustainability 2019, 11, 3043 6 of 14

Page 6 of 14 

SD 74.86 84.89 

 

 
Figure 2. Flowchart of the data collection and statistical analysis we made to test the reliability of 
WorlClim version 1 data. 

3. Results 

The compiled database included 25 European countries, albeit with an unbalanced distribution. 
Overall, an average of 266 records per country (both MAT and MAP) was included in the database. 
However, the difference among countries was huge, with a standard deviation of ± 988.64 records 
per country. This large standard deviation was caused by the disproportionate number of records for 
Sweden and Germany. Temperature (MAT) values ranged from −5.8 °C to 21.2 °C, while precipitation 
(MAP) was between 104.8 mm and 3318 mm. The mean difference between the interpolated 
WorldClim values and the observed values was 0.22 °C for temperature and −48.7mm for 
precipitation (Table 3), with a high coefficient of variation (6.82 for MAT and 3.40 for MAP). BIAS 
ranged between −10.6 °C and 13.2 °C for MAT and between −1578.1 mm and 950.8 mm for MAP. 
Mean ABIAS was 0.76 for MAT and 98.56 for MAP. 

Results of the regression analysis for MAT and MAP are shown in Figure 3. Residuals of linear 
models were randomly distributed for both of the analyzed variables and were highly significant (p 
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in the remaining zones. 
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Figure 2. Flowchart of the data collection and statistical analysis we made to test the reliability of
WorlClim version 1 data.

3. Results

The compiled database included 25 European countries, albeit with an unbalanced distribution.
Overall, an average of 266 records per country (both MAT and MAP) was included in the database.
However, the difference among countries was huge, with a standard deviation of ± 988.64 records
per country. This large standard deviation was caused by the disproportionate number of records for
Sweden and Germany. Temperature (MAT) values ranged from −5.8 ◦C to 21.2 ◦C, while precipitation
(MAP) was between 104.8 mm and 3318 mm. The mean difference between the interpolated WorldClim
values and the observed values was 0.22 ◦C for temperature and −48.7mm for precipitation (Table 3),
with a high coefficient of variation (6.82 for MAT and 3.40 for MAP). BIAS ranged between −10.6 ◦C
and 13.2 ◦C for MAT and between −1578.1 mm and 950.8 mm for MAP. Mean ABIAS was 0.76 for MAT
and 98.56 for MAP.

Results of the regression analysis for MAT and MAP are shown in Figure 3. Residuals of linear
models were randomly distributed for both of the analyzed variables and were highly significant
(p < 2.2 × 10–16). Concerning MAT, the good correlation and adequate proportion of explained variance
point to a low discrepancy between the two datasets; WorldClim explained 86% of the variance
(adjusted R2 = 0.856) with a residual random standard error of 1.50◦C, intercept of −0.202 ◦C and slope
almost equal to 1 (0.996). The regression line and the expected regression line for a perfect match
between the two datasets almost overlapped. For MAP, 64% (adjusted R2 = 0.642) of the variance of
the precipitation dataset was explained by a linear regression model, with a residual standard error of
159.6 mm. The match between the two regression lines was considerably low (Figure 3, right) with the
slope of the regression coefficient higher than 1. WorldClim was characterized by higher values than
observed under 500 mm precipitation and lower values above this threshold. As overall, a general
overestimation of MAP values was detected in dry areas (<500 mm) with an underestimation in the
remaining zones.

Table 3. Difference between local data and WorldClim’s surfaces.

Variable AVR SD CV MAX MIN ABSAVR

MAT [◦C] 0.22 1.50 6.82 −10.62 13.21 0.76

MAP [mm] −48.70 165.35 3.40 −1578.10 950.80 98.56

AVR = average value; SD = standard deviation; CV = coefficient of variation; MAX = maximum difference;
MIN = minimum difference; ABSAVR = average of absolute values.
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Figure 3. Results of the regression analysis for: (a) temperature represented by Bio1 variable of
WorldClim database on x-axis and (b) precipitation represented by Bio12 variable of WorldClim
database versus observed values on the y-axis. Regression coefficients at top-left of each figure. The 1:1
line of a perfect match shown dashed.

No relationship was found between the modelling error (ER) detected for MAT and MAP and the
environmental predictors used for spatial interpolation across Europe. Modelled linear regressions
explained less than 5% of variation, with one exception (Table 4). This lack of correlation can also be
observed in Figure 4 where ABIAS is plotted against the average spatial distance of the “observed”
meteorological station from the five WorldClim stations.

Table 4. Linear regression parameters when modelling error (ER) and the environmental predictors.
Each predictor was tested separately (ADF5NM=Average distance from the five nearest meteorological
stations).

Variable Predictor Intercept Slope Explained Variance p-Value

MAT

Latitude 0.29 0.000000 0.56% 0.00092
Longitude −0.34 0.000000 1.20% 0.00000
Elevation 0.54 −0.001025 4.95% 0.00000

ADF5NM 0.09 0.000002 0.18% 0.04138

MAP

Latitude −45.16 0.000014 0.05% 0.04492
Longitude −202.28 0.000061 4.33% 0.00000
Elevation 8.15 −0.206690 10.26% 0.00000

ADF5NM −107.02 0.001059 1.61% 0.00000

The spatial distribution of BIAS in the two most represented countries is shown in Figure 5 for the
two investigated variables. Spatial aggregation is especially evident in Sweden, where most of the
“large dots” are clustered in the south of the country. For Sweden and Germany, variograms of the
MAP variable were fitted by means of an exponential variogram model and revealed a clear spatial
autocorrelation, especially for Germany (Figure 6).
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Figure 6. (Semi)variograms for precipitation calculated by the gstat package in R for Sweden (a) and
Germany (b). There is a rather clear spatial structure that might be used as input for further geostatistical
procedures (i.e., kriging) in order to adjust WorldClim raster maps.

4. Discussion

The quality of the reference baseline climate has a fundamental role in predictions of the
potential impact of climate change on organisms and natural ecosystems. The stability and reliability
of the estimated projections calculated from species distribution models [14,45,46], management
simulators [18,47], or the estimation of the geographical shift of climate zones [48] rely on the
differences between current and future climate. While the representativeness of WorldClim is adequate
concerning air temperatures, large differences were found in the precipitation surfaces. Our results
demonstrate a systematic difference of 0.76 ◦C between observed and interpolated values. According
to the most recent IPCC report [49], the observed increase in temperature has been around 0.2 ◦C
per decade. As a consequence such difference might affect future projections of WorldClim dataset
adding uncertainties on the further modelling efforts [22,50]. In this case a likelihood analysis should
be more adequate than deterministic ones and in order to include a sensitivity analysis and evaluate
the probability of success of empirical models based on phenotypic plasticity and applied future
projections [51]. Precipitation, by contrast, proved to be the main weakness of WorldClim surfaces
in Europe. Despite its relatively small spatial extent, the European environment is characterized by
many different forest systems that reflect broad climate variability, spanning from the Mediterranean
to the Arctic.

The 1961–1990 baseline period is a fundamental dataset for ecological modelling because
records from earlier periods were often affected by different instrumentation or changes in
observational practice [30,37]. Therefore, numerous studies from climatology to biology, ecology and
forestry [36,48,52] have used this baseline period, and WorldClim has been used extensively. We can
expect a further warming trend in the next two decades at a rate of about 0.1 ◦C per decade, due mainly
to the slow response of the oceans. As a consequence, even though the linear regression analysis showed
a good match between observed and interpolated data (adjusted R2 = 0.856), the difference is higher
than the expected rate of change, which could heavily affect model predictions, adding uncertainties
on future projections and smoothing results (i.e., land suitability projections) in an uncontrolled
way [14,53–55]. This issue is then amplified when analysing MAP, where higher differences were
found in combination with a poor regression analysis result. As a consequence, important biases
may be introduced when using WorldClim’s precipitation dataset. This is particularly true when
WorldClim is used as the reference line and climate projections are locally downscaled and added to
the WorldClim surfaces, as in the “Delta method” [56]. As a result, the calculation of climate indices
might be difficult. For example, many studies used reference evapotranspiration [57–59] as the main
predictor in statistical models [3,60,61]. In this case, the mathematical combination of differences
in MAT and MAP might introduce uncontrolled biases through the study area. These biases could
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represent a critical issue, especially in the Mediterranean and anywhere else that moisture deficit is
identified as the most relevant climate driver.

The main advantage of our compiled dataset might be its representativeness at small scale.
The authors of WorldClim themselves warn that the high resolution of the climate surfaces does not
imply high data quality in all places as this depends on local climate variability, quality and density of
observations and the degree of the fitted spline [31]. In a similar study, when compared with PRISM and
Daymet datasets for the continental United States, many concerns were expressed, especially regarding
the quality of WorldClim’s precipitation grids in mountainous areas [34,35,62,63]. For this reason,
several studies at regional or national scale at higher resolution (e.g., 100–250 m) preferred the use of
meteorological variables obtained at nearby observational sites [28,64–66]. Regardless of the distances
of the investigation sites from the locations where meteorological datasets were gathered, orography
and land use, and the surrounding area and variable characteristics, must be considered. At small scale
their variability may be a strong driver of frequently overlooked heterogeneities, leading to significant
discrepancies in transferred datasets used for otherwise appropriate processing methods [67,68].

The lack of any relationship between BIAS and the main physiographic parameters (i.e., latitude,
longitude, and elevation) does not allow for any statistical adjustment (e.g., downscaling, locally
calibrated lapse rate, etc.) for either temperature or precipitation. However precipitation regimes are
very difficult for meteorological stations to record properly and this issue has often been found in other
databases [59,69]. Many more data are required, especially in the case of forest monitoring, as a result
of the lack of temporal autocorrelation during the timeframe [70].

The need for a freely available and representative global climate dataset is large and growing,
as evidenced by WorldClim’s citation statistics. These goals can be achieved with local up-to-date
monitoring networks, which could play a key role in evaluating global grids at small scale [71] as well as
providing data for the construction of additional global climate datasets. Harmonization efforts, as well
as increased representativeness of the established networks, are paramount for construction of more
accurate climate surfaces. Enhanced data recovery with regular spatial coverage may overcome the lack
of dense environmental or climatological sampling [28,70,72,73]. Derived surfaces are fundamental in
order to plan future management strategies. For instance, and concerning forestry, additional strata,
such as homogeneous climate zones, are needed as a fundamental tool to plan the transfer of genetic
resources and reproductive materials across specific geographic areas [74,75]. WorldClim grids were
interpolated with spline functions, a fast method known to yield results similar to polynomial functions
but without mathematical instability. Such methods do not consider the spatial autocorrelation between
observations, only partially achieved by more complex models where latitude and longitude are
included as predictive variables [28,76]. Therefore, the exhibited spatial aggregation of the BIAS in the
case of denser observations of our dataset (i.e., Sweden and Germany) may be relevant for research
activities and improvements of the climate surfaces.

5. Conclusions

A new updated beta version of WorldClim has recently been released for the 1971–2000 time
period. This “Version 2” (http://worldclim.org/version2), along with the need for carefully evaluating
the quality of records used for modelling and keeping climate databases up-to-date, is an essential
requirement for the adequate development of tools and informative systems. The lack of reliability on
MAP values can be seen as the main shortcoming of the WorldClim database in Europe and elsewhere.
However, precipitation is much more difficult to interpolate, given its low spatial and temporal
autocorrelation as well as the lack of statistical relationships with some of the main physiographic
parameters, such as elevation. Further research should focus on this parameter, seeking more significant
determinants of MAP, given its importance in climate change scenarios where drought stresses are
predicted to be the most relevant issue.
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