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Abstract: Climate-growth relationships are usually analysed using monthly climate data. The 7 

dendroTools R package also provides methodological approaches that enable climate-growth analysis 8 

for daily climate data. Such analysis reveals more complete climate signal patterns. In this article, new 9 

functions of the dendroTools R package are presented. Partial correlation coefficients are now 10 

implemented and can be used to calculate the strength of a linear relationship between two variables, 11 

while controlling for a third variable. Bootstrapped correlations can then be used to provide insights 12 

into the confidence intervals of statistical estimates. The calculation of partial and bootstrapped 13 

correlations is available for daily and monthly data. Finally, data transformation, S3 generic plotting 14 

and summary functions are also presented here.  15 
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 17 

1. Introduction 18 

The R package dendroTools provides functions that enable dendroclimatological analysis 19 

using climate data on a daily scale. While alternative software such as CLIMTREG (Beck et al., 20 

2013) and DendroCorr (Hulist et al., 2016) is available, the advantages of dendroTools are its 21 

implementation in the very popular R environment (R Core Team, 2019) and open source R 22 

code, which can also be modified to meet user specific needs. Using climate data on daily 23 

scales provides more flexible analysis of climate-growth relationships, such as climate 24 

reconstructions of periods not bounded by months and changes in climate signal patterns 25 

over time. Jevšenak (2019) compared climate-proxy correlations on a European-wide tree-26 

ring network and calculated the difference between the daily and monthly approach. Day-27 

wise aggregated correlations were on average higher by 0.071. In comparison to temperature 28 

data, the benefit of using daily data is greater for precipitation data. 29 
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The functionality of the daily analysis is based on a running window that simultaneously 30 

aggregates daily data and calculates correlations between proxy and aggregated daily data. 31 

The primary function of dendroTools is daily_response(), the basic functionality of which has 32 

already been presented by Jevšenak and Levanič (2018). Recently, new features were added 33 

to the package that extend the basic functionality and offer a variety of methods that could 34 

be useful for researchers from the dendroclimatological community and beyond.   35 

The most important novelty are bootstrapped correlations, which enable the calculation of 36 

confidence intervals of correlation coefficients or (adjusted) explained variance. Partial 37 

correlations are commonly applied in dendroclimatology due to correlations between 38 

temperature and precipitation data (e.g. Marquardt et al., 2019; Zhang et al., 2014). A new 39 

function is available to effectively organize the required daily data format. Developed generic 40 

S3 plotting and summary functions (Chambers, 2014) provide effective methods for the 41 

interpretation of the calculated correlations. Finally, all functions that were primarily 42 

developed for daily data were also modified and now enable analyses using monthly data as 43 

well. 44 

The purpose of this article is therefore to demonstrate the new features and functions in 45 

dendroTools, namely 1) data transformation, 2) bootstrapping, 3) partial correlation 46 

coefficients and 4) functions for analysis using monthly data. All examples presented below 47 

are coded in the R script article_script.R, which is given as supplementary material in 48 

executable format. 49 

 50 

2. Installation and implementation  51 

In this article, I refer to dendroTools v1.0.7, which is available under GNU General Public 52 

License, Version 3. The dendroTools R package is available from CRAN repository and can be 53 

installed with the standard command >install.packages(“dendroTools”). Potential 54 

users are also invited to explore the current version under development, which is available 55 

from GitHub and can be installed with the command 56 

>install_github("jernejjevsenak/dendroTools"). To run the newest dendroTools, R 57 

version 3.4 or greater is needed. The current dendroTools relies on 18 other R packages. 58 
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Plotting is based on ggplot2 (Wickham, 2009), while data transformation is based on reshape2 59 

(Wickham, 2007) and lubridate (Grolemund and Wickham, 2011). 60 

 61 

3. Example data 62 

The functionality of the new features in dendroTools is demonstrated using the freely 63 

available swit272 dataset (Bigler and Clalüna, 2012), which was downloaded from the 64 

International Tree-Ring Database (Zhao et al., 2019) and included in the dendroTools R 65 

package to make the examples presented here executable. The swit272 dataset is a 66 

standardized tree-ring width chronology of European larch (Larix decidua) from a high 67 

elevation site (2100 m) in southern Switzerland. The daily climate datasets used here are 68 

gridded E-OBS mean temperature and sums of precipitation (Cornes et al., 2018) on a 0.1 69 

regular grid. These data have been available since 1950 and are also included in dendroTools. 70 

To load dendroTools and the data used for the examples presented here, type: 71 

> library("dendroTools") 72 

> data(swit272) 73 

> data(swit272_daily_temperatures) 74 

> data(swit272_daily_precipitation) 75 

 76 

4. Transformation and quick preview daily data 77 

Data preparation is an important step before analysing the relationships between daily data 78 

and a tree-ring proxy. The required format for daily data is a data frame with 366 columns 79 

and any number of rows, each representing one year, which is indicated as a row name. The 80 

common format of daily data provided by many online sources is a table with two columns, 81 

where the first column represents the date and the second is the value of the climate variable. 82 

To quickly transform such a format into a data frame with dimensions of 366 x n, dendroTools 83 

now offers the function data_transform(), whose functionality is based on functions from the 84 

lubridate R package (Grolemund and Wickham, 2011). The date can be in any of the listed 85 

formats in Table 1, but it must be correctly specified with the argument date_format. For 86 

example, if the date is in the format "1988-01-30" ("year-month-day"), the argument 87 
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data_format must be "ymd". Daily temperature and precipitation data for swit272 88 

chronologies are transformed with the following code: 89 

 90 

> swit272_dt <- data_transform(swit272_daily_temperatures,  91 
    date_format = "ymd") 92 

> swit272_dp <- data_transform(swit272_daily_precipitation,  93 
    date_format = "ymd") 94 

 95 

Before the analysis of statistical relationships between daily data and a proxy record, it is 96 

recommended to quickly preview the daily data to check whether its values are reasonable and the 97 

number of missing values is not too large. To do so, use the function glimpse_daily_data(), which will 98 

plot the daily data and indicate all missing values. For the example data used in this article, missing 99 

values are indicated only for the end of the year 2019 (Figure 1). The temperature pattern shows 100 

higher summer and lower winter temperatures, while precipitation shows no obvious pattern, with 101 

many zeros and randomly distributed precipitation events. 102 

 103 

> glimpse_precipitation <- glimpse_daily_data(swit272_dp)  104 

> glimpse_temperatures <- glimpse_daily_data(swit272_dt)  105 

 106 

Table 1: Examples of date formats with example and the appropriate date_format argument 107 

selection in data_transform() 108 

Date format Example Argument date_format 

year-month-day "1988-01-30" "ymd" 

year-day-month "1988-30-01" "ydm" 

month-year-day "01-1988-30" "myd" 

month-day-year "01-30-1988" "mdy" 

day-year-month "01-1988-30" "dym" 

day-month-year "01-30-1988" "dmy" 

 109 

 110 
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 111 

Figure 1: A quick preview of A) temperature and B) precipitation daily data obtained from 112 

glimpse_daily_data(). 113 

 114 

5. Partial correlations from daily data 115 

A partial correlation coefficient describes the strength of the linear relationship between two 116 

variables, holding constant a number of other variables (Freund et al., 2010). It is often used in 117 

dendroclimatological investigations to analyse the effect of temperature on a tree-ring parameter 118 

while at the same time controlling for the precipitation effect, or vice versa. This methodology was 119 

first implemented as the MATLAB program seascorr (Meko et al., 2011) and is now also available in 120 

the treeclim R package (Zang and Biondi, 2015) as the function seascorr(). Both implementations are 121 

available only for monthly climate observations.  122 

Here, I present the same methodology that can be used on climate data on a daily scale and is 123 

implemented in the function daily_response_seascorr(). To analyse partial correlations, three data 124 

frames are needed: 1) a tree-ring proxy, 2) primary climate data and 3) secondary climate data for 125 

control. The tree-ring proxy must be organized as a data frame with one column representing proxy 126 

values, while years are indicated as row names. Primary climate data is assigned to the 127 

env_data_primary argument, while secondary climate data is assigned to env_data_control. The 128 

organization of daily climate data must be the same as described in the previous section. The range of 129 

analysis is controlled with lower_limit and upper_limit arguments. To consider all window widths 130 

between 21 and 270, set the lower_limit to 21 and upper_limit to 270. Daily data will be aggregated 131 



 Self-archived preprint 

 6 

using all window widths between the lower and upper limits. Importantly, both limits are included in 132 

the considered window widths. The default measure of association is the Pearson correlation 133 

coefficient, but Kendall and Spearman correlation coefficients can also be used. This functionality is 134 

controlled with the pcor_method argument. I highly recommend using the feature of automatically 135 

sub setting data to only matching years. For example, the swit272 chronology spans from 1739 to 136 

2011, while daily data are available only for the period from 1950 to 2019. If the argument 137 

row_names_subset is set to TRUE, the daily_response_seascorr() function will automatically subset 138 

the data to keep only matching years and provide results for the analysed period only, i.e. 1950 – 139 

2011. The function daily_response_seascorr() is computationally expensive and takes several minutes 140 

to complete all calculations. To interpret the results, in addition to plotting methods, a generic S3 141 

summary() function is now available. The result of summary() output is given in Table 2 and provides 142 

information on the attributes used in the analysis and, most importantly, calculated maximal partial 143 

correlation coefficient and described time window associated with the maximal correlation 144 

coefficient. 145 

 146 

> pcor_results <- daily_response_seascorr(response = swit272, 147 

                           env_data_primary = swit272_dt, 148 

                           env_data_control = swit272_dp, 149 

                           row_names_subset = TRUE,  150 

                           lower_limit = 21, upper_limit = 270, 151 

                           remove_insignificant = TRUE,  152 

                           aggregate_function_env_data_primary = "mean", 153 

                           aggregate_function_env_data_control = "sum", 154 

                           alpha = 0.05, pcor_method = "spearman") 155 

> summary(pcor_results) 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 
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Table 2: Output of the summary() function for the example of partial correlation analysis. The 164 

optimal climate signal is calculated for the period Jul 18 – Aug 8, which is from day 199 and the 22 165 

following days. In this example, bootstrap was not used, and therefore the confidence interval is 166 

not given.  167 

Variable Value 

approach daily 

method Partial Correlation Coefficient (spearman) 

metric #N/A 

analysed_years 1950 – 2011 

maximal_calculated_metric 0.456 

lower_ci #N/A 

upper_ci #N/A 

reference_window Starting Day of Optimal Window Width: Day 199 

analysed_previous_year FALSE 

optimal_time_window Jul 18 - Aug 08 

optimal_time_window_length 22 

 168 

6. Bootstrapped correlation coefficients 169 

The bootstrapping method is a computer-based method for assigning measures of accuracy to 170 

statistical estimates (Efron and Tibshirani, 1993). In the dendroTools R package, bootstrapping is 171 

available to estimate the confidence intervals of selected statistical metrics, i.e. correlation coefficient, 172 

explained variance or adjusted explained variance. To use bootstrap, set the argument boot as TRUE. 173 

The number of bootstrap samples is defined with the boot_n argument, while the confidence levels 174 

are specified with the boot_conf_int argument. In the following example, bootstrapped correlation 175 

coefficients are calculated with the daily_response() function for daily temperature records and 176 

swit272 chronology, while the bootstrap procedure is also available in the daily_response_seascor() 177 

and functions for the analysis based on monthly data. It must be noted that bootstrapping procedures 178 

are extremely time consuming. The example presented here took about 1.5 hours to complete the 179 

calculation of all bootstrapped correlations. To reduce the time needed for calculations, the amount 180 

of considered window widths should be reduced or, alternatively, the number of bootstrapped 181 

resamples lowered. However, such reductions might result in incomplete analysis. The optimal way 182 

for assessing the results is by using the summary() function (Table 3), while the upper and lower 183 

confidence intervals can be obtained manually by exploring the output list from the daily_response() 184 

function. To do so, type boot_results$boot_lower and boot_results$boot_upper. 185 

 186 

 187 
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> boot_results <- daily_response(response = swit272, 188 

                               env_data = swit272_dt, 189 

                               row_names_subset = TRUE, 190 

                               lower_limit = 21, upper_limit = 270, 191 

                               method = "cor",  192 

                               cor_method = "pearson", 193 

                               remove_insignificant = TRUE, 194 

                               aggregate_function = "mean", 195 

                               boot = TRUE, boot_n = 1000, 196 

                               boot_conf_int = 0.95) 197 

> summary(boot_results) 198 

 199 

Table 3: Output of the summary() function for the example of bootstrapped correlation coefficients. 200 

The highest calculated correlation coefficient was 0.413 with lower and upper limits of 0.232 and 201 

0.567.   202 

Variable Value 

approach daily 

method Correlation Coefficient (pearson) 

metric #N/A 

analysed_years 1950 - 2011 

maximal_calculated_metric 0.413 

lower_ci 0.232 

upper_ci 0.567 

reference_window Starting Day of Optimal Window Width: Day 170 

analysed_previous_year FALSE 

optimal_time_window Jun 19 - Aug 15 

optimal_time_window_length 58 

 203 

7. Analysis of climate-growth relationships using monthly data 204 

Both the daily_response() and daily_response_seascor() functions also have variations that were 205 

developed to analyse climate-growth relationships using data on a monthly scale: monthly_response() 206 

and monthly_response_seascor(). The arguments in both function variations are very similar. Monthly 207 

data should be organized as a data frame with twelve columns (months), where each row represents 208 

one year. Years should be indicated as row names. Monthly data can be obtained from various online 209 

sources, but it is also possible to transform daily data into monthly with the data_transform() function 210 

(see below). In addition to the format argument, which must be set as "monthly", the aggregation 211 

function should be specified. This could be "mean", "sum" or "auto" (default). The last choice is based 212 

on the share of zeros in the data and, if the share of zeros is greater than 10 %, the function algorithm 213 
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assumes precipitation data and aggregates values using the sum function, otherwise the algorithm 214 

assumes temperature data and aggregates values using the mean function. An example of 215 

monthly_response() is given below, where pearson correlations are analysed for monthly mean 216 

temperatures and swit272 chronology. To visualise results, a generic S3 plot() method is available 217 

(Figure 2). 218 

 219 

> swit272_mt <- data_transform(swit272_daily_temperatures,  220 

                             format = "monthly",  221 

                             monthly_aggregate_function = "auto") 222 

> monthly_results <- monthly_response(response = swit272, 223 

                               env_data = swit272_mt, 224 

                               row_names_subset = TRUE, 225 

                               lower_limit = 1, upper_limit = 12, 226 

                               remove_insignificant = FALSE, 227 

                               alpha = 0.5, method = "cor", 228 

                               aggregate_function = "mean", 229 

                               cor_method = "pearson") 230 

> plot(monthly_results, type = 1) 231 

> plot(monthly_results, type = 2) 232 

 233 
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 234 

Figure 2: A) Heatmap of the temporal pattern of monthly climate-growth relationships and B) 235 

highlighted optimal window with the highest calculated correlation coefficient. Both figures show 236 

significant positive correlations with summer and significant negative correlations with September 237 

temperatures.  238 

 239 

 240 

 241 
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8. Conclusions 242 

Due to the advantages related to the daily data approach, many authors have decided to calculate 243 

climate-growth correlations using daily data (e.g. Kaczka et al., 2018; Nechita et al., 2019). Arguably, 244 

the most evident disadvantage of the daily_response() and daily_response_seascorr() functions is the 245 

so-called problem of multiple testing, which increases type I error. However, it must be noted that 246 

while the multiple testing problem relates to situations where numerous independent statistical tests 247 

are applied simultaneously, in the dendroTools algorithms multiple tests are highly dependent due to 248 

the running window approach. In addition, p correction methods can result in increased risk of type II 249 

errors (Perneger, 1998). Therefore, no p adjustment method is implemented in the dendroTools 250 

functions, but users should be aware of this issue and rely mostly on highly significant correlations 251 

that are stable in time and biologically interpretable. 252 

 253 
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