
Robotic Learning for Increased Productivity: Autonomously Improving
Speed of Robotic Visual Quality Inspection

Andrej Gams1∗, Simon Reberšek1, Bojan Nemec1, Jure Škrabar2, Rok Krhlikar3, Jure Skvarč2 and Aleš Ude1

Abstract— Robotic learning has shown many impressive
achievements in laboratory environments, but it is not yet
very prominent in the industry, where hardware, engineer-
ing solutions and careful structuring of the environment are
typically needed to successfully accomplish the desired task.
In this paper we show one example of learning applied to
industrially relevant problems, where a learning algorithm is
applied for the optimization of the velocity of robotic motion
for quality inspection. Through learning of optimal velocity of
motion, which is done only at the start of the production, we
show that we can achieve faster cycle times and thus greater
productivity. The described approach is general and can be
used with different types of learning and feedback signals.

I. INTRODUCTION

In modern factories, and even more so in the factories of
the future, many operations will be done with autonomous
robots, which will use visual feedback [1]. Visual feedback
can be used for moving around the working space and
avoiding obstacles, to identify and locate parts, etc. Different
vision techniques, such as structured light, time of flight
and laser triangulation, line scan cameras, stereo vision, and
even monocular vision with a standard area scan camera and
an RGB camera are widely used for inspection and quality
control processes in the industry [2], [3]. Different modes of
quality inspection exist. For example, a robot can discretely
check an object from a few viewpoints and compare the
acquired images to predefined templates [4]. Another option
is to continuously acquire images with an in-hand camera
while the robot moves around the object to be inspected and
look for anomalies. Likewise, the camera might be stationary
and the object is moved around it. Many advanced methods
for quality inspection have been proposed, including deep
learning methods [5].

For effective visual quality control or any other vision-
based operation, the machine vision hardware needs to be
properly set-up and tuned. In large-scale automated pro-
duction, it is typically set-up once, and then it remains
in the same configuration throughout its life cycle. As a
consequence, machine vision hardware is often designed in a
way that some adjustments can only be carried out manually.
Consequently, the vast majority of machine vision lenses

1Humanoid and Cognitive Robotics Lab, Department of Automatics,
Biocybernetics and Robotics, Jožef Stefan Institute, Jamova cesta 39, 1000
Ljubljana, Slovenia, name.surname@ijs.si

2Kolektor Orodjarna d.o.o. - BU Vision, Vojkova 10, 5280 Idrija, SI.
3Kolektor Group d.o.o., Vojkova 10, 5280 Idrija, Slovenia.
∗Published at IEEE International Conference on Automation Science and

Engineering (CASE), Vancouver, BC, Canada, pp. 1275-1281.

Fig. 1. Effect of motion speed of the sharpness of the image intended for
quality inspection, with dummy text attached to a curved surface standing
in for the object. a) Extremely fast motion; b) Extremely slow motion; c)
Motion with autonomously learned velocity. Blurring is observable in image
a).

have a fixed focal length and manual adjustment of the iris
and focus [6]. However, even if the hardware is set up and
optimized for production only once, this can be a tedious
and demanding task for the robot programmer/operator.
For example, continuous visual inspection, such as visual
inspection of weld seams [7], requires the robot to follow
the seam with the camera attached to its tip. The image has
to be focused in all the positions and with all the velocities.
Thus, for continuous visual quality control, the operator has
to define not only the correct robot path, but also the correct
speed. Figure 1 shows the effect of foo fast motion on the
image sharpness, when the robot used an in-hand area scan
camera. Too fast motion results in a blurry image.

The required cycle times usually set high demands on
how fast the quality control has to be, and how it can be
performed [8]. While the path can be properly configured
by exporting the object CAD data and appropriate robot-to-
object calibration, the speed of robot motion is typically left
to the operator, who spends a considerable amount of time
hand-tuning it. In this paper we show how such hand-tuning
can be automated by employing learning algorithms.

A. Problem Specification

In this paper we investigate autonomous learning of
motion speed and apply it to visual quality inspection of
products using a camera attached to the tip of the robot1.
The system should

• follow a predefined path,
• allow easy optimization of motion velocity,
• employ learning algorithms to autonomously set the

velocity of motion, such that
• the velocity of motion does not introduce blurring, i. e.,

a reduced focus measure in the visual feedback, and

1The system presented in this paper is a part of an industrial solution
implemented for a company. Due to the demands of the company, the actual
product, the process and the company name can’t be disclosed.



• be able to use different visual features.
The implementation is subject to the following assump-

tions. i) An accurate robot path (trajectory) with both re-
quired positions and orientations can be exported from a
CAD system, and proper robot-object calibration can be
achieved. This is the cornerstone of all off-line robot pro-
gramming tool-kits, such as, for example, Robcad, Robot-
Studio, etc. ii) The system operates under constant lighting
conditions.

The proposed system relies on the ability to easily mod-
ulate the robot’s velocity, which is a feature of Dynamic
movement primitives (DMPs) developed by Ijspeert et al. [9].
In this paper we used a variant of DMPs called Cartesian
Space Dynamic Movement Primitives [10] for the trajec-
tory encoding, which enables the specification of Cartesian
space position and orientation trajectories. Other trajectory
encoding approaches could easily be applied, for example
dynamical systems [11] or Gaussian Mixture Models [12].
The proposed velocity modulation in this paper utilizes
Iterative Learning Control (ILC) [13], [14]. Again, other
methods, such as reinforcement learning [15], [16] could be
applied, especially if also the robot trajectory would have to
be adjusted.

The rest of this paper is organized as follows. In the next
section, we provide details on the visual feedback quantities,
namely the horizontal squared gradient focus measure for
an area scan camera (II-A), and picture deformation from
line scan image acquisition (II-B). Section III provides a
summary on the used trajectory encoding – Cartesian Space
Dynamic Movement Primitives with added temporal scaling.
Section IV provides the details of the applied learning
algorithm, i.e, Iterative Learning Control. Section V provides
the results of the proposed algorithm. A short discussion and
conclusion follow in Section VI and VII, respectively.

II. VISUAL QUALITY MEASURE

In our experimental setup we used two different focus
measures and two different cameras, as described in Section
V.

A. Focus Measure Using an Area Scan Camera

As stated in [6], there are only a few industrial cam-
era/lenses on the market available that provide autofocus.
Furthermore, there is little information about how focus is de-
termined in these cameras. Visual quality inspection requires
sharp, focused images. We used robot-driven autofocus as
described in [6] to set our fixed-focus camera at the right
distance from the object for inspection.

Many different focus measures exist, and are based on
different orders of differentiation (first or second), image
histogram, correlation and data compression [17]. Methods
employing first-order gradients use different operators, such
as squared gradient, Sobel (horizontal, vertical, combined),
Laplacian, Scharr, and others. As stated in [17], the versions
based on just the horizontal gradient alone work better than
all other alternatives. It was shown in [6] that horizontal
squared gradient performs well.

We therefore used horizontal squared gradient focus mea-
sure to evaluate the sharpness of the image. It is defined as
[17], [18]

φ =
1

A(B − 1)

A+m−1∑
x=m

B+n−2∑
y=n

(I(x, y + 1)− I(x, y))
2
.

(1)
Here the region of interest is sized A×B, starting at pixels m
and n, with I(x, y) are the intensity values at pixels (x, y).

The squared gradient focus measure has a distinct bell-
shape characteristics, with the best focus achieved at the
peak. We can exploit this to achieve autofocus with the robot.
The robot moves the camera perpendicularly to the object
of inspection, away and towards the object. After detecting
the peak value (the focus measure begins to decrease), the
robot reverses its motion and travels in the other direction at
a slower speed, again until crossing the peak value. These
movements are repeated until the accurate position resulting
in peak focus measure φ is obtained. Details of this method
and results showing that the achieved focus measure is higher
than the one achieved by manually positioning the camera,
are presented in [6].

Using this approach we can set the camera into focus for
one point, for example above the starting point of the path of
inspection. We assume that the desired inspection path has
been extracted from a CAD model of the inspected object.
To obtain the reference values φ(t) for all points on the
inspection trajectory, the robot first moves along the desired
inspection path at a slow speed.

It should be noted that in order to compare φ(t) for
motions at different speeds, we need to anchor them to the
phase of motion s. This phase s is the phase of the trajectory
encoding, i.e. Cartesian space dynamic movement primitives.
Since the values of φ at different phases are repeatable apart
from noise, a learning algorithm can be applied to compute
the optimal speed of motion with respect to the reference
values φ(t). The evolution of focus measure at different
speeds is presented in Fig. 2. In the bottom plot we can see
a clear difference in the focus measure for different speeds
of motion.

B. Line Scan Image Aquisition

A line scan camera acquires lines of pixels at a very high
frequency, typically in the range of several kHz. The camera
is moved over the object (or the object under the camera)
at a speed that is synchronized with the acquisition rate.
An incorrect speed results in a deformed picture, either the
features are too wide if the motion is too fast, or they are too
narrow, if the motion is too slow. Figure 3 shows the effect
of motion speed on the deformation of the acquired picture
of a structured pattern, called the Gray coded pattern.

By using such a structured pattern, we can accurately
evaluate whether the speed of motion is too fast or too
slow. By measuring the number of pixel lines between color
transitions, and at a known sampling frequency, width of the
line and number of pixels in the line, we can calculate the
speed of motion that results in square pixels. Such calibration



1 0.5

20

40

60

0 10 20 30 40 50 60

20

40

60

Fig. 2. Focus measure is repeatable, as demonstrated in both plots. Top
plot shows φ as a function of time, top three lines for 60s motion, lower
and shorter 3 lines for 3s motion. Bottom plot shows the average focus
measure values φ as a function of phase s, red for 3s motion and blue for
60s motion.

Fig. 3. Line scan image acquisition of the binary coded Graycode pattern
at three different speeds of motion - left to right - slow to fast. Features of
the pattern get elongated with higher speeds.

of speed is required for any utilization of line scan cameras.
However, typically objects of inspection do not have Gray
coded patterns printed on them, so some other features in
the picture can be accurately measured and then estimated
for correct aspect ratios at different speeds. This process is
typically performed manually, is very tedious, and takes a
long time. In this paper we used the aforementioned Gray
coded pattern for a proof of concept. The output of speed
measure is the number of pixels between color transitions,
but with calibration it can be transformed into2 mm/s as
shown in Fig. 4.

III. TRAJECTORY ENCODING

For completeness of the paper a brief recount of Cartesian
space dynamic movement primitives (CDMPs) is provided
in the following. In this paper we expanded on the original
formulation from [10] with temporal scaling, as originally
proposed for standard DMPs in [19].

Cartesian space Dynamic Movement Primitives are of
composed position and orientation orientation parts. The
position part of the trajectory is the same as in standard
DMPs [9]. The orientation part of the CDMP, however, is
represented by unit quaternions. Unit quaternions require
special treatment, for both the nonlinear dynamic equations
and the integration of these equations.

The following parameters compose a CDMP: weights
wwwpk, www

o
k ∈ R3, k = 1, . . . , N , which represent the position

2Given a direct required velocity, we could have simply set the velocity
of the motion on the predefined path. This is only possible in calibrated
settings and with the use of structured patterns. Here we use it only to
show the proof of concept.

0 1 2 3 4 5

0

20

40

0 1 2 3 4 5

0

500

Fig. 4. Output of speed measure as samples per feature in the top plot,
transformed into mm/s in the bottom plot. This is only possible when using
a coded pattern. A difference with different input speeds is observable. The
input velocity profile for the motion was a minimum-jerk trajectory.

and orientation parts of the trajectory, respectively; trajectory
duration τ and the final desired, goal position gggp and
orientation gggo of the robot. Variable N sets the number of
radial basis functions that are used to encode the trajectory.
The orientation is in CDMP represented by a unit quaternion
qqq = v+uuu ∈ S3, where S3 is a unit sphere in R4. v ∈ R is its
scalar and uuu ∈ R3 its vector part. To encode position (ppp) and
orientation (qqq) trajectories we use the following differential
equations:

ν(s)τ ż = αz(βz(g
p − p)− z) + fp(s), (2)

ν(s)τ ṗ = z, (3)
ν(s)τη̇ηη = αz (βz2 log (gggo ∗ qqq)− ηηη) + fo(s), (4)

ν(s)τq̇qq =
1

2
ηηη ∗ qqq, (5)

ν(s)τ ṡ = −αs. (6)

Variable ν(s), as a function of the phase, provides tem-
poral scaling. Parameters zzz, ηηη denote the scaled linear
and angular velocity (zzz = τṗpp, ηηη = τωωω). For details on
quaternion product ∗, conjugation qqq, and the quaternion
logarithm log (qqq), see [10]. The nonlinear parts, termed also
forcing terms, fp and fo are defined as

fp(s) = DDDp

∑N
k=1 w

p
kΨk(s)∑N

k=1 Ψk(s)
s, (7)

fo(s) = DDDo

∑N
k=1www

o
kΨk(s)∑N

k=1 Ψk(x)
s. (8)

Forcing terms contain parameters wwwpk, www
o
k ∈ R3. They have

to be learned, for example directly from an input Cartesian
trajectory {pppj , qqqj , ṗppj , ωωωj , p̈ppj , ω̇ωωj , tj}Tj=1. The scaling ma-
trices DDDp, DDDo ∈ R3×3 can be set to DDDp = DDDo = III . Other
possibilities are described in [10]. The nonlinear forcing
terms are defined as a linear combination of radial basis
functions Ψk

Ψk(x) = exp
(
−hk (x− ck)

2
)
. (9)



Here ck are the centers and hk the widths of the radial basis
functions. The distribution of weights can be, as in [20],

ck = exp
(
−αx k−1

N−1

)
, hk =

1

(ck+1 − ck)2
, hN = hN−1,

k = 1, . . . , N . The time constant τ is set to the desired
duration of the trajectory, i. e. τ = tT − t1. The goal position
and orientation are usually set to the final position and
orientation on the desired trajectory, i. e. gggp = ppptT and
gggo = qqqtT . Detailed CDMP description and auxiliary math
are explained in [10].

Temporal scaling ν(s) provides a trajectory that defines a
speed profile of the motion. It is composed of a weighted
combination of kernel functions

ν(s) =

∑R
k=1 w

ν
kΨk(s)∑R

k=1 Ψk(s)
. (10)

Here R defines the number of kernel functions, given in (9),
for temporal scaling. For simplicity, this number can be the
same as N in (7). The weights wν

k need to be learned in
the same manner as the weights for position and orientation
trajectories.

IV. LEARNING

As shown in Fig. 2, focus measure is i) repeatable, and ii)
there is a clear difference in φ(s) for different motion speeds.
Therefore, we can use φ(s) as the feedback for learning. The
same is valid for learning of the speed of motion using a line
scan camera, as shown in Fig. 3.

The goal of learning in this paper is i) to learn a fastest
possible velocity profile, where there will be only little or
even no degradation of the focus measure. Thus, the motion
will be executed as fast as possible, and the sharpness of the
image, used for quality inspection, will not degrade. And ii)
the correct speed of motion for using a line scan camera.

It should be noted that with the chosen parametric speed
profile representation, different means of learning open up,
as was shown in [16], or in [21]. In this paper we have
chosen one of the variations of iterative learning control,
which learns directly at the weights of the velocity profile
ν(s). The advantage of using a learning control method is
that it requires very few iterations to achieve substantial
improvement. On the other hand, such methods never truly
converge, but only asymptotically approach the target value
[13]. Since the overall goal of the paper is not to present a
new learning algorithm, but demonstrate how it can be used
in the industry, and how to apply it to different measurable
quantities, such an algorithm suffices. A combination of ILC
and reinforcement learning (RL), as was shown in [22], could
be applied, or even simply RL, which would take many more
iterations. Because learning for an industrial setting is to be
only performed to tune the motion once, before the start of
production, a large number of repetition for RL should not
pose a problem.

The chosen learning algorithm for learning was previously
applied for coaching of robot motion through human inter-
vention [23]. A short recap is provided for completeness of
the paper. Its basis is learning of weights of CDMPs, but

procedure LearnProfile
record φs for slow (practically static) motion;
record φ for fast motion with wνi = const;
while φlatest > threshold

execute motion with current wν

calculate new error of φ with φs − φlatest

update wν using (11), (12) and (14)
end

Fig. 5. Procedure for learning the velocity profile using the squared gradient
focus measure. The procedure for velocity learning for using a line scan
camera is the same, but with different feedback quantity.

in this case it is used for the learning of the weights of the
velocity profile ν. The weights of the velocity profile wwwν are
iteratively updated (for 1DOF) with

wνi,j+1 = wνi,j + Γi,j+1Pi,j+1rej (11)

Pi,j+1 =
1

λ

(
Pi,j −

P 2
i,jr

2

λ
Γi

+ Pi,jr2

)
(12)

ej = ftarg,j − wνi,jr. (13)

Here j + 1 stands for the next time sample and i for the
selected weight. Pi, is the inverse covariance of wi, r is the
amplitude gain. To apply this algorithm for modifying the
speed profile based on the focus measure φ, we replace (13)
with

ej = k ∗ (φslow motion − φfast motion). (14)

here k is a positive constant gain. The whole algorithm is
described in procedure of Fig. 5. The learning takes place
until a predefined threshold of ej is reached. This threshold
can be determined empirically. For learning of the correct
velocity using a line scan camera, we use

ej = k ∗ (pxdes − px), (15)

where pxdes stands for desired pixels per feature and px for
the measured.

Instead of learning directly on the weights, one can also
simply generate the velocity profile from the weights and
add to it a scaled ej ,

νl+1(t) = νl(t) + kej(t), (16)

where the gain k is set empirically and l stands for iteration.
The resulting νl+1(t) is then again encoded into weights,
for example iteratively using (11) – (13), or with a batch
conversion, as shown in [9].

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

Our experimental setup consisted of the UR-10 robot with
two different cameras mounted at the end-effector. The Robot
was controlled using a modified version of the ur modern
driver [24] from ROS in soft real-time at 125Hz, which is
the maximum control frequency for this robot. The desired
position of the robot, obtained from integrating a temporally-
scaled CDMP, was updated in every control cycle.



Fig. 6. Left: mock-up cell for quality inspection, composed of the UR-10
robot, the Basler acA1300-60gm area scan camera, a dedicated light source
and the object at a calibrated distance from the robot. Right: Basler Racer
(raL2048-48gm) line scan camera and lighting system for line scan image
acquisition, attached at the end of the robot.

Fig. 7. The dummy object of inspection with a line standing in for an
edge, and random text around for a random background.

For the area scan camera, we used an industrial grade
GigE camera - Basler acA1300-60gm with resolution of
1282x1226 and a maximum frame-rate of 60 fps at full
frame. 30Hz frame-rate was used in the experiments. A
dedicated led light was used for constant lighting conditions.
The set-up is depicted in Fig. 6, left. The line scan camera
was the Basler Racer (raL2048-48gm). An additional lighting
system to account for the high lighting condition demands
of such cameras was added. The setup is depicted in Fig.
6, right. Since there is no possibility to synchronize the rate
of camera line acquisition with the actual movement of the
robot at higher frequencies (the robot is controlled maximally
at 125Hz), a constant line frequency of 2kHz was used.

B. Object for Inspection

Using an area scan camera we tested the algorithm for
inspection of a flat surface, and for an object with a curved
surface. Figure 7 shows the curved object of inspection. A
line on a curved surface with both convex and concave curves
represents a generic object, while the random text around
it represents a random background3. Line scan camera was
used only with a flat surface.

C. Area Scan Camera Results

An area scan camera and horizontal squared gradient focus
measure was first used on a flat object. While the velocity
for a flat object can be quite intuitively set manually, we
used it to demonstrate the concept. After recording the focus

3The actual object of inspection in the industrial setting cannot be shown.

0 10 20 30 40 50 60

10

20

30

40

50

60

70

Fig. 8. Results of learning to achieve optimal velocity profile for a flat
object. The top lines shows φ for slow motion, lasting 60s. The bottom
line shows φ for fast motion, lasting 3s. φ over motion in 5 iterations is
shown in the lines between, with the final, red line reaching practically the
reference, but at 19.12s.

5 10 15 20 25 30 35 40 45 50

0

5

10

start end

-10

0

10

20

30

Fig. 9. Top: Evolution of weights wν over iterations for a flat object,
from all being set to 1, to final values, depicted in the top line. Bottom:
difference of φ with respect to φ60 recorded for the motion of 60s.

measure φ across the complete trajectory of motion at a very
slow speed, another one was recorded at a fast speed and
then the proposed learning algorithm was used to modify
the speed.

It should be noted that the trajectory of motion was
obtained from a CAD depiction of an object (even in the case
of the flat surface). A CAD depiction of an object returns
only the points in space, but not a time parametrization
of the motion. While for a flat surface we could naively
set all the points at equal distances and assign equal time
intervals between them, such an approach cannot be applied
for more complex objects and trajectories. In this concrete
example, we set the initial velocity profile of motion to be a
minimum-jerk trajectory with zero initial and final speeds of
motion. Thus, the motion was extremely smooth, but made
the optimization of the velocity profile more interesting. It
should also be noted that having initial and final velocities set
to zero, increasing the velocity of motion through changing
ν in (2) – (6) will have no effect at the start and end of
the motion. Results in Fig. 8 show the adaptation from the
fastest motion at 3s (bottom line), to the end of learning at
19.12s (red line), which approaches a very slow motion at
60s (top line). Fig. 9 shows in the top plot the evolution of



start end

20

30

40

50

60

70

Fig. 10. Results of learning to achieve optimal velocity profile for the
curved object. The top, blue line shows φ for slow motion, lasting 51.8s.
The bottom, brown line shows φ for fast motion, lasting 7.77s. φ over
motion in 4 iterations is shown in the lines between, with the final, red line
reaching practically the reference, but at 19.9s.

0 5 10 15 20

-0.2

-0.1

0

0.1

0 5 10 15 20

0

0.5

1

Fig. 11. Inspection trajectory on the surface of the object. Positions in the
top plot, orientations as a unit quaternion in the lower plot. In both plots
the solid lines show the initial, too-fast trajectories, and the dashed lines the
trajectories after learning.

the weights wwwν , and in the bottom plot the error of φ used
for learning. Minimum-jerk velocity profile was used for the
initial trajectory.

As expected, the error was decreasing, but it never reaches
0, it only asymptotically approaches it. Here one could
play with adaptive gains, but this might make the learning
algorithm unstable [13]. Nevertheless, as can be seen in Fig.
1 c), the resulting image is practically as focused as is the
one for the slow motion in Fig. 1 a), despite the motion of
the robot being much faster. Even with noisy φ measure,
using CDMPs and a weighted RBFs for the velocity profile
results in smooth trajectories.

For the curved object we set our initial velocity profile to
a constant velocity. Focus measure φ for the curved object,
depicted in Fig. 10, shows the same trend of approaching φ
of the very slow motion. The algorithm effectively achieved
a reduction of inspection time (from 51.8s to 19.9s), at an
only slightly decreased focus measure. The trajectory of the
inspection point on the object, given as desired positions and
orientations to the robot, is depicted in Fig. 11. A sequence
of still images depicting the motion of the robot along the
object is shown in Fig. 14.

start end

0

50

100

150

0 1 2 3 4 5

0.4

0.6

Fig. 12. Top: measured velocity of motion using the Gray coded pattern,
the top, red line depicts the final values after 4 iterations. The straight line
shows the optimal speed for the given camera settings. Bottom: position of
the camera in the direction of motion over time.

Fig. 13. Gray coded pattern recording under three velocities: top in 1.5s,
middle in 4.5s, bottom after optimization in 3.40s.

D. Line Scan Camera Results

We used line scan camera on a flat object with a Gray
coded pattern. Our initial velocity profile for the line scan
camera motion was again the minimum-jerk, with zero initial
and final velocities. Results in Fig. 12 show that the shape
of the profile was changing to account for the slow start
and end of the motion. However, a small gain was used and
the effect is rather small. Nevertheless, we can see the same
effect of asymptotically approaching the desired value, albeit
at a rather slow pace. In the bottom plot we can see that
the initial minimum-jerk profile is slowly becoming more
straight. Figure 13 shows the recorded Gray coded pattern
under too slow, too fast and final learned velocity.

VI. DISCUSSION

The result show improved behavior for all three cases:
quality inspection speed of a flat object and of a curved
object using the area scan camera, and quality inspection
speed of a flat object using the line scan camera.

When using the focus measure, the question is when
should the learning/optimization stop. We can see in Fig.
1 that the right-two pictures are practically identically sharp,
but the focus measure is not the same. Focus measure
recorded for 60s, as shown in Fig. 8, would be exactly the
same (minus noise) for 90s motion , but just slightly lower
for 45s (not depicted). However, the difference in image



Fig. 14. Sequence of still images showing the robot tracing the edge (line) on the curved surface, which represents a generic object.

sharpness is not observable. Learning was stopped after 5
iterations, the resulting motion was 3 times faster than the
referential motion. Determining when the learning should
stop remains an open research question.

The proposed learning algorithm adapts the behavior of
the robot based on measured data. We could combine this
with calculated, theoretical data, and optimize the motion
in advance, for example using some constraint optimization
methods, such as [25]. Applying first theoretical optimiza-
tion, followed by self-adaptation to account for the real-world
situation and noise, is a more complex approach, but one that
can potentially bring further improvements to the process.

When using the line scan camera, we need to compare
image features to achieve square pixel. Having a coded
pattern, as used here for proof of concept, directly outputs the
desired velocity of motion. In real applications, however, the
tuning of the inspection speed is very tedious, as sampling
frequencies of up to 20kHz are not unusual.

VII. CONCLUSION

The use of learning algorithms has great potential to add
to the productivity of factories not only in the future, but
already today. As the results show, self-adaptation algorithms
can improve the performance of the robot, and this can be
effectively applied in setting up and optimizing production
processes, which is now mostly entirely left to the opera-
tors/engineers. Fine-tuning and calibration of the processes
is a tedious, long process, requiring a lot of effort. Time and
money can be saved both in the set-up as well as in the
improved productivity.

REFERENCES

[1] L. Pérez, Í. Rodrı́guez, N. Rodrı́guez, R. Usamentiaga, and D. F.
Garcı́a, “Robot guidance using machine vision techniques in industrial
environments: A comparative review,” Sensors, vol. 16 3, 2016.

[2] N. Herakovic, “Robot vision in industrial assembly and quality control
processes,” in Robot Vision, ch. 26, Rijeka: IntechOpen, 2010.

[3] C.-S. Cho, B.-M. Chung, and M.-J. Park, “Development of real-
time vision-based fabric inspection system,” IEEE Transactions on
Industrial Electronics, vol. 52, pp. 1073–1079, Aug 2005.

[4] T. Ivanovska, S. Reich, R. Bevec, Z. Gosar, M. Tamosiunaite, A. Ude,
and F. Wörgötter, “Visual inspection and error detection in a recon-
figurable robot workcell: An automotive light assembly example,” in
VISIGRAPP, 2018.

[5] D. Racki, D. Tomazevic, and D. Skocaj, “A compact convolutional
neural network for textured surface anomaly detection,” in 2018
IEEE Winter Conference on Applications of Computer Vision (WACV),
pp. 1331–1339, March 2018.

[6] R. Bevec, T. Gašpar, and A. Ude, “Robot-driven autofocus control
mechanism for an in-hand fixed focus camera,” in Advances in Service
and Industrial Robotics (N. A. Aspragathos, P. N. Koustoumpardis,
and V. C. Moulianitis, eds.), (Cham), pp. 551–559, Springer Interna-
tional Publishing, 2019.

[7] D. Schreiber, L. Cambrini, J. Biber, and B. Sardy, “Online visual
quality inspection for weld seams,” The International Journal of
Advanced Manufacturing Technology, vol. 42, pp. 497–504, May 2009.

[8] O. Semeniuta, S. Dransfeld, and P. Falkman, “Vision-based robotic
system for picking and inspection of small automotive components,”
in 2016 IEEE International Conference on Automation Science and
Engineering (CASE), pp. 549–554, Aug 2016.

[9] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[10] A. Ude, B. Nemec, T. Petrič, and J. Morimoto, “Orientation in carte-
sian space dynamic movement primitives,” in IEEE Int. Conference
on Robotics and Automation (ICRA), pp. 2997–3004, 2014.

[11] S. S. M. Salehian, N. Figueroa, and A. Billard, “A unified framework
for coordinated multi-arm motion planning,” The International Journal
of Robotics Research, vol. 37, no. 10, pp. 1205–1232, 2018.

[12] S. Calinon, “Robot learning with task-parameterized generative mod-
els,” in Proc. Intl Symp. on Robotics Research (ISRR), 2015.

[13] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Ctrl. Sys. M., vol. 26, no. 3, pp. 96–114, 2006.

[14] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, pp. 816–830, Aug 2014.

[15] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning (MLJ), no. 1-2, pp. 171–203, 2011.

[16] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, vol. 2, no. 1-
2, pp. 1–142, 2013.

[17] H. Mir, P. Xu, and P. van Beek, “An extensive empirical evaluation
of focus measures for digital photography,” in Digital Photography X,
vol. 9023 of procspie, p. 90230I, 2014.

[18] S. Yousefi, M. Rahman, N. Kehtarnavaz, and M. Gamadia, “A new
auto-focus sharpness function for digital and smart-phone cameras,”
in 2011 IEEE International Conference on Consumer Electronics
(ICCE), pp. 475–476, Jan 2011.

[19] B. Nemec, A. Gams, and A. Ude, “Velocity adaptation for self-
improvement of skills learned from user demonstrations,” in 2013
13th IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids), pp. 423–428, Oct 2013.

[20] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-specific general-
ization of discrete and periodic dynamic movement primitives,” IEEE
Transactions on Robotics, vol. 26, pp. 800–815, Oct 2010.

[21] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[22] B. Nemec, M. Simoni, N. Likar, and A. Ude, “Enhancing the per-
formance of adaptive iterative learning control with reinforcement
learning,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2192–2199, Sep. 2017.

[23] A. Gams, T. Petrič, M. Do, B. Nemec, J. Morimoto, T. Asfour,
and A. Ude, “Adaptation and coaching of periodic motion primitives
through physical and visual interaction,” Robotics and Autonomous
Systems, vol. 75, pp. 340 – 351, 2016.

[24] T. T. Andersen, “Optimizing the universal robots ros driver.,” tech.
rep., Technical University of Denmark, Department of Electrical
Engineering, 2015.

[25] L. Žlajpah, “On time optimal path control of manipulators with
bounded joint velocities and torques,” in Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, vol. 2, pp. 1572–1577
vol.2, April 1996.

ACKNOWLEDGMENT

This research has been funded in part by the GOSTOP pro-
gramme C3330-16-529000, co-financed by Slovenia and EU
under ERDF, and by the EU’s Horizon 2020 IA QU4LITY
(GA no. 825030).


	INTRODUCTION
	Problem Specification

	VISUAL QUALITY MEASURE
	Focus Measure Using an Area Scan Camera
	Line Scan Image Aquisition

	TRAJECTORY ENCODING
	LEARNING
	EXPERIMENTAL EVALUATION
	Experimental Setup
	Object for Inspection
	Area Scan Camera Results
	Line Scan Camera Results

	DISCUSSION
	CONCLUSION
	References

