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a b s t r a c t

Dynamic movement primitives (DMPs) have proven to be an effective movement representation for
motor skill learning. In this paper, we propose a new approach for training deep neural networks to
synthesize dynamic movement primitives. The distinguishing property of our approach is that it can
utilize a novel loss function that measures the physical distance between movement trajectories as
opposed to measuring the distance between the parameters of DMPs that have no physical meaning.
This was made possible by deriving differential equations that can be applied to compute the gradients
of the proposed loss function, thus enabling an effective application of backpropagation to optimize the
parameters of the underlying deep neural network. While the developed approach is applicable to any
neural network architecture, it was evaluated on two different architectures based on encoder–decoder
networks and convolutional neural networks. Our results show that the minimization of the proposed
loss function leads to better results than when more conventional loss functions are used.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The generic idea of encoding elementary movements using dy-
namical systems has become accepted in the motor skill learning
community (Kober & Peters, 2010). This led to the development
of effective movement representations such as dynamic movement
primitives (DMPs) (Schaal, Mohajerian, & Ijspeert, 2007). DMPs
can be viewed as nonlinear dynamical systems that represent
elementary movements. They can be used as building blocks that
can be sequenced and modulated in real time to generate more
complex movements (Ijspeert, Nakanishi, Hoffmann, Pastor, &
Schaal, 2013). Thus it is natural to apply one of the prime machine
learning technologies, i.e. deep neural networks, for the learning
of dynamic systems such as DMPs.

Deep neural networks have been applied successfully in many
different application areas (LeCun, Bengio, & Hinton, 2015), e.g.
for visual classification and natural language processing. Due to
deep learning, visual object recognition has already reached the
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stage where computers are superior to humans at some specific
tasks. Several factors contributed to these breakthroughs. They
include the increased computational power and the possibility
to utilize GPUs to speed up the training of deep neural net-
work models. Another contributing factor was the development
of appropriate deep neural network architectures, such as deep
convolutional neural networks (CNNs) (Krizhevsky, Sutskever, &
Hinton, 2012). Such network architectures contain fewer but
properly organized parameters that can be trained more easily
while retaining the expressive power for visual recognition tasks.

The universal approximation theorem (Hornik, Stinchcombe,
& White, 1989) indicates that neural networks can provide the
functionality needed to learn highly nonlinear mappings that link
robot sensory data to DMPs. However, training of deep neural
networks for robotic applications often leads to issues that have
not yet been fully addressed by the machine learning commu-
nity (Pierson & Gashler, 2017; Sünderhauf et al., 2018). There is
need for better evaluation metrics (distance functions) which –
when combined with appropriate representations – result in a
more effective training process.

In this paper we focus on the problem of training deep neural
networks that have DMP parameters as outputs. The main result
of the paper is a general, physically meaningful evaluation metric
for DMPs and a mathematical machinery that exploits the pro-
posed metric to guide the training process. The proposed metric
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computes the physical distance between movements instead of
calculating the distance between the parameters of DMPs, which
have no physical meaning. We derive formulas for the calculation
of gradients of such a metric with respect to DMP parameters.
By making use of these gradients, we can apply state-of-the
art optimization methods based on backpropagation to train the
parameters of the desired neural network.

Other approaches that utilize deep neural networks to learn
DMPs have been reported in the literature. For example, Chen
et al. use autoencoders (Chen, Bayer, Urban, & van der Smagt,
2015) and variational autoencoders (Chen, Karl, & van der Smagt,
2016) to reduce the dimensionality of the movements obtained
by human demonstration and effectively train DMPs in a low-
dimensional latent space. Pervez, Mao, and Lee (2017) use a
pre-trained CNN for finding task parameters from input images,
while using another fully-connected neural network to learn the
mapping from the clock signal and task parameters to the forcing
term of a DMP. Similarly, in the work of Kim, Lee, and Kim
(2018), hierarchical deep reinforcement learning is used to op-
timize the forcing term of a DMP for demonstrated trajectories.
None of these approaches address the issue of a proper metric for
networks that directly compute DMPs.

For evaluation purposes we applied the proposed approach
to the problem of mapping raw images of digits to the corre-
sponding robot handwriting trajectories, which are represented
by DMPs. We developed two neural network architectures for
this task by borrowing from the work on deep autoencoders,
which were shown to be effective at computing low dimensional
latent spaces from raw character images (Hinton & Salakhutdinov,
2006) and SegNet network (Badrinarayanan, Kendall, & Cipolla,
2017), in which pre-trained layers from a CNN were adapted
to form a fully-convolutional encoder–decoder network for se-
mantic pixel-wise segmentation. We extended our previously
developed encoder–decoder network architecture (Pahič, Gams,
Ude, & Morimoto, 2018) with convolutional layers to achieve
more robust processing of input images. Here we stress, however,
that the proposed evaluation metric and gradient calculation are
applicable to any neural network architecture including recurrent
neural networks and are not limited to the architectures tested in
this paper.

The rest of the paper is organized as follows. We start by
specifying the data needed for training neural networks that have
DMPs as output. A review of the DMP representation for robot
motion trajectories is provided in Appendix A. The core of the
paper is in Section 3, where we propose two loss functions to
train such networks and discuss how to compute their gradients
to enable backpropagation. A detailed mathematical derivation
of the gradient of the newly proposed loss function is provided
in Appendix B. Neural network architectures applied to learn
transformations that transform images of digits into DMPs are de-
scribed in Section 4. The paper concludes with the experimental
results and the discussion sections.

2. Datasets for training deep image-to-motion encoder–
decoder networks

In order to facilitate the understanding of what follows, we
first briefly describe the task used to evaluate the proposed
methodology. Note, however, that the proposed methodology is
applicable to any neural network architecture that has DMPs as
outputs and can be trained by backpropagation.

Our experimental problem was to learn a deep neural network
that transforms raw images of digits into robot writing trajecto-
ries. This is a highly nonlinear transformation that requires a lot
of data if we are to capture variations in different handwriting
styles. The training data are given as pairs of images and the

associated writing trajectories. After training, the robot observes
a digit, captures its image, and feeds the captured image to the
trained neural network, which outputs the corresponding robot
writing trajectory. We selected dynamic movement primitives
(DMPs) to represent handwriting trajectories. See Appendix A for
more details on DMPs. The robot finally replays the resulting DMP
and writes the digit in the same style as in the observed image.

In this experimental setting, the input and output data pairs
have the following structure:

D =
{
Cj,Mj

}P
j=1 , (1)

where P is the number of training pairs, Cj ∈ RH×W are the input
images of width W and height H , while Mj are the corresponding
writing movements associated with each image. Note that apart
from the application of convolutional neural networks in our
experiments, all other derivations in this paper are independent
of the type of input data. Hence our approach is applicable to
other sensory inputs. A time-dependent trajectory data can be
represented as a temporal sequence of configurations on the
trajectory

Mj =
{
y i,j, ti,j

}Tj
i=1 . (2)

Here y i,j ∈ Rd are the robot configurations, e.g. Cartesian posi-
tions or joint angles, on the jth trajectory in the ith sample at
time ti,j ∈ R and d is the number of degrees of freedom. In
our handwriting experiments, trajectories were specified as 2-D
planar movements (d = 2) carried out at a fixed orientation.

The number of data points in dataset (2) is not constant and
varies with respect to the selected sampling step and overall
time/length of the movement trajectory. Thus it is not possible for
a neural network to directly output the sequence of data points
on the trajectory. Instead, the proposed neural networks output
the parameters of DMPs, where the resulting output movements
are encoded by a constant number of parameters. In the case of
DMPs, the output data of the neural network is given by

MDMP
j =

{
{wk}

N
k=1, τ , g, y0

}
. (3)

See Appendix A to understand the meaning of these parameters.
The process of training deep neural networks for mapping

images to handwriting DMPs is presented graphically in Fig. 1.
Technical details about the generation of the training data are
explained in Section 5.1.

3. Loss functions and calculation of their gradients

The training of neural networks is usually realized by es-
timating the parameters of a given network that minimize a
pre-specified loss function. For supervised learning, the loss func-
tion usually measures the difference between the desired and
actual outputs. Backpropagation (Rumelhart, Hinton, & Williams,
1986) is the method of choice to implement such an optimization
process. Backpropagation requires the gradients of all functions
that constitute a neural network, including the gradients of the
loss function.

The most common loss function that can be used for training a
neural network with DMP parameters on the output is the mean
squared error of DMP parameters, which – for the jth training
datapoint – is defined as follows:

Ep(j) =
1
2

(
N∑

k=1

∥wk − wk,j∥
2
+ (τ − τj)2 + ∥g − g j∥

2

+∥y0 − y0,j∥
2

)
. (4)
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Fig. 1. Training of writing DMPs. Each input image is fed to the neural network that transforms the input image into DMP parameters (3). The output DMP parameters
are used to generate a temporal sequence of points on the DMP trajectory, which are compared to the data points on the training trajectory associated with the
input image. The loss function and its gradients are then computed to optimize the parameters of the deep neural network by backpropagation.

Here {{wk}
N
k=1, τ , g, y0} denotes the output of the neural net-

work and {{wk,j}
N
k=1, τj, g j, y0,j} the DMP parameters estimated

from the training data (3) at index j. See Appendix A for more
details about DMPs and their calculation.

While this loss function provides for an easy implementation,
it does not measure the physical distance between the training
movement and the movement calculated by the neural network,
but rather the distance between the DMP parameters. This dis-
tance has no physical meaning. A more natural loss function
would measure the distance between the training trajectory data
y i,j from Eq. (2) and the points on the trajectory generated by the
output DMP, here denoted as yDMP. Hence we define the following
loss function

Et (j) =
1
2Tj

Tj∑
i=1

∥yDMP(xi,j) − y i,j∥
2, (5)

where yDMP(xi,j) and xi,j = x(ti,j) are obtained by integrating the
jth output DMP as calculated by the neural network and Tj is the
number of points on the jth trajectory.

To apply backpropagation, we need to be able to compute
the gradients of the loss function. The gradients of loss function
(4) are trivial to compute as (4) is simply the Euclidean distance
between the training DMP parameters and the DMP parameters
computed by the neural network. But it is more difficult to com-
pute the gradients of (5) as yDMP(xi,j) are calculated by integrating
DMP equations (7)–(9).

Let ph, h = 1, . . . ,H , be the DMP parameters specified in
Eq. (12), which are computed as output of the neural network.
Then the partial derivatives of Et (j) with respect to each DMP
parameter can be calculated as follows

∂Et (j)
∂ph

=
1
Tj

Tj∑
i=1

(
yDMP(xi,j) − y i,j

)T ∂yDMP

∂ph
(xi,j), (6)

where ∂yDMP/∂ph is the partial derivative of yDMP with respect to
the DMP parameter ph. The difficulty lies in the computation of
∂yDMP/∂ph because yDMP is computed by integrating differential
equation system (7)–(9). It turns out, however, that each of the
partial derivatives ∂yDMP/∂ph can also be computed by inte-
grating a system of differential equations with proper boundary
conditions. These differential equation systems are similar to the
initial DMP equations.

A detailed mathematical derivation of partial derivatives with
respect to each DMP parameter is provided in Appendix B.

4. Neural network architectures for reproduction of writing
dmps

To evaluate the effectiveness of the proposed loss functions,
we considered deep neural networks that transform raw images

of digits into the corresponding robot writing trajectories. In such
a setting, the pixels of an image containing a digit are used as
input to a deep neural network, which is trained to compute
the corresponding DMP parameters of writing trajectories that
reproduce the observed digit.

We developed two different types of encoder–decoder net-
work architectures to implement this transformation process:

• The first is a fully-connected image-to-motion encoder–
decoder network architecture (here abbreviated as IMED-
Net) shown in Fig. 2. This neural network architecture was
inspired by the work of (Hinton & Salakhutdinov, 2006).

• The second is a CNN-based architecture, i.e. a convolu-
tional image-to-motion encoder–decoder network (CIMED-
Net) shown in Fig. 3. CIMEDNet uses convolutional layers
followed by some additional fully-connected layers in the
encoder, whereas the decoder is again constructed of fully-
connected layers only. The resulting encoder part of the
network has a somewhat similar structure to the LeNet-5
architecture (LeCun, Bottou, Bengio, & Haffner, 1998). The
fully connected encoder–decoder part is taken over from
IMEDNet with the first three layers removed.

The purpose of creating CIMEDNet architecture was to reduce
the number of network parameters in order to achieve faster
training and better generalization. However, if we simplify the
model too much, we lose the representational power of the neural
network, which can lead to a reduced performance. For example,
when the encoder part consisted of convolutional layers only, the
network performance was lower compared to IMEDNet in our
experiments. The best results were obtained by the here proposed
architecture, which still contains significantly less parameters
than IMEDNet while preserving sufficient representational power
to map images to handwriting DMPs.

To generate the inputs for both networks, the observed images
of digits were cropped and resized to a fixed-size input (see also
Section 5.3.2). By applying standard image processing methods
we ensured that only images of digits without any background
outside of the paper on which they were written were passed to
the networks as input.

5. Experimental evaluation

Our experiments focused on the evaluation of performance of
different loss functions for the generation of writing trajectories.
The suitability of CIMEDNet architecture for processing of real
digit images taken by a humanoid robot was also evaluated.

5.1. Datasets

Here we explain the acquisition of datasets that were used in
our experiments for training and testing.
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Fig. 2. IMEDNet (Image-to-Motion Encoder–Decoder Network) neural network with an input layer consisting of 1600 neurons (for an image size of 40 × 40 pixels)
for the reproduction of 2-D writing trajectories from raw images. The output layer contains 55 neurons that correspond to the parameters of a two-dimensional
DMP (2 × 25 neurons for the weights of the two forcing terms defined in Eq. (10), 2 neurons each to specify the beginning y0 and the end g of the trajectory,
respectively, and 1 neuron for the joint time constant τ ). There are 7 hidden fully-connected layers with 1500, 1300, 1000, 600, 200, 20, and 35 neurons, respectively.
The number of all trainable parameters in the network is 6 381335. This configuration of neurons forms an asymmetrical encoder–decoder architecture (note that
a ratio between the number of actual neurons and the number of drawn neurons is not the same in all layers). The bottleneck layer consists of 20 neurons, which
can be used to define the latent space for writing trajectories.

Fig. 3. The CIMEDNet (Convolutional Image-to-Motion Encoder–Decoder Network) architecture with an encoder consisting of two convolutional layers followed
by three fully-connected layers, and a decoder consisting of two fully-connected layers. The network takes as input a 40 × 40 grayscale image, followed by a
convolutional layer with 5 × 5 kernel size and 10 feature maps, a 2 × 2 max pooling layer, a convolutional layer with 5 × 5 kernel size and 20 feature maps,
a 2 × 2 max pooling layer, a 0.5 dropout layer, a fully-connected layers of size 600, 200, 20, 35 and the output layer of size 55, matching the number of DMP
parameters. The number of all trainable parameters in this network is 720955.

5.1.1. Annotated MNIST (a-MNIST)
To evaluate our methodology, we needed pairs of input and

output data. Because there is no suitable dataset with pairs of
images and corresponding motions, we first created our own
dataset by annotating images with motions.

The first dataset was created based on the well-known MNIST
dataset (LeCun, Cortes, & Burges, 2019), which consists of im-
ages of digits but contains no writing trajectories. Using touch
interface, we annotated 1170 images of digit 3 and 1170 images
of digit 5 from this dataset with the corresponding handwrit-
ing movements. For training, we generated 11700 samples of
digit 3 and 11700 samples of digit 5 in total by applying affine
transformations to the original images as well as to the manually
added handwriting movements. Values for affine transformations
were ±3 pixels for translations, ±8◦ for rotations, ±10% for
scalings and ±0.1 for shear values. The resulting dataset is called
annotated MNIST dataset (a-MNIST) and consists of the original
and transformed images from the MNIST database, supplemented
with the corresponding handwriting trajectories.

The extension of the dataset by applying affine transforma-
tions was necessary because otherwise the dataset would contain
only 2340 annotated examples, which is too little for reliable

training of deep neural networks that map images to DMPs. Train-
ing with such a small dataset would lead to a poor generalization
performance.

5.1.2. Synthetic MNIST (s-MNIST)
The a-MNIST dataset was gathered by hand-annotating images

of digits with handwriting trajectories. This is a time consuming
process. In order to provide more data for a thorough and con-
trolled evaluation, we developed a synthetic method to generate
40 × 40 images of digits and the associated two-dimensional
writing trajectory movements.

The synthetic trajectory data were generated using a combi-
nation of straight lines and elliptic arcs. When generating these
geometric elements, we varied the parameters such as lengths,
angles, and minor and major axes and center of elliptic arcs.
We varied these parameters according to a uniform distribution.
From these trajectories, binary images were generated with the
predefined width of the image curve. The resulting images were
processed with a Gaussian filter. Finally, both the generated tra-
jectories and the resulting images were transformed using affine
transformations composed of translation, rotation, scaling, and
shearing. Values for affine transformations were the same as for
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a-MNIST and were taken from a uniform distribution. Using the
above procedure, we generated pairs of synthetic digit images
and the associated handwriting trajectories. We call this dataset
synthetic MNIST (s-MNIST), as it simulates the real MNIST dataset
but does not contain real images from MNIST. For our exper-
iments we generated 2000 pairs of images and trajectories for
each digit, for a total of 20000 samples.

5.1.3. Suitability of data for neural network training
Our data generation procedures make sure that there is a

unique mapping between digit images and handwriting trajecto-
ries. To ensure this, the writing of every digit – either simulated
or generated with a touch interface – was always started from the
same starting point. We also did not vary the speed of handwrit-
ing movements. Thus the training data do not contain any digits
that would be written in two different ways.

5.2. Neural network training

We used the PyTorch platform (Paszke et al., 2017) in order to
implement the proposed networks. Training was performed on a
16 core workstation with two graphics cards (NIVIDIA GTX 1080Ti
GPUs). The PyTorch training algorithms allow us to select various
loss functions and parameters. For training the encoder–decoder
networks, we used the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 0.0005. The batch size was set to 128 for
weight updates. In order to avoid learning plateaus, the optimizer
parameters were reset to the initial values every 500 epochs. We
halted the training if the best validation loss was unchanged after
60 epochs. We retained the neural network parameters with the
best validation result.

In all experiments, the DMP representation of handwriting
trajectories was comprised of 25 radial-basis functions for every
dimension of the two dimensional writing trajectory. The weights
of these basis functions form together with the joint time con-
stant (1 parameter) and the start and end points of a planar
movement (2 × 2 parameters) the full set of 55 DMP parameters
(12) that represent each handwriting motion.

When training with the loss function defined in Eq. (5), the
trajectories do not need to be transformed into DMPs. However,
to compute this loss function, we needed to conduct temporal
integration of the DMPs computed by a neural network for each
training example. In addition, the gradients of the loss function
(5) must be computed by integrating the differential equations
provided in Appendix B. Even though we implemented this inte-
gration on the GPU cores, the computational complexity is higher
compared to training directly with DMP parameters.

For more efficient training, we pretrained a neural network
using criterion function (4) and then modified the loss function
for additional training. When using loss function (4), the gradient
calculation is simpler and can be performed using the built-in
PyTorch functionalities. In this case, the gradients can be calcu-
lated without integrating the differential equations provided in
Appendix B. However, the training trajectories must be trans-
formed to DMPs to compute loss function (4).

The application of loss function (5) within the PyTorch frame-
work requires the implementation of a new custom PyTorch
autograd function, which should implement forward propagation
and backpropagation for our custom-designed loss function. The
resulting autograd function computes the DMP trajectories by
integrating differential equation system (7)–(9) in the forward
propagation, while for backpropagation the loss function gradi-
ents are computed by integrating differential equations described
in Appendix B. We use Euler integration method in both cases, but
more advanced Runge–Kutta methods could also be applied. We
implemented two variants; firstly in Python for CPU utilization
and secondly in C to exploit CUDA library for GPU utilization.

5.2.1. Number of training parameters and avoidance of overfitting
The number of parameters in our neural networks is rather

high. IMEDNet contains 6 381335 and CIMEDNet 720955 free
parameters, which must all be computed during training. The
training data typically consist of 20000 data points, of which
17000 were used for optimization and the rest for testing. In our
experiments, the dimension of the neural network output was 55
as there were 55 DMP parameters. Thus we obtained 17000*55
= 935000 equations. This number is higher than the number of
parameters in CIMEDNet (720955) but still less than the number
of parameters in IMEDNet (6 381335). Thus the CIMEDNet opti-
mization problem is overconstrained, which is good to prevent
overfitting.

To avoid overfitting, especially in the case of IMEDNet, we
applied a standard technique that results in early stopping of
the optimization process. This technique relies on a criterion
that measures the performance of the neural network in each
validation step. In the case of CIMEDNet, we also introduced a
0,5 dropout layer, which is located at the boundary between
the convolutional and the fully connected part. This reduces
the number of active parameters at each optimization step to
only 426955, which is much less than the number of equations
that are considered during training (935000). Our results show
that we achieve a reasonable degree of generalization both with
CIMEDNet and IMEDNet as they were able to replicate a-MNIST
handwriting trajectories that were not in the training dataset.
Thus the fact that the optimization problem that needs to be
solved for IMEDNet is underconstrained did not drastically influ-
ence the performance of IMEDNet. However, Fig. 4 shows that
CIMEDNet converged significantly faster.

5.3. Evaluation of loss functions

We used dynamic time warping (Sakoe & Chiba, 1978) to
compare the distance between DMP trajectories, which were
generated by the neural network, and the testing trajectories.
Dynamic time warping computes the minimum spatial (image)
distance between trajectories that are being compared. With
dynamic time warping we estimate the spatial overlap between
the two trajectories regardless of their parameterization, which is
the most relevant measure when comparing writing trajectories.
Note that we could not use dynamic time warping to implement
loss functions (4) and (5) as dynamic time warping does not result
in a differentiable loss function.

We conducted a two-sample t-test to compute if the differ-
ence between the mean values of the distance between trajecto-
ries (computed by dynamic time warping) for the two different
loss functions is statistically significant. The reported t-value is
the ratio of the observed difference and the size of the variability
in the data. The higher the absolute t-value is, the lower the
p-value, where the p-value denotes the probability that results
have the same mean. In our experiments, p-value denotes the
probability that the difference between the mean values of the
distance between trajectories is not statistically significant.

5.3.1. Performance of the proposed loss functions
First we compare loss functions (4) and (5) that were both

used for training of neural networks that output DMP parameters.
We trained the four possible combinations of neural network
architectures and loss functions on both s-MNIST and a-MNIST
dataset.

In the case of s-MNIST dataset, we used 1700 training pairs of
images and writing trajectories for each digit, which altogether
makes 17000 training pairs. For testing we used 300 pairs of
images and writing trajectories per digit, altogether 3000 for
the whole test dataset. For training with the a-MNIST dataset,
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Fig. 4. Convergence of training and validation errors obtained while computing the parameters of our neural networks. We present results for IMEDNet and CIMEDNet,
both applied to s-MNIST and a-MNIST dataset. In all cases the training was stopped when the validation error did not drop for 60 consecutive epochs.

Fig. 5. Example reconstruction results for digits from the a-MNIST dataset. The manually generated and transformed trajectories are shown in blue, while the DMP
trajectories calculated by the CIMEDNet are shown in red. These data were used only for testing, not for training. Hence these results demonstrate the generalization
performance of the proposed encoder–decoder network. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

we used 8190 pairs of images and writing trajectories per digit,
whereas for testing 3000 pairs were used.

The progress of the training process is shown in Fig. 4, which
depicts the convergence of training, validation and test errors. The
graphs show that IMEDNet needs at least twice as many epochs
for both loss functions and for both datasets until convergence.

The statistics of reconstruction quality are shown in Table 1.
The results obtained with both datasets and both network archi-
tectures confirmed that by using the physically meaningful loss
function (5), we obtain significantly better results than with the
simpler loss function (4). Results of the t-test for both datasets
are shown in separate rows of the table.

Note that errors for the a-MNIST dataset are larger than for
the s-MNIST dataset. This is the consequence of there being more
complex shapes present inside the a-MNIST dataset. Even though
the a-MNIST dataset contains just two different digits compared
to the ten digits inside the s-MNIST dataset, the a-MNIST dataset
is not only more complex in terms of trajectory shape but also
contains digits with different line width compared to constant
width lines in the s-MNIST dataset. Variation of the line width
lowers the usefulness of each trained convolutional kernel on
different examples, which led to better performance of IMEDNet
compared to CIMEDNet for the a-MNIST dataset.

The analysis of results for the a-MNIST dataset presented in
Fig. 5 shows that the CIMEDNet network can compute a good ap-
proximation of the handwriting motion, even if they are qualita-
tively not as good as the results for the s-MNIST dataset presented
in Fig. 7.

Table 1
DMP reconstruction statistics for DMPs computed by IMEDNet and CIMEDNet
trained by loss functions (4) and (5) using s-MNIST and a-MNIST dataset,
respectively. Dynamic time warping was used to compute the pixel distance
between the DMP-generated and test trajectories. The bottom row shows the
results of t-test for both loss functions, which proves that the difference is
statistically significant. These results were calculated using test samples that
were not used for training.

s-MNIST a-MNIST

IMEDNetloss function (4) 0.215 ± 0.084 0.322 ± 0.137
IMEDNetloss function (5) 0.134 ± 0.045 0.231 ± 0.104

t-test comparison results t(5998) = 46.83, t(5998) = 29.12,
p < 0.001 p < 0.001

CIMEDNetloss function (4) 0.194 ± 0.076 0.389 ± 0.183
CIMEDNetloss function (5) 0.131 ± 0.063 0.319 ± 0.142

t-test comparison results t(5998) = 35.37, t(5998) = 17.82,
p < 0.001 p < 0.001

5.3.2. Experiment with a humanoid robot
We also evaluated the performance of CIMEDNet network

on real input images that were taken by the TALOS humanoid
robot (Stasse et al., 2017). The writing trajectories computed by
the respective neural networks were used to generate the hand-
writing movements on TALOS. This experiment demonstrates
end-to-end reproduction of writing trajectories from real images.

The parameters of our neural networks are computed off-line
and do not need to be estimated during the real robot operation.
The robot takes an image of a digit and feeds it to the pretrained
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Fig. 6. Experimental setup for testing the CIMEDNet network architecture with real images. A sheet of paper with a handwritten digit is pasted onto a board in
front of the robot (a). The red frame plotted around the sheet of paper indicates the part of the robot image that was extracted (b) and used as input to the neural
network (c) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Example synthetic data showing the images of digits and the corresponding handwriting trajectories. The original trajectories are shown in blue, while the
DMP trajectories calculated by CIMEDNet are shown in red. CIMEDNet is able to reconstruct handwriting trajectories well even though these images and trajectories
were not used for training. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Digits written by TALOS using DMPs that were output by the CIMEDNet neural network. The robotic writing of each digit was tested on two example
handwritten digits. Digits in black on white paper were handwritten by a human and red digits on yellow paper were generated using the CIMEDNet neural
network.

neural network, which computes the DMP parameters. The out-
put DMPs are then used to generate the robot’s handwriting
movements. No gradient calculation is needed during real robot
operation.

In the experiment, we pasted a piece of paper with a hand-
written digit on a whiteboard in front of the robot, as shown
in Fig. 6a. Standard computer vision algorithms were applied to
detect the piece of paper in the images acquired by TALOS. The
extracted subimage was resized to 40 × 40 pixels, equal to the
image size for which the CIMEDNet was trained. Images like the
one shown in Fig. 6b were used as input to the CIMEDNet neural
network, which was trained to return DMP parameters of the
associated writing trajectory. Loss function (5) and the PyTorch
parameters as described in Section 5.3.1 were used for training.
The handwriting trajectories generated by the DMPs, which were
computed by the CIMEDNet, were specified in image coordinates
(pixels). We transformed them into robot base coordinates, taking
into account the actual paper size. The transformed trajectories
were executed with a robot arm in the horizontal plane, with a
constant height and orientation of the hand.

The robot-written digits generated in robotic experiments are
shown in Fig. 8. Comparing the human-written digits with the
digits written by Talos, we observe that the CIMEDNet is capable
of good handwriting reproduction. The results are somewhat
worse for digits with curves, e.g. when reproducing digit 0. The
reason for this is that synthetic data was used for training, which
is not fully representative for all human writing styles, especially
for curved digits.

6. Discussion and future work

We proposed a new approach for training deep neural net-
works that compute DMP parameters on the output. Our results
demonstrate that the performance of such neural networks can be
significantly improved by specifying an appropriate loss function
that measures real physical distance between the DMP-generated
trajectories and the training trajectories as opposed to using
simple Euclidean distance between the DMP parameters, which
has no physical meaning. We derived the formulas for the com-
putation of gradients of the newly proposed loss function, which
is necessary for the application of backpropagation. The proposed
methodology is applicable to any neural network architecture
that can be trained by backpropagation, not just the ones tested
in our experiments. Our experimental results show that deep
neural networks can be effective at transforming sensory data
to DMP parameters. More specifically, end-to-end conversion of
digit images to DMPs has been achieved.

End-to-end learning of visuomotor policies has been addressed
also by other researchers (Levine, Finn, Darrell, & Abbeel, 2016).
It is by no means clear that it is always a good idea to directly
map visual percepts to trajectories or even motor commands. For
example, in some cases it might be beneficial to decompose the
learning problem into smaller subproblems and organize learning
in a hierarchical fashion. Another issue is to decide which neural
network architecture is the most suitable for the given learning
problem (fully connected networks, CNNs, RNNs, LSTMs, GANs,
etc. and combinations thereof). Our paper does not address these
larger learning issues. What it does address is that if one of the
selected network architectures computes DMPs as output param-
eters to synthesize the desired movements, then its parameters
can be estimated with the loss function and the backpropagation
algorithm proposed in this paper. Our experiments show that
training with the proposed loss function is superior to using stan-
dard loss functions that deep neural network libraries provide
(which simply compare the DMP parameters from the training
set to the DMP parameters computed by a neural network).

There are many possible extensions of our work. In the context
of handwriting, other authors have shown that recurrent neural
networks (RNNs) can be applied for the generation of hand-
written digit images (Goudar & Buonomano, 2018). It is indeed
possible to construct a recurrent neural network that outputs
handwriting DMPs and train it with the proposed methodology.
By applying RNNs, we could deal with issues such as differ-
ent starting points when generating handwritten digits. Such
approaches are currently under development in our lab. An-
other possible extension is to use a different representation to
encode handwriting movements. For example, with arc-length
DMPs (Gašpar, Nemec, Morimoto, & Ude, 2018) we can separate
the temporal and spatial course of trajectories. This is benefi-
cial if handwriting trajectories are performed at different speeds
because in this case we can only reproduce the spatial course
of movement from a single image as speed information is not
available.

There are many tasks besides handwriting to which the pro-
posed approach can be applied. Currently we are working on
the extension to human–robot collaboration tasks. The idea is
to observe human actions and use the resulting image sequence
as input to a recurrent neural network that outputs the collab-
orative robot movement as DMP. This way we hope to achieve
an effective human–robot collaboration. As explained above, the
proposed methodology is general and can be used for any type of
neural network that returns DMP parameters as output, including
recurrent neural networks such as LSTM networks (Hochreiter &
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Schmidhuber, 1997). The application of our approach to LSTM-
based neural networks, which can take image sequences as in-
put and compute DMP parameters, is an important topic of our
current research.

One of the problems we encountered in our experiments with
real data is that variations in simulated digit trajectories and im-
ages do not cover all variations arising in real images. Such issues
can be addressed by mixing real and simulated data for training,
but the generation of real training data is often expensive as
it requires the gathering of human handwriting trajectories. It
might therefore make sense to exploit either generative mod-
els, such as generative adversarial networks (GANs) (Goodfellow
et al., 2014) or image style transfer (Gatys, Ecker, & Bethge, 2016)
in order to first convert the input image into the style of the
images from the original domain. This could be approached in
the form of a two-step pipeline procedure, i.e. style conversion
followed by prediction, or indeed, the style transfer properties
of these approaches might be integrated into an entirely new
network architecture that could be trained end-to-end.
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Appendix A. Dynamic movement primitives

Let us denote a time-dependent movement trajectory as y(t) ∈

Rd, where d specifies the dimension of space that contains the
desired trajectory (robot joint angle space or Cartesian space). A
dynamic movement primitive (DMP) (Ijspeert et al., 2013) spec-
ifying such a movement is defined by the following system of
differential equations

τ ż = αz(βz(g − y) − z) + diag(g − y0)F(x), (7)
τ ẏ = z, (8)

where y0 ∈ Rd is the initial position on the trajectory, g ∈ Rd the
final position on the trajectory, diag(g − y0) ∈ Rd×d a diagonal
matrix with components of vector g − y0 on the diagonal, F(x) ∈

Rd a nonlinear forcing term, z ∈ Rd a scaled velocity of motion,
and x ∈ R the phase defined by the equation

τ ẋ = −αxx. (9)

The phase x is used instead of time to avoid explicit time depen-
dency. It is fully defined by setting its initial value to x(0) = 1.
If the parameters τ , αx, αz, βz ∈ R are defined appropriately, e.g.
τ , αx > 0 and αz = 4βz > 0, then the linear part of equation
system (7)–(8) becomes critically damped and y, z monotonically
converge to a unique attractor point at y = g , z = 0. The forcing
term F(x) is usually defined as a linear combination of radial basis
functions

F(x) =

∑N
k=1 wkΨk(x)∑N
k=1 Ψk(x)

x, (10)

Ψk(x) = exp
(
−hk (x − ck)2

)
, (11)

where ck are the centers of Gaussians distributed along the phase
of the trajectory, and hk their widths. The values of hk are typically
fixed, as are the values of ck, which are usually distributed along
the phase in a uniform manner. The role of F is to adapt the
dynamics of (7)–(8) to the desired trajectory y(t), thus enabling
the system to reproduce any smooth movement from the initial
configuration y0 to the final configuration g on the trajectory.
This can be accomplished by computing the free parameters
wk ∈ Rd using regression techniques. See Ude, Gams, Asfour, and
Morimoto (2010) for formulas to compute wk. The free parameter
τ is usually set to the duration of motion.
αz, βz , and αx are usually constants that do not change be-

tween movements. Thus the neural network needs to output the
other parameters of the differential equation system (7)–(9) to
fully specify a DMP:

{wk}
N
k=1, τ , g, y0. (12)

Appendix B. Derivation of the proposed loss function gradi-
ents

We first analyze the structure of partial derivatives ∂yDMP/∂ph
that appear in Eq. (6). Recall that ph is one of the DMP parameters.
Analyzing differential equation system (7)–(9), it is clear that of
all DMP parameters listed in Eq. (12), only τ affects multiple
dimensions of yDMP. All other DMP parameters affect only one
dimension of yDMP. Thus ∀ph ̸= τ , the partial derivatives are
different from zero only for the dimension of yDMP that is affected
by this parameter. Thus Eq. (6) becomes

∂Et (j)
∂ph

=
1
Tj

Tj∑
i=1

(
yDMP
l (xi,j) − yl,i,j

) ∂yDMP
l

∂ph
(xi,j), ∀ph ̸= τ , (13)

where l is the dimension of yDMP affected by the parameter ph.
In the following we derive the partial derivatives of yDMP

l with
respect to all DMP parameters.

We start with the forcing term parameters wl,k, k = 1, . . . ,N,
l = 1, . . . , d. The partial derivatives ∂yDMP/∂wl,k can be obtained
by calculating the derivatives of Eqs. (7) and (8) with respect to
wl,k

τ
∂ żl
∂wl,k

= αz(−βz
∂yl
∂wl,k

−
∂zl
∂wl,k

) + (gl − yl,0)
ψk(x)∑N
n=1 Ψn(x)

x, (14)

τ
∂ ẏl
∂wl,k

=
∂zl
∂wl,k

. (15)

and integrating the resulting differential equation system in ∂yl/∂
wl,k and ∂zl/∂wl,k. Eqs. (14)–(15) can be derived because the
following holds for continuously differentiable trajectories
d
dt

∂

∂wl,k
zl =

∂

∂wl,k

d
dt

zl,

d
dt

∂

∂wl,k
yl =

∂

∂wl,k

d
dt

yl.

Just like the DMP values yDMP
l (xi,j), which we obtain through

numerical integration, we can calculate the values (∂yl/∂wl,k)(xi,j)
by integrating the differential equation system (14)–(15). For this
purpose we need to know the initial values of ∂yl/∂wl,k and
∂zl/∂wl,k at x(t1,j) = x(0) = 1. Since the initial position yl(1) on
the trajectory does not depend on wl,k, we can set

∂yl
∂wl,k

(1) =
∂zl
∂wl,k

(1) = 0. (16)

The partial derivatives with respect to the parameters gl, y0,l,
l = 1, . . . , d, are obtained analogously. Just like in the case of
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partial derivatives with respect to wl,k, the partial derivatives
with respect to gl and y0,l are obtained by calculating the partial
derivatives of Eqs. (7) and (8) with respect to gl and y0,l. We
obtain

τ
∂ żl
∂gl

= αz

(
βz

(
1 −

∂yl
∂gl

)
−
∂zl
∂gl

)
+

∑N
n=1wl,nΨn(x)∑N

n=1 Ψn(x)
x, (17)

τ
∂ ẏl
∂gl

=
∂zl
∂gl
. (18)

and

τ
∂ żl
∂y0,l

= αz

(
−βz

∂yl
∂y0,l

−
∂zl
∂y0,l

)
−

∑N
n=1wl,nΨn(x)∑N

n=1 Ψn(x)
x, (19)

τ
∂ ẏl
∂y0,l

=
∂zl
∂y0,l

. (20)

The values of the above partial derivatives at phases xi,j can
be calculated by respectively integrating the equation systems
(17)–(18) and (19)–(20). The initial values are set as follows

∂yl
∂gl

(1) =
∂zl
∂gl

(1) = 0, (21)

∂yl
∂y0,l

(1) = 1,
∂zl
∂y0,l

(1) = 0. (22)

In Eq. (22) we took into account that yl is initially set to y0,l.
The calculation of partial derivatives with respect to τ is some-

what more complicated because unlike previously considered
parameters, τ affects all the degrees of freedom and also phase
x through Eq. (9). Instead of the simplified Eq. (13), we need to
apply the full Eq. (6), i.e.

∂Et (j)
∂τ

=
1
Tj

Tj∑
i=1

(
yDMP(xi,j) − y i,j

)T ∂yDMP

∂τ
(xi,j). (23)

To compute the partial derivatives ∂yDMP
l /∂τ at phases xi,j, we

first calculate the partial derivatives of Eqs. (7) and (8) with
respect to τ

τ
∂ żl
∂τ

= αz

(
−βz

∂yl
∂τ

−
∂zl
∂τ

)
− żl

+(gl − y0,l)
∂

∂τ

(∑N
n=1wl,nΨn(x)∑N

n=1 Ψn(x)
x

)
, (24)

τ
∂ ẏl
∂τ

=
∂zl
∂τ

− ẏl. (25)

Since x depends on τ , we also need to compute

∂

∂τ

(∑N
n=1wl,nΨn(x)∑N

n=1 Ψn(x)
x

)
=(∑N

n=1wl,n(Ψ ′
n(x)x + Ψn(x))

)(∑N
n=1 Ψn(x)

)
(∑N

n=1 Ψn(x)
)2 ∂x

∂τ
−

(∑N
n=1 Ψ

′
n(x)

)(∑N
n=1wl,nΨn(x)x

)
(∑N

n=1 Ψn(x)
)2 ∂x

∂τ
. (26)

Finally, differential equation (9) needs to be differentiated with
respect to τ to compute the partial derivative ∂x/∂τ , which
appears in the equation above. We obtain

τ
∂ ẋ
∂τ

= −αx
∂x
∂τ

− ẋ. (27)

Thus, to calculate ∂yDMP/∂τ , we need to integrate 2d+1 equations
comprising differential equation system (24), (25), and (27) in
∂yl/∂τ , ∂zl/∂τ , and ∂x/∂τ , with initial values set to
∂yl
∂τ

(1) =
∂zl
∂τ

(1) =
∂x
∂τ

(1) = 0, l = 1, . . . , d. (28)

The initialization above is because the initial positions on the
trajectory and the initial value of the phase do not depend on
τ .

Note that differential equation system (24), (25), (27) contains
the values of ẏl, żl, x, and ẋ, thus the DMP differential equation
system (7)–(9) must be integrated simultaneously to have all
the necessary quantities available. If one wanted to avoid the
rather complicated calculation of partial derivative ∂Et (j)/∂τ as
specified by Eq. (23), one could estimate τ in a separate deep
neural network and consider τ as constant when optimizing the
loss function (5) to calculate the rest of the DMP parameters, i.e.
{wk}

N
k=1, g , and y0. If this is done, the resulting neural network

has one neuron less on the output layer.
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