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ABSTRACT
Collecting complex information on the status of machinery is the enabler for advanced mainte-
nance activities, and one of the main players in this process is the sensor. This paper describes
modernmaintenance strategies that lead to Condition-BasedMaintenance. This paper discusses
the sensors that can be used to support maintenance, as of different categories, spanning from
common off-the-shelf sensors, to specialized sensors monitoring very specific characteristics,
and to virtual sensors. This paper alsopresents four different real-world examples of project pilots
that make use of the described sensors and draws a comparison between them. In particular,
each scenario has unique characteristics requiring different families of sensors, but on the other
hand provides similar characteristics on other aspects.
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1. Introduction

The development of new materials and sensor tech-
nologies that enable the production of more cost-
effective sensors (with still adequate reliability) and
the simultaneous increase of processing power of rel-
atively cheap processors have dramatically increased
the interest to use these kinds of devices in the sup-
port of maintenance and maintenance services. The
advances in industrial electronics are the leading forces
for the fourth industrial revolution. While most facto-
ries have traditionally made heavy use of electronics
and information technology to automate production
(third industrial evolution), the novel paradigm aims
at maximizing the benefits of information by integrat-
ing multiple data sources and by ubiquitous access to
the information itself [1]. It is expected that this, in
turn, will enable the introduction of the Condition-
BasedMaintenance (CBM) strategy, i.e. maintenance is
carried out when it is needed, instead of based on pre-
defined schedules or when the production machinery
stops working.

When the new technology is used in an ideal way,
the measured data can be used to automate diagno-
sis, whose results can be passed to the Computerised
Maintenance Management System (CMMS) for man-
aging the maintenance work orders and spare parts
supply [2]. Naturally, the introduction of all of this is
a demanding task, but the most important new aspect
is the availability of reliable data anywhere where it is

needed through the internet. Consequently, companies
that so far have only been selling production equipment
for global markets can now also offer maintenance ser-
vices for their products. This in turn will mean more
stable income for them, which does not vary only based
on sales, and at the same time a new possibility for their
customers to concentrate on production of their own
products instead of worrying about the availability of
the production equipment.

Building a CBM service platform was the goal of the
MANTIS Project [3], which was a European initiative
that aimed at enabling novel maintenance strategies of
industrial machinery pertaining to different industries.
The project was focused on the real-world application
of the developed techniques, and its pilots were centred
on machines whose design was adapted for the inclu-
sion of novel maintenance techniques. In this sense,
the pilots were the testing ground for the innovative
functionalities of the CBM service platform architec-
ture and for its future exploitation in the industrial
world.

Productive 4.0 [4] is a European project that aims
to foster the digitization of the manufacturing indus-
try, and one of its technological pillars is the serviti-
zation of all communication between involved devices,
which can span from cyber-physical systems (CPS) to
servers in the cloud. The Productive 4.0’s middleware is
instrumental in facilitating secure data collection from
sensors used in CBM platforms.
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This paper focuses on the sensors that are of inter-
est to CBMproject pilots. An analysis is drawn between
different pilots, to expose how they are technically dif-
ferent but can still benefit from CBM and advanced
sensing techniques in general.

In Section 2, the paper defineswhat CBM is by build-
ing over other maintenance strategies and describes
how it is enabled by sensing activities. Section 3 delves
into an analysis of sensors as pertaining to off the shelf,
custom and virtual sensor categories. Section 4 show-
cases the application of sensing techniques to mainte-
nance in real pilots. Section 5 discusses the differences
and commonalities between the pilots and draws some
conclusions on the topic at hand.

2. Background information

This section introduces concepts related to advanced
maintenance, to drive the discussion on the rest of the
paper, and provides insights on related work and the
projects that have investigated CBM and the sensors
enabling it. A list of the abbreviations used in the paper
is reported in Table 1.

2.1. Supporting concepts inmanufacturing
maintenance

As stated in [5], maintenance is a strategic activity
aimed to assure the operation reliability and/or a cer-
tain degree of continuity of equipment and/or processes
where this equipment is installed while ensuring the
safety of people that are part of it. Moreover, it is glob-
ally recognized that maintenance play a fundamental
role in the whole lifecycle of an asset from its installa-
tion passing through operational stage and decomposi-
tion stage [6]. It is clear that maintenance is becoming,
more andmore, involved into the decision-making pro-
cess (operational and strategic decisions) related to the

Table 1. The following abbreviations are used in this
manuscript.

AE Acoustic Emission
BLE Bluetooth Low Energy
CBM Condition-Based Maintenance
CM Corrective Maintenance
CMMS Computerised Maintenance Management System
CNC Computer Numerical Controller
CPS Cyber-Physical Systems
DB Database
ERP Enterprise Resource Planning
HMI Human Machine Interface
IMU Inertial Measurement Unit
MAS Multi-Agent System
MTTF Mean Time to Failure
PAPM Periodic and Automatic Periodic Monitoring
PM Preventive Maintenance
PRS Philips Remote Service
RUL Remaining Useful Life
SM Spot Measurement
SOA Service-Oriented Architecture

asset acquisition, design, operation, customer satisfac-
tion and sustainability within the enterprise as con-
firmed in [6]. Therefore, maintenance activities and
procedures are always on high pressure from the top
management levels of companies to guarantee cost
reductions in terms of money and time of the interven-
tion before the equipment lose performance within a
threshold [7]. Several policies and strategies formainte-
nance have been defined, developed and adopted in the
past: (i) Corrective Maintenance (CM); (ii) Preventive
Maintenance (PM) and (iii) Condition-Based Mainte-
nance (CBM). These policies and strategies are strictly
linked to the technological progress in the recent years
and reflect the growing need for companies to be com-
petitive [8].

CM also called Run-to-failure and reactive mainte-
nance can be described as a fire-fight approach, mean-
ing that the production equipment is only replaced or
repaired after it breaks. It has the advantage ofminimiz-
ing manpower to keep things running. Disadvantages
reside in large levels of scrap, unpredictable production
capacity and high overall maintenance costs.

PM, which includes both time and usage-based
maintenance, relies on periodic maintenance execution
that can range from equipment lubrication to replace-
ment. Maintenance tasks are performed based on spe-
cific periods of time, amount ofmachine usage (number
of working hours) and/or mean time to failure (MTTF)
statistics. This approach requires production stoppages
for maintenance, but it improves equipment lifetime
and it reduces malfunction probability [9]. Due to the
periodic aspect of the policy, the replacement of equip-
ment may occur prematurely as well as failures can
occur [10].

CBM relies on continuous equipment condition
monitoring by means of physical measurements (e.g.
temperature, vibration, noise, lubrication, corrosion)
[11], as well as offline analysis and modelling of the
degradation profiles for remaining useful life (RUL)
estimation with current measurements. When these
measurements reach a certain level, preventive main-
tenance is applied. In this sense, maintenance only
happens based on the need when a certain threshold
is reached. As a matter of fact: “PM is a philoso-
phy or attitude that, uses the actual operating condi-
tion of plant equipment and systems to optimize the
total plant operation ” [12]. Therefore, CBM did not
emerge to replace CM and PM, but as an additional
tool to improve them. CBM includes different actions,
from system design phase, workmanship, scheduling
and maintenance procedures, to the usage of commu-
nication technologies, feedback information and opti-
mization techniques [13], to investigate the root causes
of the problems, anddealingwith thembefore problems
occur.

The successful implementation of CBM strategies
strictly depends on the availability of an efficient and
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Figure 1. Key technologies for CBM.

effective monitoring infrastructure that can gather rel-
evant operational data from the machine/equipment
and combine and analyse these data to identify pos-
sible breakdowns and their root causes. Therefore, a
CBM service platform should have distributed pro-
cessing chains, which distill raw data into knowledge,
while minimizing bandwidth usage. These platforms
need to include key technologies such as (see Figure 1):
Smart sensors, actuators and CPS; Robust commu-
nication systems for harsh environments; Distributed
machine learning for data validation and decision-
making; Cloud-based processing, analytics and data
availability; and Human Machine Interfaces to visual-
ize information. In particular, the foundation of such
a platform is the sensing capability, which is bestowed
into sensors and has the responsibility of nourishing the
systemwith vital information from equipment and pro-
cesses. In fact, CBM relies on item/equipment constant
condition monitoring and evaluation to avoid machine
failures.

2.2. Relatedwork

The analysis of the State of the Art highlighted that
in the last decade several research and prototyping
actions, initiatives and efforts have been developed
addressing the digitalization of the manufacturing sec-
tor in Europe, the USA and Asia [14–17]. Putting the
light on Europe, the pervasive digitalization of the

industry – driven by technological breakthroughs –
is opening new opportunities for industry to become
more efficient and effective while ensuring enhanced
and improved processes, production systems and oper-
ations. If from one side, the digital transformation is
putting maintenance into great pressure – due to the
great impact it has on production quality, quantity, costs
and final customer satisfaction – from the other side, it
is triggering the development of new and more effec-
tive and efficient maintenance activities, procedures
and practices [6]. In particular, the following techno-
logical areas are expected to trigger the transformation
of the maintenance management concepts, philoso-
phies, policies, strategies and practices (extracted from
[18]):

• ICT solutions for factory floor and physical world
inclusion: to deliver all the necessary mechanisms
to facilitate the connection and the information
sharing between physical assets (such as machinery,
robots, production lines, etc.) and between physical
assets and back-end systems;

• ICT solutions for the next generation data storage
and information mining: to deliver all the neces-
sary mechanisms for data extraction, data transfor-
mation and loading for allowing the connection of
business intelligence tools for data mining, stream
processing, knowledge discovery for supporting the
decision-making process;
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• ICT solutions for implementing high-performance
and services platforms: to deliver a distributed
ecosystemof services and related applications for the
provisioning of customized functionalities;

• ICT solutions for modelling and simulation: to
deliver dedicated modelling and simulation tools to
describe the dynamics and predict the behaviour of
the physical assets;

• Collaborative and decentralized application archi-
tectures and development tools: to deliver highly
decentralized solutions that facilitate the integra-
tion of maximum information frommonitoring, life
cycle management and enterprise resource plan-
ning (ERP) applications in a commonmaintenance-
oriented application platform.

With this in mind, several EU founded projects
can be selected and analysed to provide a vision of
the digital transformation of the European industry
while highlighting the importance of the analysis of
the data provided by sensors for the assessment of
the equipment status. The selected projects are: FP7-
PRIME [19], FP7- SELF-LEARNING [20], H2020-
PROPHESY [21], H2020-PERFORM [22], H2020-
GOODMAN [23], ARTEMIS-Arrowhead [24],
ECSEL-MANTIS [3], ECSEL-Productive 4.0 [4].

Most of the research work is related to the imple-
mentation of CBM solutionsmainly targeted the imple-
mentation of CPS-based systems thus, focused on
the following main principles adapted from [25,26],
namely:

(1) abstraction and architectures;
(2) decentralization, modularity and composability;
(3) interoperability;
(4) real-time capability;
(5) interconnected data and data analytics/processing.

As an example, the PRIME and GOODMAN
projects mainly used the Multi-Agent System (MAS)
technology and cloud technologies to deliver a dis-
tributed architecture made up of agents. The pro-
posed architectures provided virtualized functions for
ensuring the monitoring and control of physical assets,
i.e. the extraction, transmission and loading of sen-
sor information for the derivation of production deci-
sions and the control of production processes. The
Self-Learning, Arrowhead, PERFORM and PROPH-
ESY projects mainly used Service-Oriented Architec-
ture (SOA) technologies and approaches for building
distributed architectures made up of smart and intel-
ligent components that expose services. Similarly to
MANTIS and Productive 4.0, these projects rely on the
Arrowhead for implementing CPS-based solutions, i.e.
to enable the implementation of an interoperable and
integrable framework that facilitates the data collection,
data analysis and processing.

It can be noticed that the main focus and com-
mon ground between the considered actions is: (1) the
extraction of the data from the environment by using
a sensing layer used by CPS; (2) the faults/anomalies
detection from the data available from sensors and (3)
the diagnosis of the causes of these faults/anomalies.

Other works such as [27] consider to create a con-
trol loop using collected data, for example to mitigate
machining vibrations to both improve the result of the
production process and increase the lifetime of the
machine. On the contrary, in the context of this paper,
the main idea is to provide insights regarding the sens-
ing layer and study how it enables CBM in different
domains of application.

The problem of monitoring numerous concurrent
activities is considered in [28], where a software-sensor-
based activity-time and performancemeasurement sys-
tem is proposed. Here, fixture sensors and an indoor
positioning system data were merged with product-
relevant information, to allow a real-time connection
between operator performance and varying produc-
tion.

In [29], sensor fusion for dynamic object tracking
is used. Measurements from several sensors are used
to increase accuracy and give more reliable and robust
estimates. There, sensormeasurements are combined at
various levels (raw data, state vector, decision level). In
[30], some findings are presented about monitoring a
channel hydrodynamic behaviour by means of sensors
based on imaging and ultrasound.

In this landscape, the demand of intelligent sensors
and sensor systems as the key enabler of enhanced flexi-
bility, adaptability, configurability and agility in produc-
tion processes has been fully recognized, as also con-
firmed in [31,32]. However, most of the solutions and
designs provided by research projects are still underes-
timating the impact that the choice of sensor systems
has on situational control and decisions. As a result, the
presented research shows how different domains and
application scenarios prefer specific sensing layers with
unique characteristics.

Preliminary research activities [33] have laid the
groundwork for the present work, by defining the main
categories for sensors used in CBM and by briefly
describing some of the pilots that are analysed in this
paper. Anyway, there is the need to provide more infor-
mation regarding the topic at hand, both in terms of
characterizing the sensorization (i.e. adding sensors in
a device, to allow for online data collection regarding
its status) of CBM-supported systems, by discussing
the problem of sensor ageing, which plagues hardware
sensors deployed in harsh environments such as fac-
tories, by providing more details regarding how CBM
is enabled by sensors in the pilots, and by presenting
the pilot on the monitoring of wind turbines, which
shows the application of off-the-shelf sensors for a very
specific – but effective – monitoring strategy.
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Figure 2. Distribution of sensor types: (a) distribution by applications and (b) distribution by nodes.

3. Sensors for machinemaintenance

Sensors for advanced maintenance operations can be
classified into a number of ways. While focusing on
real-world pilots, this paper differentiates the sensors
as common off-the-shelf sensors (Section 3.1), cus-
tom sensors that are created for specific maintenance
applications (Section 3.2) and virtual (software) sensors
(Section 3.4). Moreover, Section 3.3 deals with age-
ing issues that are relevant for off-the-shelf and custom
sensors.

3.1. Off-the-shelf sensors

According to [34] that examinedmore than 300 devices
in 12 different applications, one can observe two distri-
butions of sensor types, i.e. by application usability and
nodes availability (see Figure 2). In addition, seven sen-
sor types were identified as the most common sensors:
temperature, acceleration, light, force, audio, humidity
and proximity. The analysis also considers that most
sensor nodes offer multiple physical data sources (e.g.
pressure, light and temperature).

The effect of temperature can be noticed on mate-
rials (solids or fluids) and components. These effects
can have a significant impact on operation of machines
by causing increased wear, hydraulic systems degra-
dation, materials expansion, etc. Proper temperature
sensing allows for the continuous analysis of tempera-
ture variation and/or its stability. For example, scanning
bearing housing on motors can prevent major failures.
Monitoring the temperature of fluids is useful, as some
properties of fluids degrade with increased tempera-
ture.

Mechanical systems are composed of many moving
parts that deteriorate over time and generate vibra-
tion. Therefore, collecting acceleration data allows early

detection of rolling element bearing faults, gear wear,
etc.

Measuring the pressure of pumps can reveal their
physical changes. Operating conditions, such as fluid
type, temperature, and speed affect the pressure, and
if the pressure goes outside a given range, there is the
possibility of damaging parts. Moreover, pressure vari-
ation can lead to cavitation (creation of vapour cavities
in a fluid), which can potentially lead to material dam-
age [35]. Cavitation can be sensed either by means of
pressure or vibration or acoustic emission or sound
measurement.

The usage of light sensors may include the detec-
tion of material cracks and object detection. By placing
an object between a light source and a light sensor,
cracks can be detected by the amount of light that goes
through the object. Moreover, if a shadow is formed
on the light sensor, it can indicate the presence of an
object in a certain area, such as a person near a cut-
tingmachine, and thus shutdown themachine for safety
reasons.

Sound monitoring is strongly related to vibration
sensors. While vibration sensors register the motion
of the component they are rigidly attached to, micro-
phones listen to a component.Microphones are in some
cases used to monitor bearings and gearboxes.

Monitoring the percentage of humidity in a certain
environment can be useful, as for example, high levels
of humidity in an injection moulding process line can
add moisture to resins, causing improper moulding of
produced parts. The accumulation of moisture in gear-
boxes can lead to gearbox corrosion, reduced efficiency
and breakdown.

Proximity sensors can be used to measure the dis-
placement of parts, improper presence of objects and
vibration in rotational components. In case of non-
contact measurement, with the sonar or infrared light
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Figure 3. Torque sensor.

emission it is possible to detect the presence of objects
in the observed area.

3.2. Custom sensors

Many other kinds of sensors can be found in specific
applications. Usually, these sensors are not mass pro-
duced, their structure presents a high degree of cus-
tomization, and they retrieve very specific environmen-
tal data. Among the plethora of the custom sensors,
there are sensors capable of performing crack detec-
tion, torquemeasurement, analyse wear ofmaterial and
retrieve oil status [36].

The early detection of cracks allows the prevention
of fracture failures. These cracks can be produced by
applied stress concentration, excessive stress over time,
overload, defective assembly or environmental condi-
tions. Crack detection (through non-destructive meth-
ods) can be performed using different techniques such
as radiography, ultrasonic and shearography [37], pen-
etrating liquid [38], magnetic particle inspection [39].

Several sensing techniques can be applied to esti-
mate or compute torque. Through components speed,
it is possible to calculate torque and torque brake; an
alternative method is using pressure sensors to corre-
late with the torque brake [40]. Other custom sensors
(Figure 3) can target deviation of torque, brake torque
and friction values from the normal values, since they
can detect shaft misalignment or the presence of wear
particles, which in turn are predictors for equipment
malfunction.

Another type of custom sensor is the oil sensor.
Oil sensors can be divided into different groups based

on the data under measurement, such as oil condi-
tion, oil temperature and oil pressure. Oil condition
sensors have the capability to detect ferrous particles,
water, viscosity changes, etc. [41]. Oil condition moni-
toring allows the detection of lubricant related engine
wear and lubricant quality degradation, among other
problems [42]. Early problem detection leads to on-
time, preventive adjustments that reduce machinery
downtime.

3.3. Sensor ageing

Whether off-the-shelf (Section 3.1) or custom sensors
(Section 3.2) are used, they must be robust and built
in such a way that they withstand the rigours of indus-
trial environments. All electronic devices have limita-
tions and real sensors are no exception. In many cases,
right away after being bought, off-the-shelf sensors are
unable to fulfil the requirements in CBM monitoring.
Hence, there is often a need for the optimization of
sensors for specific conditions, and particularly for the
use in harsh environments. A reasonable solution to
this problem can be the right choice of a suitable sen-
sor technology together with the implementation of an
appropriate measurement (monitoring) strategy. Fur-
thermore, an important aspect of sensor application
in systemmaintenance is ageing. Sensor characteristics
are degraded with time and for this reason they should
be monitored as well.

Several studies show that the key sensor charac-
teristics (e.g. the offset and the functional sensitiv-
ity) normally change to some extent in the course
of time [43–46]. Operation in harsh environmental
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conditions (high temperature, aggressive medium,
location, frequency and intensity of loadings) certainly
accelerates the ageing rate of sensors. The ageing man-
ifests in deterioration of material and the defects in
the sensing structure influencing the reliability of the
sensor readings.

While physical systems and their working environ-
ment are continuously monitored by a range of sensors,
resulting in massive amounts of data, we need to con-
sider the sensor ageing and need to have somemeasures
to mitigate time ageing in order to correctly interpret
the data.

Non-negligible ageing of the sensors should also be
taken into account when selecting the sensing com-
ponents for CBM monitoring. One can improve the
reliability of the sensor readings by introducing redun-
dant sensing hardware into the system, but such solu-
tions may not always be feasible due to cost and space
constraints. Therefore, it is important to consider sen-
sor’s characteristics degradation over time and for this
reason they should be monitored as well. Besides the
proper selection of the sensing components, this might
also include the proper interpretation of sensor data.

The problem of monitoring the sensor’s perfor-
mance has been considered by many authors. One
solution is an approach based on capturing dynamic
characteristics of the sensor within the sensor readings
separately from those of the monitored system [47],
which enables tracking of key dynamic indicators of
the sensor and statistically assess the significance of
their changes. In [48], the authors discuss three dif-
ferent methods for the sensors’ conditions monitoring
based on their own measurements which are able to
detect deterioration/failures of the sensor parts in time
for their replacement. Alternatively, a possible solution
can be an implementation of virtual sensors.

3.4. Virtual sensors

The virtual sensor is a technology used to retrievemore
effective and accurate information from collected data
[49,50]. Virtual sensors make use of readings collected
either by multiple networks or from a single sensor.
Data are combined frommultiple sources (e.g. temper-
ature, humidity, CO2) andprocessmodels are applied to
compute new outputs, based not only on current sensor
values but also on its time series.

The Virtual Sensor Architecture, whose view is rep-
resented in Figure 4, can retrieve sensor data either in
an event-based acquisition, meaning that physical sen-
sors will make the data available (generate events) when
certain conditions are met; or in a time-based fashion,
where the virtual sensor will periodically inquire the
physical sensors for new data. This step is accomplished
in the Acquisition Method module. The Aggregation
Functions module has the task of applying common
mathematical functions (e.g. temperature average of

different sensors in a same room) or complex models
(e.g. wear prediction model). The entity/user manag-
ing the virtual sensor has the capability (through the
Dynamic Configurator module) to change threshold
parameters used to generate outputs or to change sig-
nal evaluation parameters. Configuration parameters
are kept in the Virtual Sensor Parameters module and
are used by the Signal(s) Evaluationmodule to perform
an analysis of the results achieved in the Aggregation
Functions module. Finally, similar to the Acquisition
Method, the Response Method module is able to gen-
erate the virtual sensor output, by the same two com-
mon paradigms, i.e. through events or in a time-based
manner.

Virtual sensors are used in different areas, such as
computer science, construction, chemistry and trans-
portation systems. In computer science, virtual sensors
(i.e. programs) hide hardware components from upper-
level applications. They offer consistent and recon-
figurable information and are easier to maintain and
upgrade than real sensors. A virtual sensor example
in a construction site is to determine if a crane has
exceeded its capacity. Using physical sensors tomonitor
angle and wind speed, calculations can be performed
by virtual sensors to evaluate instant working safety
[51]. Another example is the usage of virtual sensors in
chemistry, in applications that control air quality, leaks
and danger of an explosion. The combined usage of
temperature and gas concentration raw data, allows the
production of virtual sensor outputs that discriminate
between H2, CO and humidity. An example regarding
transportation is based on the Washington State’s Traf-
ficManagement System [52], where a virtual sensor was
developed that relied on real-time data from road sen-
sors, to predict traffic on roads that do not have real
sensors. Both virtual and real sensing data are provided
to the Transportation Department.

4. Use cases

This section presents four pilots in which the usage
of CBM can facilitate maintenance interventions, cost
reduction, equipments lifetime, and in general provide
added value to the industrial process. With respect to
a traditional remote maintenance scenario, and most
previous work, the main objective of a CBM system is
not only to monitor an asset but also to infer its current
and future condition and take decisions in its mainte-
nance, bymeans of leveragingmultiple data sources and
advanced data analysis to distill all collected data into
high-level information leading to informed decisions.

The four pilots were built in the context of theMAN-
TIS project [3], and all of them feature real-world fac-
tories and installation. Therefore, the use cases provide
a connection between the role that CBM is supposed
to hold, and what is actually happening in real instal-
lations as technology evolves and our economy and
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Figure 4. View on the virtual sensor architecture.

society change with it. The first pilot (Section 4.1)
exploits the composition of data from off-the-shelf sen-
sors, the second one (Section 4.2) focuses on the use
of custom sensors, the third one (Section 4.3) features
virtual sensors, and the fourth one (Section 4.4) uses a
set of sensors deployed dynamically by using a robotic
platform.

4.1. Monitoring of a sheetmetal bender

The Sheet Metal Bender pilot [53], whose architecture
is represented in Figure 5 involves detection, predic-
tion and diagnosis of malfunctions in a sheet metal
bender machine that pertains to the Greenbender fam-
ily, manufactured and commercialized by ADIRA (see
Figure 6). The machine is able to exert a force up to
2200 kN using 2 electric motors of 7.5 kW each, and
it is able to bend metal with high precision. Moreover,
the Greenbender is able to save energy by the order of
65% (95% while in stand-by mode, 45% when operat-
ing) with respect to similar equipment, and it is aligned
in this sense with the European directive EcoDesign
(2005/32/CE).

The use case considers two scenarios. In the first sce-
nario, a malfunction in a component raises the need
for the replacement of component(s), and the goal
of the work is to allow the monitoring subsystem to

detect a potential failure in the industrial process, per-
form proper analysis, and communicate the replace-
ment operation that must be implemented. The second
scenario aims to predict machine failures before they
occur, by means of applying machine learning tech-
niques to data collected from the sensors.

Data are collected from sensors used for the automa-
tion of the machine, which existed previously to
the MANTIS project and gathered by the Computer
Numerical Controller (CNC) of the machine, and
from two new sets of sensors, an oil sensor and two
accelerometers.

A sensor responding to the Custom Sensors cate-
gory (see Section 3.2) monitors the oil that lubricates
the machine’s hydraulic circuits, both in terms of its
temperature and its quality, being the latter related with
presence of contaminators like water, particles, glycol
and other impurities in the oil.

The system that analyses the oil consists of two parts,
the sensor unit (Hydac Sensor AS1008), and the data
acquisition and computation board. The sensor reads
temperature from −25 to 100 ◦C, and saturation from
0% to 100%. Both signals are reported using a 4–20mA
interface. The data acquisition/computation module
receives the signals, convert them and exports the data
through an analogical voltage signal with a range from
0 V to 10 V to the machine’s CNC. The CNC digi-
talizes and sends the data through a communication
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Figure 5. Monitoring architecture for metal sheet bender.

Figure 6. Frontal view of the machine with two Inertial Measurement Units (IMUs).

middleware to the cloud for storage and processing, the
latter being the comparison with custom thresholds.

Two accelerometers (highlighted in Figure 6) per-
taining to the off-the-shelf category (Section 3.1) mon-
itor the blade that performs the bending of the metal
sheet, both in terms of its movement, and the vibration
patterns caused by the hydraulics. In fact, the vibratory
pattern can be related to the condition of the machine’s
bendingmotors, and the collected data can thus be used
to perform CBM of the machine. Data are sent to the
cloud for storage and processing, andmachine learning
is used to learn vibration patterns and detect outliers,
from which CBM can predict failures. For example, if
the hydraulic pistons are starting to malfunction due to
the existence of particles in the oil, a different vibration
pattern can be detected.

The sensors are based on the Arduino 101 platform
that provides a 3-axis accelerometer with a maximum

amplitude range of 8g, and are battery-powered in order
to ease components’ installation. For this specific pilot,
the sensors were configured for a lower measurement
range (0g to 2g) to attain a better accuracy.

The MANTIS-PC is a Raspberry Pi 3 Model B that
acts as a Bluetooth Low Energy (BLE) server, a data-
converter, a middleware client, and provides a simple
User Interface to inspect the data as they are collected.
TheMANTIS-PCuses a server-side JavaScript program
built over Node.js and the noble library to collect values
from both sensors with a period of 30milliseconds, and
sends them to cloud through the Middleware compo-
nent, which is based on the AMQP [54] protocol. The
cloud hosts the components to store the data (Database,
or DB), to analyse them (Analysis) and to interact with
the user (HumanMachine Interface or HMI). The sim-
ple HMI presented by the MANTIS-PC (Figure 7) uses
a server-side/client-side JavaScript based on Node.js to
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Figure 7. Simple Human Machine Interface (HMI).

Figure 8. A stamping press machine.

send warnings to management personnel. The inter-
face is based on the Highcharts library, and it enjoys its
“full-responsiveness” capabilities.

4.2. Pressmachinemaintenance

A stamping press (Figure 8) is ametal workingmachine
used to shape or cut metal by deforming it with a die.
This use case focuses on press machine maintenance,
monitored continuously by a broad and diverse range
of intelligent sensors that keep track of its operational
conditions.

A mechanical press, during its active lifetime, might
be capable of giving more than 40 million strokes
applying forces of the order of 2000Tn, insofar as it is
used – and maintained – appropriately. The machine

under study belongs to Fagor Arrasate, whose cus-
tomers demand products with high quality and avail-
ability. These latter characteristics are in contrast with
the production downtime caused by unnecessarymain-
tenance and repair operations. Therefore, based on
financial studies, it was decided to incorporate cyber-
physical systems in the most critical components, to
facilitate CBM activities in order to provide high avail-
ability but without extensive unnecessary maintenance
operations, besides reducing malfunction chances and
improving lifetime.

CBM activities in this use case enabled by a cloud
service platform, which makes use of data captured
continuously, monitored, transmitted, stored and anal-
ysed by intelligent sensors responding to the Custom
Sensor category (see Section 3.2). In particular, two
applications collect data from multiple data sources
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related to press structural health, crank forces andwear-
ing of gears and bushings.

A first application is focused on structural health
monitoring by means of an early detection of cracks/
fissures in the press’ head and caps, which enables
to prevent damaging fracture failures caused by press’
damping and stress concentration in certain parts of the
structure. Both crack gauges and conductive inks are
being used, the last allowing higher surface measure-
ments. In the latter case, ink is spread on the surface
of the monitored component, and the current pass-
ing through the ink is measured and compared with
a threshold. The rationale is that cracks on the target
make the ink break and thus increase the resistivity of
the circuit. A key factor for an optimized application
is to thoroughly choose and deposit a proper insulat-
ing layer, by means of flexibility, among other facts, as
the crack needs to be naturally transferred up to the ink
layer, behaving likewise.

The second application is represented in Figure 9,
and it implies the sensorization of a gear shaft. A
shaft-adapted wireless sensor node [55] comprises a
transducer (torque oriented gauges), a signal condi-
tioning front-end and a wireless microcontroller, the
latter allowing a local preprocessing and treatment
of the collected data. Two software approaches are
implemented. In the first one, a finite iteration based
auto-zeroing algorithm is applied, which configures the
proper gain and offset values for the system, taking into
account gauge’s signal and measured signal feedback,
thus enhancing system’s dynamic range and avoiding
signal saturation. In the second one, digital data are
retrieved and preprocessed, reducing the payload by
means of averaging. These data are transmitted to a
gateway based on the Beagle Bone platform via a cus-
tom industrial protocol, since standard ones either lack
of deterministic features (e.g. IEE802.15.4) or scalabil-
ity (e.g. IEEE 802.15.1). Moreover, widespread indus-
trial solutions (e.g. ISA100.11a) donot provide tools for
guaranteeing sampling synchronization, which is crit-
ical for certain applications, therefore a TDMA MAC
has been placed on top of the physical layer and spe-
cific synchronization elements have been added for
obtaining synchronized analogue digital converter con-
versions in nodes [56]. Finally, the necessary calcu-
lations to obtain torque values (Nm) are done in a
computer connected to the gateway.

The fact that the sensor has to be applied in a rota-
tory and shaky shaft (working at approximately 88 rpm)
implies, on one hand, the need to develop a robust hous-
ing architecture and housing to protect it from vibra-
tions and lubrication oiliness [57]. Regarding the elec-
trical domain, a proper isolation from electromagnetic
interference is needed, protecting the most sensitive
signals and components, bymeans of dedicated filtering
configurations, passive elements add-ons or shielding.
On the other hand, a power friendly approach must be

Figure 9. Wireless torque sensor node block diagram.

considered, such that thewireless sensor canworkwith-
out external grid power. Current design allows a finite
duration of the measurement process, as the system is
powered with a small Li-Ion battery. Thus supplemen-
tary solutions such as wireless power or energy harvest-
ing are under analysis. In fact, this latter approach is of
interest in this scenario, where multiple energy sources
are available, such as vibrations, temperature and radio
frequency noise. The key factor is a good matching
between the available energy source [58] in such sce-
nario and themost suitable harvesting technology for it,
in order to scale an optimize harvesting solution. Once
that is defined, a well-suited low power energy acqui-
sition, storage and management unit is needed, which
controls the systems power supply or support efficiently.

4.3. Maintenance ofmedical devices

Modernmedical devices have a large number of embed-
ded sensors, and in this use case CBM is applied to
advanced medical devices from Philips that can per-
form non-invasive patient diagnosis. Installed sensors
cover the complete range of off-the-shelf sensor type
(Section 3.1), and data are distilled into more advanced
information by means of virtual sensors (Section 3.4).
The hardware sensor solution under development is
a stand-alone sensor box, the e-Alert controller, that
can autonomously monitor environmental conditions
of the medical device, and that can generate electronic
notifications to different users of the medical device.
The e-Alert controller (Figure 10) is based on a Rasp-
berry Pi platform, and it can sample connected sensors,
for example, temperature sensors, humidity sensors,
magnetic field sensors. These sensors are connected to
an interface box (max 8 sensors per interface box), and
the interface box is connected to one of the inputs of
the e-Alert controller box. Multiple interface boxes can
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Figure 10. e-Alert controller box to monitor environmental conditions in a medical device.

Figure 11. Sensor context diagram.

be daisy-chained. This provides a scalable sensor plat-
form that can be tailored for the specific device under
monitoring.

The e-Alert controller box acquires sensor values
once perminute and checks these values against config-
ured thresholds. To avoid false positives, a sensor value
must be out-of-spec for a number of consecutive sam-
ples before an alert is raised. If a sensor value remains
out of the configured threshold, the e-Alert controller
box sends an Email or SMS alert to configured alert
receivers.

The e-Alert controller software is represented in
Figure 11. It provides a web-based user interface to
configure sensors, thresholds, Email/SMS server and
Email/SMS receivers. The e-Alert controller is con-
nected to the hospital network and, through its IT
infrastructure, healthcare facility staff can access the
user interface of the e-Alert controller. This user inter-
face provides capabilities to view the history of sen-
sor values when root cause analysis is required after
an alert. Moreover, the user interface allows to recon-
figure the e-Alert controller, for example for its alert
thresholds, and to update its embedded software.

The e-Alert controller also provides a capability to
interfacewith themedical devicemanufacturer. For this
purpose, connectivity to Philips Remote Service (PRS)
can be configured.With this interface, sensor values can
be aggregated and statistically analysed by the manu-
facturer. This enables the manufacturer to determine
an operational profile, specific to that medical device.
This information can be used to fine-tune the config-
ured alert thresholds for that specific device to keep
the medical device in optimal operational conditions.
The benefits from the CBM strategy can easily be seen,
since the device is life critical. It is not acceptable that
devices would fail when in use as it is not financially
possible to have redundancy, and moving of patients to
another hospital might not be possible, and thus it is of
the utmost importance tominimize devices’ downtime.

A web-based portal (Figure 12) was developed to
access the e-Alert data. This portal provides access to
the complete history of sensor data for each of the
e-Alert controllers, which are connected to the PRS.
Furthermore, the portal is used to review the connec-
tivity status; this enables themanufacturer to restore the
connectivity to support the CBM strategy.
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Figure 12. e-Alert controller data portal.

Figure 13. Temperature distribution and classification (left) and temperature correlations (right).

One of the scenarios considers to obtain operational
profiles of the medical device to fine-tune the config-
ured alert thresholds. For example, temperature sensor
data from 20 e-Alert controllers, covering 2 different
magnet types, has been analysed. For a period of 6
months, the average temperature and its variance has
been calculated (see left side of Figure 13). Each cen-
tre of a bubble is the average temperature whereas the
radius is the variance. Each bubble represents one e-
Alert controller. From this analysis, it has become clear
that the alert levels can be magnet-type specific.

Another analysed scenario aimed to check the cor-
relation between sensor values. For that purpose, 30
days of temperature sensor data (named T1, T2, Room)
has been analysed, see right side of Figure 13. Here,
it is observed that there is a correlation between these
temperatures. Consequently, the e-Alert controller can
issue three (different) alerts, even in case of a single fail-
ure mode. Knowledge about such correlations can be
used to avoid duplicate alerts and further optimize PM.
This correlation was observed for multiple e-Alert sen-
sors, but not for all of them. This indicates that there are

other, yet unknown, mechanisms or local environmen-
tal conditions that may lead to this correlation.

4.4. Monitoring of a wind turbine

The status of a wind turbine, represented in Figure 14,
can be monitored by means of a set of Acoustic Emis-
sion sensors (AE) placed on the tower next to its joint
with the nacelle. The sensors are of off-the-shelf kind
(Section 3.1) and were added in the context of the
MANTIS project execution.

The monitoring process is represented in Figure 15.
Typically, all rotary equipment produces an acoustic
signature (Acoustic Emission) that propagates through
thematerial. The purpose of the presented technique is,
by means of AE sensors, to acquire those signals, pro-
cess them and compare them over time to verify the
structural health of the wind turbine. The wind turbine
structural noise is the basis for the degradation analy-
sis. Such noise is composed by the contribution of each
wind turbine rotary components, themechanical forces
generated by the blades movement, and wind.
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Figure 14. Wind turbine area of interest.

During the normal operation of the turbine, all the
components are rotating and producing fairly constant
and stable signals. Those are treated as benchmark sig-
nals and considered as background or Gaussian white
noise. If a malfunction occurs and one of the rotary
components is permanently damaged, the acoustic sig-
nature would change. It is possible to identify three
main different structural changes: (a) degradation of
the bearings/gearbox that increases the friction forces
applied on the rotary shaft and reduces the power trans-
mission ratio while producing higher floor levels of
noise. (b) Shaft and/or bearing misalignment, which
produces periodic acoustic signal patterns that can be
detected and analysed. (c) Mechanical cracks, which
generate new frequency harmonics, can be visualized
as spikes outstanding from the regular noise.

To undertake the signal processing, the signals are
amplified and their mean levels are removed before
being acquired by an analogue digital converter. The
pre-amplifiers are installed as close as possible to the

acoustic emission sensors in order to improve the signal
noise ratio. The analogue digital converter is connected
directly to a PC used to run the signal processing algo-
rithms and export the signal to be further processed.

The condition monitoring system implements two
different measurement strategies. The Periodic and
Automatic Periodic Monitoring (PAPM) strategy con-
siders that the monitoring subsystem is permanently
installed and attached on the top part of the wind tur-
bine tower, and the monitoring process is periodically
executed according to the schedule previously defined
by the end user. The Spot Measurement (SM) strat-
egy considers that themeasurement process is executed
whenever the end user requests it, disregarding the
previously defined schedule; this implies the interac-
tion with the end user, but on the other hand it allows
executing multiple measurement when a problem is
expected.

The actual inspection is undertaken by means of a
robotic platform able to climb up to the area of interest
using magnetic adhesion. Once the position has been
reached, the AE Sensors, which are installed on board,
are deployed and so the signal acquisition begins. The
acquisition is done through a Red Pitaya which makes
the analogical–digital conversion. The data are trans-
ferred in real time to the ground control box where
there are two possible options: (a) real-time signal pro-
cessing can be executed to visualize and assess in situ
the status of the wind turbine. (b) The data can be
uploaded into the cloud for post processing.

4.5. Discussion

The four pilots deal with the maintenance of expensive
devices, which are sold in limited volumes, and whose
downtime is very expensive to the owner.

Figure 15. Wind turbine monitoring process.
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The pilots were selected to corroborate the sensor
categories defined in Section 3. In fact, even though all
the pilots pertain to the application area of CBM, they
have different characteristics, leading to the employ-
ment of different categories of sensors.

The first pilot (Section 4.1) involves the monitoring
of machines that are sold to factories far away from the
machine manufacturer, and the goal is to predict when
a failure will occur to send spare parts proactive and
reduce downtime. The pilot exploits the composition of
data from off-the-shelf sensors, the rationale being that
the sensorization must abide to a trade-off between the
cost of a failure and the sensorization itself.

The second pilot (Section 4.2) focuses on the use
of custom sensors, which are much more expensive
than off-the-shelf sensors since they do not benefit from
economy of scale. Anyway, the machines monitored in
the second pilot are much larger and more expensive
than in the first one and thus allow for usingmuchmore
expensive sensorization.

The third pilot (Section 4.3) considers cheaper
machines that are sold in higher volume. In this case,
the CBM strategy involves to leverage the data collected
by all the machines to look for a baseline, and for out-
liers that are hints of incoming failures. This pilot thus
features virtual sensors, since the most important work
is done on the cloud by software sensors that use the
large volume of data collected frommultiple machines.

The fourth pilot (Section 4.4) uses a set of off-the-
shelf sensors installed dynamically onto machines that
are deployed outdoor. The environmental hazards that
can hurt the machines can took their toll on the sen-
sors too, having an impact on sensor aging, and the
implemented solution was to renew the sensors peri-
odically. The sensors themselves are off-the-shelf since,
even though the monitored machines are extraordinar-
ily expensive, the sensors are supposed to have a limited
lifetime and thus have to be reasonably cheap.

5. Conclusion

This paper describes different CBM strategies. CBM’s
dependency on sensor data was in fact the motivation
for this research. The classification of sensor require-
ments, capabilities and aging effects is done using four
different real-life pilots. In these pilots, the devices are
equipped with a combination of off-the-shelf sensors
(see Section 3.1) and custom sensors (see Section 3.2).
Some sensors are based on physical sensing units to
collect data from the environment (e.g. shop floor,
machines) and are prone to ageing (Section 3.3). Other
sensors are based on virtual sensors (see Section 3.4)
that embody local data processing capabilities.

In the context of CBM, the bulk of data processing is
done on the cloud, for example to compute behavioural
patterns and perform comparison with other similar
machines. One of the most important prerequisites for

CBM is to equip devices with communication capabil-
ities, usually by adding gateways based on cheap yet
powerful platforms such as Raspberry Pi, to transfer
data from the device to the cloud. The importance of
sensors in devices is clear for the monitoring industry,
but our research shows the importance of cost-effective
physical and virtual sensors. Such sensors enable indus-
tries to increase the scale of sensors and harvest the
potential savings of CMB strategies.

Anyway, many industries still struggle when con-
fronted with the trade-off between the investment
required for sensorization and the magnitude of the
savings brought in by CBM. As a future work, we plan
to study the economics of increased sensorization.
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