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Abstract
In karst landscapes stony soils have little water holding capacity; the rational use of water 
for irrigation therefore plays an important management role. Because the water holding 
capacity is not homogenous, precision agriculture approaches would enable better manage-
ment decisions. This research was carried out in an experimental vineyard grown in an arti-
ficially transformed karst terrain in Dalmatia, Croatia. The experimental design included 
four water treatments in three replicates: (1) fully irrigated, based on 100% crop evapo-
transpiration (ETc) application (N100); (2 and (3) deficit irrigation, based on 75% and 50% 
ETc applications (N75 and N50, respectively); and (4) non-irrigated (N0). Hyperspec-
tral images of grapevines were taken in the summer of 2016 using two spectral-radiance 
(W sr−1 m−2) calibrated cameras, covering wavelengths from 409 to 988 nm and 950 to 
2509 nm. The four treatments were grouped into a new set consisting of: (1) drought (N0); 
and (2) irrigated (the remaining three treatments: N100, N75, and N50). The images were 
analyzed using Partial Least Squares-Discriminant Analysis (PLS-DA), and treatments 
were classified using PLS-Single Vector Machines (PLS-SVM). PLS-SVM demonstrated 
the capability to determine levels of grapevine drought or irrigated treatments with an 
accuracy of more than 97%. PLS-DA identified relevant wavelengths, which were linked to 
O–H, C–H, and N–H stretches in water, carbohydrates and proteins. The study presents the 
applicability of hyperspectral imaging for drought stress assessment in grapevines, even 
though temporal variability needs to be taken into account for early detection.

Keywords  Vineyard · Irrigation · Water stress · Hyperspectral imagery · Soil · Precision 
agriculture

Introduction

Karst landscapes characterized by uplifted carbonate rocks are especially widespread along 
the Croatian Adriatic coast and islands displaying considerable spatial variability due to 
contrast in relief, bedrock composition and structure, and other factors (Romic et al. 2012). 
In such conditions, rural area faces a lack of arable land. Karst landscapes have a great 
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potential for providing cultivated land. In many parts of the Mediterranean karst terrains 
have been directly modified to enhance their agricultural potential. In last two decades, in 
Croatia, more than 5000 ha of karst stony terraces and steep slopes have been remediate by 
stone crushing to create larger and flatter areas for cultivation and to make the land suitable 
for agricultural production, mostly for grapevine and olive production. After the deforesta-
tion, new grapevines and olive trees are planted, particularly on the slopes exposed to the 
sun and sheltered from strong winds. The karst areas along Croatian coast benefits from 
Mediterranean climate with warm to hot, dry summers, and frequent winds, conditions that 
favor organic vineyard management.

Karst landscapes, however, are highly fragile and vulnerable to anthropogenic as well 
as climatic stresses. In stony and gravelly soils, rainwater percolates rapidly downward 
through the soil layers. Moreover, soil obtained after Karst reclamation is characterized 
by high share of stones and rock fragments, having variable share of fine soil fraction and 
low water holding capacity. Thus, the lack of moisture can be an important risk indicator 
in wine production within these areas. Drought stress is one of the biggest challenges in 
crop production (Pennisi 2008), and arises from insufficient rainfall and soil water during 
the growing season (Vadez et al. 2011). Climate change projections show a decrease in the 
number of rainy days, leading to increased risk of drought (Vadez et al. 2011).

Karst freshwater constitutes by far the main source of drinking water and its use for 
irrigation is often unsustainable. Even more, the uneven volume and depth of karstic lime-
stone aquifers are often make the drilling wells and water extraction difficult and highly 
expensive.

The rational use of water for irrigation plays an important role in managing vineyards 
within karst landscape. Winemakers have recognized the importance of good irrigation 
management to optimize wine water stress in stony soils with little water holding capacity. 
However, because irrigated viticulture within these very specific environmental conditions 
is relatively new, the potential of different approaches/measurement techniques that could 
help winemakers to define vine water status for guiding irrigation is still evolving.

Vine water status can be assessed through soil water measurements and the use of phys-
iological indicators. However, water measurements in stony karst soils, where rock frag-
ments are dominant over the fine earth fraction, are especially challenging because: (1) 
the very coarse nature can pose soil contact problems for the majority of the available soil 
moisture monitoring devices (Al-Yahyai et al. 2006); and (2) soils made by rock-ploughing 
show great within-field variability (e.g. the proportion of gravel can range from 40 to more 
than 70%) and significantly more probes are required for accurate assessment of soil water 
content, and a significantly larger number of probes is required for accurate assessment of 
soil–water content. Under such conditions, irrigation scheduling should be mainly based on 
vine water status. Current standard procedures include measurements of individual vines 
(plants), leading to extensive and time-consuming field work, which is subject to measure-
ment and sampling errors (Rodriguez-Perez et al. 2007).

Understanding plant responses to drought stress requires information from the molecu-
lar level to that of the whole plant (Chaves et al. 2003). Remote sensing applications allow 
for a reliable and quick non-destructive assessment of water status in plants (Behman et al. 
2014) on different spatial scales (e.g., whole plants or individual leaves). Sensors can detect 
changes in photosynthetic activity, which are linked to biotic and abiotic stress in plants 
(Matese and Di Genaro 2014). Hyperspectral imaging combines the benefits of imaging 
and spectroscopy techniques (Mahesh et al. 2008), since it collects both spatial and spec-
tral data, and combines them in a 3D hypercube. The spectral signature (the amount of 
reflected light as a function of wavelength) obtained in this way is based on the physical 
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and chemical properties of the material examined, and is therefore unique (Ravikanth et al. 
2015), and can provide significant improvements in assessing vineyard biophysical and 
quality parameters (Zarco-Tejada et al. 2005; Diago et al. 2014).

Spectral signatures of plants are influenced by several factors, linked to specific areas 
of the light spectrum. In the visible part of the spectrum (400–700  nm), pigments are 
prevalent (e.g., chlorophyll, carotenoids, anthocyanins). In the near infrared region (NIR, 
700–1000 nm), leaf morphology and structure influence signatures, while short-wave infra-
red (SWIR, 1000–2500 nm) reflectance is influenced by water and metabolites (e.g., cel-
lulose and proteins) (Behman et al. 2014, Matese and Di Genaro 2014). While changes in 
pigment structure can be visible to the naked eye, variations in the NIR and SWIR regions 
are invisible (Elsayed et  al. 2011). However, changes in the SWIR region occur prior to 
the development of visible symptoms, and hyperspectral imaging enables presymptomatic 
detection of stress in plants (Rumpf et  al. 2010; Behman et  al. 2014). Stress conditions 
induce changes in plant physiology and leaf structure, which in turn influence the spectral 
signatures (Wahabzada et  al. 2016; Govender et  al. 2009). Appropriate spectral analyses 
can detect these changes and can be used to characterize the plant’s physiological state, 
and assess genotype-specific responses to biotic and abiotic stresses (Mahlein et al. 2012; 
Wahabzada et al. 2015).

Spectral analyses can be performed by utilizing only selected parts of the light spec-
trum or by using vegetation indices. These are calculated based on combinations of a few 
selected wavelengths, associated with specific morphological and physiological parame-
ters, such as chlorophyll content (Fiorani et al. 2012). Vegetation indices have been suc-
cessfully applied to determine plant responses to stress (Kim et  al. 2011; Behman et  al. 
2014). Spectral indices can also be used as explanatory variables in classification algo-
rithms, such as support vector machines (Rumpf et al. 2010; Behman et al. 2014). But all 
indices suffer from the same drawback, i.e. they utilize only selected wavelengths, ignoring 
most of the information that’s available in hyperspectral data. Multivariate methods (such 
as partial least squares regression) and machine learning algorithms (e.g. support vector 
machines) have been utilized to develop models for reliable detection of abiotic and biotic 
stress in plants (Vigneau et al. 2011; Mahlein et al. 2012; Römer et al. 2012; Susič et al. 
2018).

This research was carried out in a Babic (Croatian autochthonous cultivar) vineyard 
organically managed and grown on artificially created soils with at least 80% of gravel 
(> 25 mm) and high variability of soil–available water. Within this paper, the applicability 
of hyperspectral imagery to detect water status of grapevine plants under non-irrigated and 
irrigated conditions using reflectance measurements was tested. The hypothesis was that 
hyperspectral imaging will enable reliable identification of plant water stress and its sever-
ity. Furthermore, the SWIR spectral region was expected to be of higher importance in 
water stress detection than visible-near infrared wavelength region (VNIR).

Methods

Overview of environmental and experimental conditions

The irrigation experiment was conducted over three consecutive years (2014–2016) at 
a commercial organically managed vineyard (Vitis vinifera L.) of 7-year old “Babic” 
vines (0.8 × 2.0 m spacing) located in Šibensko kninska county in the wine producing 
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region of Croatia with Mediterranean climate (Fig. 1). The substrate was produced by 
stone crushing to the depth of approximately 0.6 m. The native soil types in the area 
were regosol and shallow brown soil on limestone, which became transformed into cul-
tivated karst and such a land was mainly dedicated to the planting of wine grape and 
olives (Fig. 2a, b). The distribution of rock fragments in such substrate is highly variable 
regarding the fragments share, shape and size within the root zone. In the surface layer 
to the depth of 25 cm the share of rock fragments > 25 mm in diameter amounts 81%. 
The texture of fine soil particles with diameter below 2  mm is silty clay loam mixed 
with the small rock fragments left after crushing with the size of fine and coarse sand. 
Underlying layer in the depth of 25–60 cm is dominated by large blocks of crushed rock 
and coarse stone fragments with the share of fine particles of 6 to 15%. Consequently, 
water retention capacity is low (3.1–6.7 vol%), and very low available soil moisture 
(3.9–6.1 vol%). Fine soil fraction is alkaline (pHKCl = 7.6), containing variable content 
of CaCO3 (10–48%), as well and humus content (3.5–6%).

Fig. 1   Geographical setting of the study area, aerial photograph of the study area and maps of the vineyard 
plot with their respective treatments

Fig. 2   Photographs of vineyard features in the study area a and b 
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Average annual precipitation of the area ranges from 557 mm to 1200 mm being quite 
evenly distributed over the year, and the driest from May to September. Babic cv. (Vitis 
vinifera L.) vines were grafted on Richter 110 rootstock and trained to a vertically shoot-
positioned trellis system. Weather variables including air temperature, relative air humid-
ity, precipitation, leaf moisture, wind speed and direction, solar radiation and soil moisture, 
were recorded in 10 mins intervals at an automated weather station located at the study 
site (Pinova Meteo Weather Station http://pinov​a-meteo​.com/hr_HR). The reference evapo-
transpiration (ET0) was used, along with a crop coefficient (Kc) to compute the amount 
of water required daily by the vines, crop evapotranspiration (ETc) using the equation 
ETc = Kc × ET0 (Allen et al. 1998). The values of Kc were derived from previous experi-
ments (Girona et  al. 2006; Marsal et  al. 2008) and were estimated for the specific stage 
of the canopy development as follows: for the initial stage Kc in = 0.2, for the mid-season 
until harvest Kc mid = 0.66, and for the late stage Kc end = 0.25. In the study area, growing 
period starts in Mid-March by bud burst, and ends in late October by leaf fall. Drip irriga-
tion was applied based on the daily water balance and the treatments consisted of:

–	 Rain fed treatment (non-irrigated) as a control (N0),
–	 Irrigation treatment corresponding to 50% ETc (N50)
–	 Irrigation treatment corresponding to 75% ETc (N75)
–	 Irrigation treatment corresponding to 100% ETc (N100)

Irrigation experiment was conducted on three separate rows of grapevines with 50 vines 
each, with one row of isolation. The drip lines were placed along each row with 2 L h-1 
emitters placed 0.6  m distance. Irrigation water addition per treatment was adjusted by 
installing 1, 2 or 3 pipe lines, applying the same irrigation time for each treatment. Web 
based GALCON GSI irrigation controller (http://galco​nc.com/) was used for the remote 
irrigation system management. Irrigation began when the sum of decade values of ETc 
exceeded the sum of precipitation, that was in the first decade of June in 2015, and second 
decade of June in 2016. In 2016, irrigation was applied in 41 occasions and was ended 
in the third decade of August grapevines were managed organically, and all management 
practices were the same in all plots.

For spectral analyses, five plants from each line were randomly selected. Thus, each 
treatment consisted of 15 plants for a total of 60 plants. Hyperspectral images of the 
selected grapevines were captured in 1 day, on 26 July 2016, using two cameras, Hyspex 
VNIR-1600 (spectral range from 400 to 990  nm, bandwidth 3.6  nm) and SWIR-384 
(950 to 2500 nm, bandwidth 5.4 nm) (Norsk Elektro Optikk, Norway), yielding a total 
of 448 spectral bands. The cameras were mounted on a tripod with a rotation stage, and 
moved around the vineyard with a tractor. Image acquisition started at 9:00 and was 
completed within a time span of 2 h, in order to minimize light-source temperature drift 
and stabilize spatial lighting uniformity (Piqueras et al. 2012). A gray diffuse reflectance 
standard Zenith Lite™ of 20% reflectance was used as a reference for incoming sun-
light. Because this reference panel has a known reflectance, it enabled the calculation 
of reflectance of sunlight off plants (Eq. 1). The hyperspectral images were calibrated 
to radiance units (W sr−1 m−2). The radiometric calibration process accounts for sensor 
characteristics and is an obligatory part of every spectral pre-processing. Spectral radi-
ance described the amount of energy reflected off a surface, disregarding the amount 
of incoming energy or light. Leaf-area (i.e. pixels containing spectral information from 
leaves) and reference plate pixels (i.e. pixels containing spectral information from the 
reference plate) were extracted by classifying each image using spectral information 
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divergence (Du et al. 2004). The latter is a classification method which compares image 
pixel data with a referential spectral library. In this study the spectral library for spectral 
information divergence consisted of four classes: (1) reference plate, (2) leaf-area, (3) 
ground, and (4) other (e.g. metallic wires holding the vines). The smaller the divergence 
(i.e. greater dissimilarity) between the image pixels and spectral library references, the 
higher the probability that they belong to the same material. Using this classification 
image content was separated into four classes, of which only reference plate and leaf-
area pixels were retained for further analysis. These extracted radiance values were fur-
ther normalized and converted to net reflectance using the following equation:

where Ri is normalized reflectance for i-th plant (%), Rroi is radiance value of i-th plant 
(W st−1 m−2), Rstd is radiance value of gray reference, and Rd is dark current of the sensor. 
By calibrating the images to radiance and calculating the reflectance, a direct comparison 
between data acquired by different spectral sensors is possible.

Pixel spectral signatures were normalized using area normalization (the spectral 
signature of each pixel was divided by the area under the curve) to reduce the effects 
of plant geometry (i.e. plants are not smooth and reflect light at different angles), and 
the mean spectra for each plant were calculated. Plant reflectance data were smoothed 
using a Savitzky–Golay filter with a 2nd order polynomial. The data smoothing pro-
cess removes small, localized, peaks in the spectral signatures, thus further removing 
random noise effects. The 2nd order derivatives with a symmetric window width of 7 
points (a smoothing array of filter size, describing the number of bands to the left and 
right of a particular spectral band) were then calculated, to emphasize small spectral 
variations and remove scattering effects. Because the smoothing array was symmetrical 
it could not have been applied at both ends of the spectrum, hence the derivative spectra 
are shorter than the original data.

Patterns in the hyperspectral data, due to differing levels of drought stress, were 
explored using Partial least squares-Discriminant analysis (PLS-DA) (Ballabio and 
Consonni 2013). This is a multivariate statistical method, similar to principal compo-
nent analysis. It finds a linear regression model by projecting predicted and observable 
variables onto a new space, called components or factors. The number of these new 
components is the same as the number of variables, but in practice only up to ten carry 
useful information, and the remaining containing mostly noise. In PLS-DA is a variant 
of classic PLS, where the dependent variably is categorical. PLS is particularly suited 
when there are more variables than observations (the data matrix is wide) and there is 
multicollinearity between the independent variables (such as between spectral bands). 
A standard deviation weighting process, using the standard deviation of each treatment 
group, was used on all variables, and the PLS-DA models were validated with the full, 
leave-one-out cross-validation (one plant was used as a test set while the rest were used 
as a training set, and this process was repeated 60 times, i.e. the number of plants in 
this study). Selection of relevant spectral regions was performed using the variable in 
projection scores (VIP) (Chong and Jun 2005). This algorithm estimates the importance 
of each spectral band in a PLS model and can be used for variable selection. The cut-off 
is set at 1, i.e. variables with VIP scores of 1 or more are considered important to the 
given model. For identification of outliers the Hotelling T2 test was applied, which is a 
generalization of Student’s t-statistic, used for multivariate distributions.

(1)R
i
=

R
roi

− R
d

R
std

− R
d

∗ 0.2
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The PLS-DA factor scores were then used as explanatory variables in the support 
vector machine classification scheme (PLS-SVM) (Belousov et al. 2002). Support vec-
tor machines (SVM) are supervised classification algorithms, which enable non-linear 
classifications. The gamma values and capacity factors (c) for each classification were 
determined by performing a grid search on a log scale. Gamma and c are parameters 
of a non-linear SVM, influencing the classification reliability. A high gamma leads to 
high bias and low variance, and a high capacity factor (c) leads to good separability, 
but can lead to overfitting (i.e. the model cannot generalize). Similar to PLS-DA, stand-
ard deviation weighting was applied to all components. The PLS-SVM models were 
validated using 10-fold cross-validation. The optimal number of PLS-DA components 
was determined by using root mean square error cross-validation (RMSECV). PLS-DA 
showed the presence of outliers belonging to Line 1 of the N0 treatment. Since all five 
plants were outliers, forming their own cluster, they were excluded from further analysis 
(Fig. 3).

Spectral signatures of each plant were separated and extracted using ENVI 5.1 (Exe-
lis Visual Information Solutions, Inc., USA). The extracted data were pre-processesed, 
and PLS-SVM evaluation and VIP analyses performed in R (R Core Team 2015), while 
PLS-DA and PLS-SVM classifications were performed in Unscrambler 10.3 (CAMO 
Software, Norway).

Fig. 3   PLS-DA score plots of water availability variability using mean spectra of each plant. Shown are 
combinations of selected PLS-DA components
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Results and discussion

The PLS-SVM successfully determined drought stress in grapevines with a classification 
success of 98.2%. One plant was misclassified in the drought stress, yielding a specific-
ity of 0.9 and sensitivity of 1 (for more explanation see Table 1). The PLS-DA showed a 
good separation of both groups, with an RMSECV of 0.16, with the selected components 
explaining 83% of the variance (Table 1, Fig. 3). Plants in the irrigated group showed a 
lower variability than plants in drought. Identification of water availability groups (i.e., 
treatments) reached a similar success, with 97.8% instances correctly classified. Both PLS-
SVM and PLS-DA showed a good separation between the N50 and N75 + N100 treat-
ments, but one plant from N75 was misclassified into N100. The sensitivity was lowest 
for N75, at 0.933, while specificity was lowest for N100, at 0.97 (Table  1, Fig.  4). The 
selected PLS-DA components explained 81% of the variance, with a RMSECV of 0.21 
(Table 1). By reducing the number of classes in a classification scheme, model reliability 
can be increased. In this study the differences between severe drought (N0) and irrigated 
treatments (N50 + N75 + N100) was first tested thus making it a two-class problem (Zovko 
et al. 2017). The differences between the irrigated treatments (N50, N75, and N100), which 
were also tested (Fig.  3) where two classes (N75 and N100) were more similar to each 
other, than to the third class (this can be seen by comparing their sensitivities and specifi-
cities). Soil obtained after Karst reclamation is characterized by high share of stones and 
rock fragments, having variable share of fine soil fraction and low water holding capacity. 
In stony soils, physical (texture) parameters and hydraulic characteristics that affect plant 
water status may be very variable even between closely spaced points. Therefore, consider-
able variability can occur in infiltration and evaporation rates, capillary movement and the 
amount of plant-available water in soil as well as in their impact on vine physiology. At 
the site under consideration (FIRE site in High Tatras), at a depth of 50 cm below the soil 
surface, up to 49% of the soil volume consists of rock fragments larger than 1 cm in diam-
eter (Novák et al. 2008). Such high relative content of stones significantly influences both 
soil water retention and hydraulic conductivity and their determination thus needs a special 
attention.

Drought and treatment identification analyses showed a similar pattern of relevant wave-
lengths (Fig. 4). In the visible part of the spectrum, only the reflectance at 583 nm was 
relevant, where irrigated plants exhibited lower reflectance than plants in drought stress 

Table 1   Summary of PLS-DA and PLS-SVM analyses

Sensitivity (true positive rate) measures the percentage of correctly identified cases belonging to a certain 
class, while specificity (true negative rate) measures the percentage of cases that were correctly identified as 
not belonging to a certain class
Var explained variance of the selected PLS components; RMSECV root mean squared error of cross-valida-
tion of selected PLS components; Ts train set; CV cross-validation

Analyses PLS-DA SVM Accuracy (%) Treatment group

Var [%] RMSECV c gamma Ts CV Sensitivity Specificity

Drought 83 0.16 5.18 0.01 100 98.2 0.9 1
Treatment 81 0.21 1.39 0.01 100 97.3 1

0.93
1

0.97
1
1

N100
N75
N50
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(Fig. 5). Changes in reflectance around 550 nm are linked to adjustments of photoprotec-
tive pigments in leaves, such as anthocyanins (Steele et al. 2009). Photoprotective pigments 
alleviate oxidative damage by drought stress to plant tissue. These protective pigments are 
very susceptible to oxidative damage, and their concentrations decrease with increasing 
stress. Changes to pigment structure also include differences in the Chl-a to Chl-b ratio. 
The results of this research showcase this at 738 nm, where irrigated vines showed lower 
reflectance than water deficient vines. This is mainly due to differences in Chl-a, which 
reflects light around 440 and 680 nm. Pigments in plants, however, are always bound to 
proteins, which shifts their reflectance spectrum (Moss and Loomis 1952).

Reflectance in the NIR and SWIR spectral regions is linked to chemical and physical 
characteristics of leaves, such as carbohydrates, proteins, and leaf water content (Qiao et al. 
2007; Kim et al. 2015), as well as lignin and cellulose content (Li et al. 2015). The water 
absorption bands in the 1300–2500 nm region show a high sensitivity to leaf water con-
tent. These findings correspond to literature data, where water-related bands at 975, 1200, 
1470, 1930, and 2500 nm were identified (Cao et  al. 2013; Clevers et  al. 2010). Three 

Fig. 4   PLS-DA score plots of treatment variability using mean spectra of each plant. Shown are combina-
tions of selected PLS-DA components. N100, N75, and N50 are the irrigated treatment groups
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wavelengths were identified at the beginning of this region (1259, 1264, and 1334), all of 
which are linked to the O–H stretch in water (Yin et al. 2017) as well as four more wave-
lengths, linked to leaf water content (at 1500, 1888, 1954, and 2053 nm) (Fig. 6). Identi-
fication of watered plants was most reliable, with an F-measure value of 0.97, while for 
drought plants it was 0.82 (Zovko et al. 2017). In all of these cases, the N100 treatment 
exhibited the highest reflectance and N0 the lowest. The spectral signatures of N100 and 
N75 overlap between 1200 and 1800 nm, leading to reduced classification reliability. These 
results correspond with the water availability gradient from N100 to N0. The similarity 
between N100 and N75 is due to the grapevine drought resistance, i.e. their ability to main-
tain high water potential in the tissues (Vadez et al. 2011).

Metabolic changes of leaf biochemistry are reflected around 1110 nm (N–H stretch of 
proteins), and 1200 and 1330 nm (C–H stretch of carbohydrates and proteins). The irri-
gated plants showed higher reflectance at these wavelengths, indicating the decomposition 
of cellulose and proteins in leaves, due to drought stress and oxidative damage to pho-
toprotective pigments in non-irrigated plants. Furthermore, drought induces metabolic 
changes in plants through increased accumulation of essential amino acids and free sugars 

Fig. 5   Normalized reflectance spectra of all treatment groups in the study

Fig. 6   VIP scores from PLS-DA models of drought stress identification (solid line), and determination of 
its severity (dashed line). All wavelengths with VIP scores above 1 are considered to be important for the 
identification of drought stress and its severity
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(Ximénez-Embún et  al. 2016). These changes are triggered by several survival adapta-
tions, such as stomatal closure to prevent water loss due to transpiration, and decreased 
stomatal conductance (Chaves et al. 2009). Drought resistance is therefore a combination 
of physiological and biochemical adaptations (Ashraf 2009), which in turn are reflected in 
the plants’ spectral signature.

Drought stress and leaf senescence cause a reallocation of resources in the entire 
plant. Leaf senescence appears in all plants, regardless of water availability. Furthermore, 
drought-stressed plants suffer from early and accelerated leaf senescence (Munné-Bosch 
and Alegre 2004). Distinguishing between drought stress and leaf senescence requires 
detailed spectral information with high spectral and temporal resolution. Within this study, 
only plants in veraison were included, thus ignoring temporal variations in reflectance. 
Nevertheless, the success rate of PLS-SVM classifications in identifying drought stress 
and its severity indicates that the same method could be applied to temporal data and will 
probably yield similar success (Susič et al. 2018). Therefore, this study indicates that the 
early identification of drought stress and its severity in vineyards is possible. Stony soil 
heterogeneity is a challenging for both groups of sensors, because of large stony segments 
on centimeter or decimeter scales (Coppola et  al. 2013). Finally, the effect of stoniness 
was considered as a possible explanation of the differences frequently observed between 
the measured hydraulic behavior and that estimated by using pedotransfer functions coarse 
rock fragments (Mehuys et al. 1975).

Conclusions

This study demonstrates the application of hyperspectral imaging, combined with partial 
least squares support vector machine classifications, to determine drought stress and its 
severity in grapevines. For PLS-SVM classification the SWIR region (with 16 wavelengths 
identified as important) was identified as being of more importance than VNIR (with 2 
wavelengths determined as being important). Spectral signatures of different water avail-
ability treatments showed significant differences, allowing for high classification accuracy. 
Within this initial research, hyperspectral images were collected only once on randomly 
selected vines, during the vine veraison, which is not sufficient for suitability evaluation 
of hyperspectral use in vine water status assessment during the growing season, as tempo-
ral variability was not included in the analysis. Nevertheless, hyperspectral imaging repre-
sents a cost efficient and fast determination of drought stress in grapevines grown on stony 
karst soils. Furthermore, the identification of wavelengths relevant for the determination of 
drought stress and its severity can facilitate the development of dedicated sensors, which 
would increase the cost effectiveness of remote sensing applications for drought detec-
tion. Moreover, the successful identification of drought stress severity also enables preci-
sion agriculture approaches to drought management, thus reducing resource use. Due to 
the extremely heterogeneous nature of artificially created karst soil, it is probably needed 
to include, besides hyperspectral, some other sensors to monitor the vine water status for 
the purpose of precise vineyard irrigation. This should be the next step in future research 
endeavors.
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