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Izvleček 

Podobno kot pri drugih vrstah velikih zveri se tudi pri rjavemu medvedu njegovo območje 
razširjenosti in številčnost povečujeta v več delih Evrope, in to ob različnih upravljavskih 
pristopih. Vendar uspešno širjenje vrste vselej zahteva specifične biološke in varstvene pogoje 
na individualni in populacijski ravni. V gosto poseljeni Evropi širjenje medveda pogosto 
spremljajo tudi konflikti s človekom. Za pravočasno napovedovanje in racionalno 
preprečevanje konfliktnih situacij s človekom in s tem lajšanja procesa odločanja so ključne 
zanesljive prostorske raziskave. Te nam omogočajo prepoznavanje potencialnih habitatov za 
medveda in območij/koridorjev, ki so ključna za ohranjanje povezljivosti populacije. V prvi 
fazi pričujoče raziskave smo zato izvedli večstopenjsko hierarhično prostorsko eksplicitno 
napovedno modeliranje habitatne ustreznosti prostora (scale integrated RSF), s katerim smo 
lahko prepoznali glavne omejitvene dejavnike rabe prostora za tri obravnavane medvedje 
populacije oz demografske enote (Trentino-Švicarske, pred-Alpska in Dinarska) na treh 
prostorskih nivojih (populacijski nivo, nivo območja aktivnosti in nivo notranje rabe znotraj 
območij aktivnosti). Izvedli smo tudi analizo povezljivosti prostora med osnovnimi zaplatami 
habitata in opredelili prispevek vsake zaplate k »vitalnosti« celotne medvedje populacije v 
raziskovalnem območju. Končno smo z namenom lažjega prepoznavanja potreb po prihodnjih 
presojah vplivov posegov na okolje (PVO) opredelili še najbolj verjetne prehode med 
habitatnimi krpami (least-cost paths). Na osnovi napovednih spremenljivk, ki opisujejo rabo 
tal, reliefne značilnosti in prisotnost človeka (npr. ceste, naselja) smo pripravili modele 
habitatne ustreznosti prostora za medveda in prepoznali tudi razlike v habitatnem izboru med 
3 obravnavanimi populacijami in prostorskimi merili. V vseh treh populacijah so medvedi 
primarno izbirali gozdnata območja, so pa med populacijami in prostorskimi merili opazne 
razlike v rabi/pomenu ostalih okoljskih spremenljivk. Zlasti odstopa skupina medvedov v 
Trentinu, za katere je značilna izbira bolj nedostopnih območij (težji, topografsko bolj 
razgiban teren). Naš prostorsko eksplicitni model kaže, da je v obravnavanem območju veliko 
habitata, ki je primeren za medveda, vendar pa je zanj značilna močna fragmentiranost. 
Največje in najbolj pomembne zaplate habitata za povezljivost populacije se nahajajo na 
območju trenutne razširjenosti vrste, z najbolj primernim habitatom na območju pred-Alpske 
in Dinarske populacije. Zadostno povezanost najprimernejših zaplat (ki so dovolj velike, da v 
njih lahko žive samice – medvedke), bi bilo mogoče vzdrževati preko ohranjanja dovolj 
povezanih habitatnih krp v koridorjih (step-stones). Za ohranjanje zadostne povezanosti 
prostora/habitatov, zagotavljanja povezav med deli populacij in populacijami medvedov ter za 
dolgoročno viabilnost medveda v območju Alp in Dinaridov je ključna poenotena – med 
državami usklajena - politika odločanja in rabe prostora. 

  



 

5 

 

Abstract 

As for other large carnivores in Europe, the brown bear shows a trend of recovering under 

different management scenarios. However, this recovery comes with specific biological and 

conservation requirements at individual and population levels often followed by conflicts in a 

highly humanized continent. To foresee conflicts with humans and to facilitate decision-

making, spatially-explicit research is required to identify potential habitats and the 

connectivity of fragmented bear populations. First, we conducted multiscale modeling based 

on scale-integrated resource selection functions (SRSFs) to identify drivers shaping the space-

use of three bear populations/demographic units (“Trentino-Swiss”, “pre-Alps”, and 

“Dinaric”), and across 3 scales of space (population distribution, home range establishment, 

and use of individual home range). Secondly, we also conducted an analysis of the 

connectivity patterns of suitable habitat patches (nodes) to identify the potential importance of 

each node to contribute to individual mobility, survival, and population connectivity. Lastly, 

to support further environmental impact assessment analyses, we identified the most plausible 

least-cost paths connecting different areas of the same large patch with itself and surrounding 

patches. Using topographic, landcover, and anthropogenic predictors, our analytical approach 

transcended from scale dependence bias to produce a predictive map on habitat suitability 

while delivered information on habitat selection trends for each population. Bears mostly 

selected forest habitats in all the populations; however, habitat selection differed for the other 

variables among populations and scales, especially in the Trentino area where the species 

selected the most intricate topography. Predictive maps revealed a broad range of suitable but 

fragmented patches of bear habitat. The largest and most important patches for connectivity 

occurred in the current distribution range of the species, with the most suitable habitat lying in 

the pre-Alpine and Dinaric populations. Connecting viable patches to host female home-

ranges is possible through stepping-stone patches of corridors reachable within the estimated 

dispersal distance of females. Unified transnational decision-making is required for the 

conservation of stepping-stone patches, facilitate bear mobility, and ultimately connect bear 

populations.  
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1. Introduction and aims 
Large carnivores have traditionally been perceived as a threat to humans due to 

socioeconomic, political, and emotional issues that have often resulted in the direct 

persecution of these species (Miller et al., 2016). After a dramatic historical decrease, large 

carnivores are currently recovering throughout the human-dominated landscapes of Europe 

but direct persecution and habitat disappearance continue to jeopardize their existence in 

remnant populations (Chapron et al., 2014).  

The brown bear, an emblematic large carnivore, is recovering in most of the European 

populations as a result of different management strategies applied on, often, well diverse 

scenarios of different intensities of human-pressure (Chapron et al., 2014). However, the 

viability of recovering populations and the well-being of the populations that have best 

withstood human pressure depend very much on appropriate decision-making in conservation 

strategies. Consequently, it is important to hone the understanding of the requirements of 

bears in the current context of population recovery and likely expansion, including the 

specific spatial needs for the species. 

Technical advances on wildlife tracking based on global positional systems (GPS), current 

computational methods to treat abundant locational data along with the application of 

mathematical methods suitable for the analysis for these data, allow today to gauge and 

further with more accuracy the patterns of space use of wildlife species (Cagnacci et al., 2010; 

Recio et al., 2011). Predictions on the potential habitats suitable for bears and for the 

connectivity among populations are capable to assist decision-making on conservation plans. 

Brown bears have been tracked using GPS collars for the last decade in the Alps and the 

Dinaric Mountains. Thus, rich location datasets on tracked bears are available to combine and 

to address questions on the space use by the species at broader geographical scales involving 

different European countries; specifically, Slovenia, Croatia, Austria, Italy, and Switzerland. 

Three main bear populations or demographic units inhabiting these countries can be 

considered: the Trentino-Swiss, the eastern pre-Alps, and the Dinaric population. Although 

the eastern pre-Alps and the Dinaric populations are essentially the same population, the 

presence of a fenced highway (A1 highway from Trieste to Ljubljana) has been identified as 

an important barrier for bear movement. This highway is mostly crossed towards the eastern 

Alps by dispersing males, which ultimately biases the sex ratio there, and presumably also the 
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trends of habitat selection. Moreover, the 3 analysed bear population units were exposed to 

different management regimes for decades, which possibly resulted in different responses to 

human disturbance and thus, to different habitat selection patterns. Bears to the south of the 

highway were traditionally managed as valuable game species (sustainable hunting quotas, 

protection of females with cubs), while bears to the north of the highway had no protection 

until the nineties. In the Trento region, bears were exposed to heavy persecution and were 

nearly extirpated in the nineties; nevertheless, they have been under a full protection since 

then and many conservation efforts have been set up recently for the conservation of this 

population. From an ecological and behavioural perspective, bears have adapted to survive in 

the manifold compositions and configurations of the landscape available in the distribution 

range of the three central European populations.  

To evaluate the need for active management, e.g. corridor maintenance/restoration., it is of 

high importance to predict the space use of bears in the Alps and the Dinaric Mountains, as 

well as the potential of natural movement between the existing populations. Ecological and 

behavioural processes occur at different spatial and temporal scales. In this sense, scientific 

literature identifies the need to ideally integrate knowledge on species-habitat selection across 

scales and to elude conclusions based on a single scale (Turner et al., 1989). Therefore, 

decision-making in management and conservation strategies can benefit from the suitable 

integration of conclusions from species-habitat analyses at hierarchically nested processes of 

behavioural selection. Ultimately, these processes shape the selection of available resources 

by the species from broad to fine spatial scales. In addition, species-habitat analyses 

commonly produce models using at once all the available data on species presence over 

different study areas and populations. However, these approaches ignore the specific patterns 

of selection of each different population that might be the consequence of local and specific 

characteristics of the environment or the type and availability of resources.  

Predictions on the potential areas of habitat suitable for bears from integrated multiscale 

approaches can also provide the foundation for further analyses able to identify the viability 

of populations in new areas where the species could be reintroduced or naturally expand in 

central Europe. In this sense, identifying the connectivity and possible corridors between and 

within the three Alps and Dinaric populations is of high relevance for 1) decision-making in 

the conservation of the species, and 2) environmental assessments required for actions that 

could compromise the movements and expansion of bears within and between populations. 
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Considering the needs explained above, we targeted three main objectives in this research: 

1) Creating a multiscale habitat suitability map for bears in Central Europe accounting for 

population differences in the patterns of habitat selection. 

2) Identifying the functional connectivity properties of each patch of habitat suitable for bears, 

including the step-paths connecting larger patches capable of hosting bear home ranges in 

central Europe. 

3) Identifying the most plausible least-cost paths in a population that connect different areas 

within a given large-size patch, and with the surrounding patches. 

2. Material and methods 

2.2 STUDY AREA 

We selected a study area that comprised a total planar surface of 173,479 km2. This area 

included the whole Croatia and Slovenia, the central and eastern Italian Alps, the southern 

face of the Austrian Alps, and the most eastern region of Switzerland (Figure 1).  

2.3 DATASET ON BEAR LOCATION DATA 

The dataset on GPS bear locations per country varied in the number of animals tracked, sex 

ratio (Table 1), and fix acquisition rates (from 30 min to 6 hours). We discarded bears 

considered as conflictive (N = 19) from the total initial dataset (N = 82) to avoid biases in 

habitat selection caused by any “abnormal” bear behaviour as consequence of habituation to 

humans. Firstly, we filtered the raw location data by removing the first and last 10 locations 

of each animal dataset. This initial filtering aimed to avoid location errors that commonly 

occur after the activation of a collar, locational bias due to erratic animal behaviour after 

sedation, or before the end of the battery-life. Secondly, we applied another sequential filter to 

remove unrealistic locations based on plausible bear movements (Bjorneras et al., 2010). For 

each location, this filter removed unrealistic points sequentially in several steps and using a 

moving window. The first step removed those points that depicted a distance beyond the 

median distance estimated from the 10 previous and 10 next points. A second step applied the 

same previous analysis but applying the mean instead of the median. A third step removed 
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those points shaping an unrealistic spike in the movement path displayed by a  

Figure 1.- Population home ranges of the Trentino-Swiss (population 1), pre-Alpine (population 2), and 

Dinaric population (population 3) delineated from analyses on movement capabilities of bears regarding the 

maximum distance travelled at each acquisition rate of GPS-locations. 

bear that would imply an unrealistic sudden fast movement to leave its trajectory and return to 

it showing an abrupt turning back. For the purpose of the analysis on resource selection 

functions, we next filtered the location dataset (N = 184,687, μ ± SE = 2931 ± 416) to match a 

location acquisition rate of 6 hours (N = 40,835, μ ± SE = 648 ± 72). We aimed to increase 

computational performance to homogenize the different acquisition rates used among bears 

and to reduce spatio-temporal autocorrelation. 
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Table 1.- Number of bear individuals per country, population, and sex. 

Country and population Total bears Total males Total females 

Switzerland (Population 1) 1 1 0 

Italy - Trentino (Population 1) 5 1 4 

Italy – pre-Alpine (Population 2) 3 3 0 

Slovenia – Prealpine (Population 2) 5 4 1 

Slovenia – Dinarics (Population 3) 29 13 16 

Croatia (Population 3) 20 13 7 

TOTAL 63 35 28 

 

2.4 DATASET ON DIGITAL ENVIRONMENTAL DATA 

We compiled or calculated a set of topographic, landcover, and anthropogenic variables 

depicting bear resources from varied digital geographic sources (Table 2). A final set of 

rasters of 25 × 25 m grid-cell size for each variable was produced to rely on accurate fine-

grain estimations of the resources. All the variables were selected attending to previous 

information on bear habitat selection, expert knowledge, and the importance of these variables 

for food provision, shelter, and human influence. 

2.5 MULTISCALE MODELLING PROCEDURES 

We followed a multiscale procedure to model resource selection of bears in the study area. 

The analysis of the resource selection by a wildlife species refers to modelling the response of 

the species to use the available resources in a heterogeneous habitat and a specific scale that 

results from a given sampling design. To enable multiscale analyses, we used scale-integrated 

resource selection functions (SRSFs) (DeCesare et al., 2012). This method focuses on 

management-oriented habitat suitability mapping through modelling in a nested fashion the 

resource selection of a species and synthesizing the results across scales. Our nested steps of 

three different scales of selection were (as adapted from Meyer and Thuiller 2006):  

1. Scale 1 (S1), also known as first-order population level of selection. This scale’s 

objective was to identify where the distribution range (i.e. population home range) of 

bears occurs within the study area.  
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2. Scale 2 (S2), or second-order individual level of selection. The analyses at this scale 

determined where individual bears selected to establish their home ranges within their 

population home range. 

3. Scale 3 (S3), or third-order individual level of selection. This scale focused on the 

selection of bear locations within individual home ranges. 

2.5.1 Sampling procedures 

Scale 1 

We first determined the distribution range of each population using the location data obtained 

from GPS-tracked bears. This analysis identified where the potential boundary of a population 

distribution range occurs assuming the capability of a bear to ideally reach any given area 

around a given location and considering its capacity to move at specific distances during a 

certain time interval. The distance between locations and their associated time interval (i.e. fix 

acquisition rate) were compiled. We then identified the maximum distance any bear travelled 

for each time interval. Using ArcGIS 10.5 (Redlands, California), we applied a circular buffer 

around each point of radius equal to the maximum distance associated to the time interval 

used to collect that point. The buffers around each location indicated what habitat was 

potentially available to reach for that bear from any specific location according to the 

movement capacities of the species, although the animal actually moved towards the next 

location registered by the GPS-collar. We dissolved all the resulting buffers to obtain a final 

polygon depicting the outermost line of the feasible area that could have been reached by any 

of the tracked bears. This method ensured a generous delineation of the population home 

range to characterize an area of the species presence and absence inside and outside of that 

range, respectively.  

Scale 2  

We employed a used/available design. Firstly, we estimated each individual bear home range 

using the minimum convex polygon (MCP) and assumed this home range depicted the piece 

of space used by that bear within the entire population home range. Second, to spatially 

characterize the existing resources inside the MCP home ranges versus the available outside 

of that range, we drew an equal number of random locations within both individual MCP 
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(used) and population home range (available). For each population, the number of random 

locations was equal to the mean number of locations collected per individual. 

Scale 3  

At this scale, we also employed a used/available design. We analyzed where bear locations 

occurred (used resources) within the individual home range, versus any other random location 

(also within the home range) depicting available resources where the animal could have been 

or not but we do not know. We drew the same number of random locations within each 

individual home range than the number of used locations.  

2.5.2 Variables 

The types of variables referred to topographic, land cover, and anthropogenic features. All the 

variables were extracted from 25 × 25 m grid-cell rasters. Certain variables were quantified at 

100 and 1000 m radius buffers to assume two different scales of perception of the surrounding 

Table 2.- Variables considered for the scale-integrated resource selection functions of bears in the central Europe 

populations. 

 
 
 

Variable 
type 

 
 
 

Variable 

 
Grain (cell-

size in 
metres) 

 
 

Buffer radius 
(m) 

Scale of selection 
S1 S2 S3 

To
po

gr
ap

hi
c Elevation 25 - × × × 

Roughness1 25 1000 × × × 
Hillshade 25 -   × 
Slope 25 -   × 
TPI-10002 25 1000  ×  
TPI-100 25 100   × 

N
at

ur
al

 
la

nd
co

ve
r 

Forest1000 25 1000 × ×  
Forest100 25 100   × 
Scrubs1000 25 1000  ×  
Scrubs100 25 100   × 
Open1000 25 1000  ×  
Open100 25 100   × 

A
nt

ro
po

ge
ni

c Agriculture1000 25 1000  ×  
Agriculture100 25 100   × 
Road decay (decay function 
0-1) 

25 - × × × 

Human settlements (decay 
function 0-1) 

25 - × × × 
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environment by bears. Full information on the variables included at each scale and their 

quantification is resumed in Table 2. 

The topographic variables included elevation, topographic roughness (Jenness, 2004), 

hillshade, slope, and topographic position index (TPI, Jenness, 2007) quantified at 100 and 

1000 m radius buffers. The elevation was extracted from a 25 m grid-cell digital elevation 

model (DEM). Roughness, hillshade, and slope were computed using the extension DEM 

Surface Tools for ArcGIS (Jenness, 2004) from the DEM raster. The TPI depicts the 

differences in elevation between a given cell and the cells in the neighbourhood within a 

given buffer distance. Positive TPI values indicate a trend towards ridgetops and hillstops 

while negative values tend towards bottoms of valleys and canyons; a value of zero depicts 

flat or mid-slope areas.  

The variables on landcover included the features forest, shrubs, and open areas quantified 

both at 100 and 1000 m radius. We also quantified cover of agricultural lands within 100 and 

1000 m radius; however, we included this variable in the set of anthropogenic variables. This 

set of anthropogenic variables was completed by the variables distance to roads and distance 

to human settlements, both expressed as decay functions as computed by Nielsen et al. (2005), 

and with values of 0 at the feature and 1 at long distances from it.  

2.5.3 Modelling procedures 

We conducted a combined correlation test (r < 0.7) and a variance inflation factor (VIF < 4) 

(Zurr et al., 2010) to select only the variables of low multicollinearity within the models at 

each scale. For S1, we considered each random location as the sample unit for each 

population model. Therefore, we applied logistic regressions using generalized linear models 

(GLM) to model presences (1) and absences (0) of population home range. Conversely, for S2 

(population home range selection) and S3 (individual home range selection), we considered 

each individual as the sampling unit for each population. In this case, we used generalized 

linear mixed models (GLMM) for each population to model used (1) vs. available (0) 

locations with individual bears as random factors. 
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2.5.4 Species habitat mapping 

Because S1 responded to a used-unused design, we used resource selection probability 

functions (RSPF, Manly et al., 2002) for the model of each population at this scale to 

calculate the probability of bears using each pixel unit mapped. Conversely, because we 

applied a used-available design for S2 and S3, we used resource selection function (RSF, 

Boyce and McDonald, 1999), which are proportional to the probability of use in each pixel 

unit mapped. Each resulting map was rescaled to range between 0 and 1. Subsequently, we 

integrated the three scales for each population to comply with a scale-integrated resource 

selection function approach. Therefore, considering that each pixel within the study area has 

different probabilities of being part of the population home range, of being occupied by a bear 

home range, and of being used by a bear within its home range, the final map integrating S1, 

S2, and S3 at each population resulted from multiplying the maps produced at each scale 

(DeCesare et al., 2012).  

To integrate the three population maps as calculated above, we weighted each pixel value 

across the study area attending to the distance of the pixel to each population home range. 

Hence, the pixels within the population home range had the value predicted by that 

population’s SRSF, whereas the pixels outside of the population home ranges were weighted 

by averaging the inverse distances to each population. Under this approach, the contribution 

of each population’s map to the average final map depended on the area of the populations 

and the proximity between them. From a biological perspective, this weighting approach 

implied that the suitability for each pixel is associated to the bear behaviour observed for that 

specific population and the resource selection by the species. Conversely, for the areas outside 

of the population, the value of the pixel is averaged to all of the behaviour in the resource 

selection observed among the populations but weighted towards the nearest population. 

2.5.5 Model/Map validation 

We identified the areas of most suitable habitat for bears against those less suitable or fully 

unsuitable. For this binary output, we calculated the threshold that split the continuous 

suitability predictions using the maximum sum of sensitivity and specificity. This method has 

been proven in the literature to produce the best results for models based on presence-only 

data, as it is the case of used-available designs (Liu et al., 2013). Using the binomial map, we 
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conducted two different analyses to target the objectives 2 and 3 (see below). 

2.6 FUNCTIONAL CONNECTIVITY ASSESSMENT 

The number of habitat patches classified as suitable over the entire study area was 

computationally intractable for the analyses to conduct under this objective. Therefore, we 

selected only those patches of area larger than 75 ha, which represented the minimum area 

where 99% of the bear locations placed inside of the suitable patches occurred. For 

computational feasibility, we also resampled the habitat suitability map into a 200 × 200 m 

grid-cell raster. We calculated the effective distance (i.e. cost distances) between each pair of 

adjacent habitat patches using Linkage Mapper for ArcGis (McRae & Kavanagh, 2011). This 

software identifies and maps the least-cost paths between core areas (habitat patches of study) 

using a map of resistance or friction opposing to animal movement and survival. We 

considered as resistance raster the inverse of the habitat map previously produced and 

rescaled into values ranging from 1 to 100 of difficulty to move across the landscape. Values 

close to 1 depicts the best conditions for animal movement and survival, while the highest 

resistance values represent the least favorable areas (with 100 as the maximum resistance of a 

complete full barrier). With this information, Linkage Mapper finds the adjacent core areas to 

create a network of connections using the Euclidean distance between them. Finally, it 

calculates cost-weighted distances (i.e. effective distances) and least-cost paths. For 

computational reasons, we limited the calculations of these distances to those patches 

separated by less than a Euclidean distance of 4640 m, which corresponded to the maximum 

distance observed of any female bear out from the suitable area. 

We converted the calculated effective distances into the probability of a bear to move between 

two patches based on their movement capacity within their home ranges (Pardo et al., 2017). 

Because the movement capacity of female bears is more limited than that of males and 

because females are more important for the viability of the populations, we focused on the 

conversion of the effective distances moved by females within their home range as the 

minimum reference. First, we calculated the mean Euclidean distance of each GPS location to 

the centroid of each individual MCP home range. Secondly, this distance was converted into 

an effective distance after multiplying its value by the mean resistance value of the pixels 

contained in the female’s home ranges. As a result, the mean effective distance moved by 
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female bears within their home ranges was 150202 cost units. Thirdly, we obtained the 

probability of bear movement between two patches using a negative exponential function of 

the Euclidean distance between nodes multiplied by a decay parameter that accounts for the 

dispersal distance of the species (Pardo et al., 2017). We made this parameter equal to the 

previously calculated 150202 cost units that we equated with a probability of dispersal of 

0.05. The probability of movement between patches ranged from 0 (no connectivity) to 1 

(fully connected, i.e. the distance between patches is 0). 

To analyze the connectivity of suitable bear patches, we used a set of indices (see Saura & 

Pascual-Hortal (2007), and Saura & Rubio (2010) for extended information) calculated in the 

software Conefor 2.6 (Saura and Torné, 2009): 

• The probability of connectivity index (PC): This index considers a number of habitat 

patches and the connections among them to score a probability that two organisms randomly 

placed anywhere in the landscape are within patches reachable or interconnected between 

them. This index is based on the concept of habitat availability of any patch for itself 

(intrapatch connectivity) and for other connected patches (interpatch connectivity), on the 

interpatch dispersal probabilities, and on spatial graphs. 

• The absolute variation in connectivity decrease (varPC): This index evaluates the absolute 

loss of connectivity in the landscape when a patch is removed. Therefore, this index is 

valuable to illustrate the importance of a patch to maintain the connectivity of the entire 

system. The varPC index can be decomposed in three fractions depicting three indices of 

importance for patch connectivity: varPCflux, varPCintra, varPCconnector,  

• varPCflux: Quantifies how well a patch is connected to others. 

• varPCconnector,: Quantifies the contribution of the patch as stepping stone to the 

interpatch connectivity between other nodes. 

• varPCintra: This index is related to intrapatch connectivity and the availability of 

habitat offering independently of its position and distance to other patches in the 

system. 

• Betweenness Centrality metric based on PC (BC(PC)): Like varPCconnector, this 

index also quantifies the contribution of the patch to animal movements among other 

patches in the landscape, but in this case without removing the patch. Therefore, it 
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shows the contribution of the patch as stepping stone in the intact landscape instead of 

after its removal as it quantifies varPCconnector,. 

We produced the maps representing each of the indices above and the identified least-cost 

paths obtained from the analyses in Linkage Mapper. These paths were classified as the ratio 

between the cost-weight and least-cost values for each path. 

2.7 PLAUSIBLE LEAST-COST PATHS IN POPULATION PATCHES 

Animal movement is often a stochastic process that depends not only on external drivers but 

also on other manifold factors of animal cognition, individual characters and perception 

differences. However, estimations on plausible paths of movement based on habitat selection 

outputs are possible using least-cost path analyses as surrogates of the feasibility of the 

landscape to facilitate individual animal movements. It can be expected that animals move 

preferably across suitable habitats and avoid those less suitable. Large patches of suitable 

habitat tend to show intricate shapes so that often movements within patches can be solved 

along shortcuts crossing less favourable or unfavourable habitats. The identification of these 

plausible crossing points attending to criteria of species-habitat selection is of relevance to 

promote habitat improvements in those areas of plausible crossing and to promote 

infrastructures facilitating animal movement. 

We estimated a set of plausible crossing points within and among the largest bear suitable 

habitat patches overlapping the MCP home ranges of the three study populations. We 

considered a minimum patch size of 9696 ha because this corresponds to mean amount of 

suitable habitat contained in the individual MCP home ranges of female bears in the study 

area. This selection resulted in several patches for population 1 (N = 6, μarea ± SD = 98,666 ± 

73,150 ha), population 2 (N = 12, μarea ± SD = 22,305 ± 10,690 ha) and one single large patch 

for population 3 (area = 810,896 ha). We split the patches at each population using a grid of 

22 × 22 km covering a total area of 48,400 ha, which approximated to the mean MCP home 

range area for all the bears tracked in this research (area = 46,700 ha). The suitable patches 

were divided into different polygons within each grid-cell and created a point layer in ArcGIS 

depicting the centroid of each polygon. This sampling fashion arranged the covering of most 

of the patch areas by a representative node, so that we conducted connectivity analyses in 

Linkage Mapping to determine the least cost paths connecting each node with the nodes 
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included in the adjacent grid-cells. Using this method, we made a computational estimation of 

the most plausible paths linking any random point created inside the patch of study. Once 

identified the paths, we selected those specific sections not overlapping the patches over 75 

ha, i.e. connections, and classified each path attending to its itinerary longitude for 

visualization purposes.  

3 Results 

3.1 MODELLING RESULTS 

The model outputs for each population at the three scales are summarized in tables 2, 3 and 4. 

The results for each scale-specific model and for each population show that forest cover was 

the only variable selected in all the populations and scales, i.e. positive selection of increased 

forest cover. The rest of the variables yielded different selection patterns either among 

populations, scales, or both. Topographic variables showed that population 1 (Trentino-Swiss 

population) occurred in areas with a higher elevation and roughness than those where the 

population was absent (Table 3).  

Conversely, this trend was the opposite for populations 2 and 3 (Table 3). Although the 

placement of home range followed different trends in relation to the elevation in S2, the use of 

space per individual home range was associated with areas of higher elevation and rougher 

terrains for all the populations (Table 4). Overall, the S1 models captured the topography and 

landscape composition of the well different characteristics of these variables in the areas 

where each population occurs. This was also the case for the placement of home ranges within 

the population home range S2. Models at S3 revealed more specific information about the 

variables directly selected by bears (through the use of GPS locations) within their individual 

home ranges for each population (Table 5). At this scale, the topographic variables indicated 

that bears mostly selected high and rough areas within their home ranges, although the trends 

of selection for the variables slope, hillshade and topographic position indices were unequal 

among populations. In terms of natural landcover variables, forest and shrubs were positively 

selected by bears of the three populations while the open areas were avoided. Anthropogenic 

variables showed bears selected to move far from roads and human settlements, although for 

the latter variable, this occurred only in populations 2 and 3. In population 1, bears showed a 
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positive selection towards human settlements and agricultural areas. 

 

The scale-integrated habitat suitability map based on the probability of space used by bears 

calculated from the models reported above is shown in Figure 2. The validation of the map 

Table 3.- Results from scale 1 (population home range) models for the three bear populations 

 Population 1 Population 2 Population 3 
β SE β SE β SE 

Intercept -3.67 0.07 -2.86 0.05 -2.22 0.04 
Elevation 0.69 0.07 -0.44 0.04 -0.84 0.06 
(Elevation)2 0.24 0.03 -0.22 0.03 -3.16 0.08 
Roughness 1.07 0.06 0.74 0.04 -1.59 0.06 
(Roughness)2 -0.21 0.02 -0.10 0.01 0.13 0.02 
Forest1000 0.54 0.04 0.34 0.03 0.55 0.03 
(Forest1000)2 -0.21 0.04 0.01 0.03 -0.20 0.03 
Agriculture1000 0.25 0.07 -0.38 0.04 -0.40 0.03 
(Agriculture1000)2 -0.27 0.06 0.30 0.03 0.42 0.03 
Settlements -0.15 0.03 -0.16 0.02 0.01 0.02 
(Settlements)2 0.11 0.03 -0.05 0.02 0.55 0.02 

 

Table 4.- Results from scale 2 (individual home range placement within the population home 

range) models for the three bear populations. 

 Population 1 Population 2 Population 3 
β SE β SE β SE 

Intercept -0.002 0.035 -0.0002 0.021 -0.001 0.007 
Elevation - - -0.351 0.018 0.197 0.005 
Roughness 0.087 0.017 -0.153 0.013 -0.066 0.004 
TPI-1000 0.091 0.016 0.094 0.011 -0.061 0.004 
Forest1000 0.231 0.019 0.349 0.0151 0.189 0.005 
Scrubs1000 0.021 0.019 0.154 0.014 -0.103 0.004 
Open1000 - - 0.173 0.015 -0.035 0.004 
Agriculture1000 0.212 0.023 - - - - 
Road decay -0.115 0.020 0.046 0.011 -0.131 0.004 
Settlements -0.103 0.020 0.070 0.012 -0.008 0.005 

 

Table 5.-  Results from scale 3 (selection within individual home range) models for the three bear 

populations. 

 Population 1 Population 2 Population 3 
β SE β SE β SE 

Intercept 0.06 0.07 -0.12 0.03 -0.04 0.03 
Elevation 0.24 0.06 0.56 0.03 0.23 0.01 
Roughness 0.82 0.05 0.04 0.03 0.06 0.01 
Slope 0.13 0.04 -0.03 0.03 0.10 0.01 
Hillshade 0.35 0.03 0.12 0.02 -0.03 0.01 
TPI-100 0.04 0.03 -0.01 0.02 0.03 0.01 
Forest100 0.79 0.06 0.74 0.04 0.48 0.01 
Scrubs100 0.38 0.06 0.16 0.04 0.18 0.01 
Open100 - - -0.16 0.03 -0.02 0.01 
Agriculture100 0.35 0.05 - - - - 
Road decay 0.02 0.04 0.29 0.03 0.10 0.01 
Settlements -0.30 0.04 0.30 0.03 0.25 0.01 
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accuracy revealed that the scale-integrated RSFs performed with a good prediction capacity (𝑟̅𝑟 

= 0.90) according to Baldwin et al. (2009) classification.  

The thresholds calculated from the maximum sum of sensitivity and specificity were 0.015, 

0.087, and 0.068 for population 1, 2, and 3, respectively. The binomial resulting map from 

applying these thresholds for each suitability pixel value within their respective home range 

and their distance-weighted value outside these ranges is shown in Figure 3, and a sub-

classification of this binomial map in Figure 4. 

3.1 CONNECTIVITY AND CORRIDOR ANALYSES 

The maps of the results of each of the indices evaluated for the connectivity and corridor 

analysis in the Central European brown bear populations are shown in figures 5, 6, 7, and 8. 

The maps showing the results on the most plausible least-cost paths for intra and interpatch 

connectivity are shown in figures 10, 11, and 12, 13.  
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Figure 2.- Brown bear habitat suitability map based on the probability of use calculated from scale-integrated 

resource selection functions (RSFs). 
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Figure 3.- Categorical map depicting suitable and unsuitable categories. 
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Figure 4.- Categorical map classified from the continuous habitat suitability map. The classification was 

conducted for each suitable and unsuitable area using natural breaks.
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Figure 5.- Absolute variation in the probability of connectivity decrease (varPC) index for each node (habitat 

patch). The different color in the connecting paths represent the quality of these linkages reported as the ratio 

of cost-weighted distance (Cwd) to least-cost path (Lcp), wherein the lower values indicate the best quality of 

paths with lower cost of movement along this patch (yellow?). Conversely, higher values of linkages depict 

higher cost of movements.  
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Figure 6.- Fraction of the varPC accounting for intrapatch connectivity among habitat patches or varPCintra, 

which indicates the availability of habitat offered by the patch independently of its position and the distance 

to other patches in the system. 
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Figure 7.- Fraction of the varPC accounting for flux among habitat patches or varPCflux, which indicates 

how well a patch is connected to others. 
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Figure 8.- Fraction of the varPC accounting for interpatch connectivity or varPCconnect, which measures the 

contribution of the patch as stepping stone to the interpatch connectivity between other nodes. 
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Figure 9.- Absolute variation in the centrality index (varBC(PC)) index for each node (habitat patch), which 

shows the contribution of the patch as stepping stone in the intact landscape instead of after its removal as it 

quantifies varPCconnector.  
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Figure 10.- Most plausible least-cost paths connecting areas between and within patches of population 1 (Trentino-

Swiss). 
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Figure 11.- Most plausible least-cost paths connecting areas between and within patches of population 2 (Pre-

Alpine population). 
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Figure 12.- Most plausible least-cost paths connecting areas between and within the northern patches of 

population 3 (Dinaric population). 
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Figure 13.- Most plausible least-cost paths connecting areas between and within the southern patches of 

population 3 (Dinaric population). 
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4 Discussion 
4.1 Habitat suitability 

The scale-integrated RSFs employed in this research is a convenient approach to deal with 

longstanding discussions on scale selection concerns in habitat selection analyses (see for 

instance Boyce 2006). Our approach to model each population independently at three 

different scales and to integrate all the results offered a more localized approximation to 

habitat selection for each population than the overall inclusion of all the available data into a 

single transversal model for all of the populations. Under this framework, our scale-integrated 

models yielded different results on habitat selection behavior for each bear population. The 

predictions on suitable habitat revealed that population 3 was the one containing the largest 

and most suitable habitat patches. Population 2 showed a similar pattern but with smaller and 

more fragmented patches than population 3. Lastly, population 1 had also large patches of 

suitable habitat (as observed in the binomial map) but of lower suitability than the other 

populations and with more concentrated and scarce areas of high to very high suitability.  

In the Trentino-Swiss area, humans have conducted a historical more intense transformation 

of the landscape and persecution of large predators than in the other populations. 

Nevertheless, bears are able to adapt to the “modified” landscape. The models at the 3 scales 

for population 1 confirm a general positive trend of selection for elevated and rough terrains 

across all the scales that is more pronounced than for populations 2 and 3. Therefore, bears 

could be pushed in population 1 to select and occupy more inaccessible areas for humans 

occurring at higher and rugged terrains. However, the intense human presence in this 

population might imply that bears are not capable of establishing their home ranges and use 

the space within their home ranges, thus avoiding human settlements, agricultural areas, or 

road presence. The model coefficients for the anthropogenic variables in this population and 

at the different scales suggest this conclusion. We acknowledge that the habitat selection 

models for population 1 is limited to only 6 animals that could have displayed a very specific 

individual selection pattern by concentrating most of their activities in rough and elevated 

areas still close to anthropogenic features. However, the model predictions over the entire 

population area reveal that this combination of variables is mostly unavailable, which can also 

explain the very limited availability of high to very high suitable patches. 
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Populations 2 and 3 showed in general similar patterns of habitat selection. However, the 

differences between these two populations might be caused by a sex bias towards males due 

to the fact that most of the bears in population 2, included those tracked, are dispersing males 

from population 3. Also, some differences in S1 and S2 for these populations might most 

likely be caused by certain differences in landscape composition and configuration, with 

population 2 being an interface among the landscapes of population 1 and 3. Overall, the high 

abundance of forest in these populations makes this variable the most important and valuable 

resource for bear population viability and growth. Consequently, it is required the 

conservation of large forest patches and to promote connectivity among these patches. 

3.1 Connectivity and corridors 

The two different indices quantifying the contribution of each patch to the connectivity and 

movement of all the suitable bear patches in the study area, i.e. varPC and varBC(PC), 

revealed the importance of the largest patches where current bear populations occur in the 

study area. This importance was especially relevant for the patches in populations 1 and 3, 

which scored high and very high values of these indices. There is potential for connecting the 

three populations, although population 2 contains smaller and more abundant fragmented 

patches than the other populations. However, population 2 contains habitat patches of 

importance for the hypothetical flux and connection between population 1 and 3 (see 

varPCconnect and varPCflux indices, respectively).  

In terms of potential patches, there are some large suitable patches of connectivity importance 

for the survival and movement of bears in Austria under a hypothetical scenario of bear 

colonization of this region. These patches are surrounded by other smaller ones that could act 

as stepping-stones connecting mainly with population 2.  

Overall, the connectivity analyses at the study area level supported the need to preserve 

suitable and well connected large patches of mostly forest habitat. This priority does not 

diminish the importance of preserving smaller patches capable of acting as stepping-stones for 

connecting patches of current or potential suitability and connectivity importance.  
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