1	Recognition of species belonging to Meloidogyne ethiopica group and development of a diagnostic method
2	for its detection
3	
4	Barbara Gerič Stare ¹ *, Gökhan Aydınlı ² , Zübeyir Devran ³ , Sevilhan Mennan ⁴ , Polona Strajnar ¹ , Gregor Urek ¹ ,
5	Saša Širca ¹
6	
7	¹ Agricultural Institute of Slovenia, Plant Protection Department, Hacquetova ulica 17, SI-1000 Ljubljana,
8	Slovenia; barbara.geric@kis.si
9	² Ondokuz Mayıs University, Vocational High School of Bafra, 55400 Samsun, Turkey; gokhanay@omu.edu.tr
10	³ Akdeniz University, Faculty of Agriculture, Department of Plant Protection, Kampüs, 07058, Antalya, Turkey;
11	zubeyird@yahoo.com
12	⁴ Ondokuz Mayıs University, Faculty of Agriculture, Department of Plant Protection, 55139 Samsun, Turkey;
13	smennan@omu.edu.tr
14	
15	* Corresponding author: <u>barbara.geric@kis.si</u> , +386-(0)1-280-5276, +386-(0)1-280-5262
16	
17	Keywords: Root-knot nematodes, Meloidogyne ethiopica, Meloidogyne luci, Meloidogyne inornata, map-1,
18	identification
19	
20	Acknowledgement: This study was funded by Slovenian Research Agency (ARRS grants no. BI-TR/15-17-008,
21	P4-0072), by the Ministry of Agriculture, Forestry and Food of the Republic of Slovenia (grant no. C2337) and
22	by Scientific and Technological Research Council of Turkey (TUBİTAK grant no. 214 O 667) within Bilateral
23	project between Slovenia and Turkey. The study was partly funded within the frame of FP7 Project CropSustaIn,
24	grant agreement FP7-REGPOT-CT2012-316205. Authors warmly acknowledge Prof. Dr. Gerrit Karssen, Dr.
25	Mariette Marais, Dr. Isabel Luci Conceição, Dr. Pablo Meza, Dr. Carla Maleita and Dr. Emre Evlice for
26	providing nematode isolates.
27	

30 Abstract

31 Root-knot nematodes (RKN) of the tropical group reproducing as a rule with mitotic parthenogenesis 32 are highly polyphagous and damaging pests causing great loses in crop production. Morphometrical and 33 molecular characters of three closely related tropical RKN species have been analysed in order to identify 34 species-specific diagnostic parameters and examine the relationship between species. Morphometrical characters 35 of M. ethiopica, M. luci and M. inornata isolates were similar and overlapped when compared between species 36 and isolates of the same species indicating a very close relationship between the three species. Additionally, 37 structure of *map*-1 genes was analysed, which provided the evidence of identical structure of *map*-1 family genes 38 in M. ethiopica, M. inornata and M. luci. The unique structure of map-1 genes when compared to the other 39 tropical RKN species further supports close relationship of the three species and therefore we have classified 40 them together as M. ethiopica group. In addition, our results showed that the emergence of a virulent M. luci 41 population does not correlate with the loss of map-1 genes as it was previously indicated for M. incognita 42 (Castagnone-Sereno et al. 2009). Further, we have developed novel molecular methods to aid in identification of 43 these nematodes: a PCR based method with primers specific for the M. ethiopica group comprising M. ethiopica 44 M. luci and M. inornata; and a PCR based method with primers specific for the tropical RKN group species. Our 45 results show that species of *Meloidogyne ethiopica* group share high similarity at morphological and genetic 46 level.

47

48 Introduction

49 Root-knot nematodes (RKN) Meloidogyne spp. are considered to be the most damaging plant parasitic 50 nematodes for agricultural production. Several species that reproduce by mitotic parthenogenesis, with the 51 exception of M. floridensis, belong to the phylogenetic clade I of Meloidogyne genus, also referred as the 52 tropical RKN group. Species of this group cause substantial economic losses particularly in vegetable production 53 as they have a wide host range. Tropical group species M. ethiopica has been reported to have been found in 54 Africa by Whitehead (1968). The species is widely distributed in vineyards in Chile (Aballay et al. 2009) and 55 was found to be the major root-knot nematode pest of grapevine and other crops in Chile (Carneiro et al. 2007). 56 In Brazil, *M. ethiopica* affected the root growth, yield and quality of kiwi fruit causing serious economic losses 57 (Carneiro et al. 2003) and generated multiple galls on potato roots and protuberances on tubers (Medina et al. 58 2014). Furthermore, *M. ethiopica* was the most frequently found species in Chilean vineyards and kiwi orchards 59 (Carneiro et al. 2007). In Europe M. ethiopica has been first reported from Slovenia (Širca et al. 2004), followed 60 by Greece (Conceição et al. 2012), Italy (Maleita et al. 2012), and Turkey (Aydinli et al. 2013). Morphologically 61 similar species M. luci has been described by Carneiro et al. (2014), which was reported from Brazil, Chile, Iran 62 (Carneiro et al. 2014), Guatemala (Janssen et al. 2016) and Portugal (Maleita et al. 2017). After that, all M. 63 ethiopica populations reported from Europe were subsequently re-analysed and re-identified as M. luci (Janssen 64 et al. 2016; Gerič Stare et al. 2017). Meloidogyne luci was detected on several crops but there are no reports of 65 economic damage except from Europe. In Slovenia, M. luci was found at two distinct locations. In the 66 greenhouse in 2003 M. luci caused severe damage on tomatoes, however, the pest was eradicated due to 67 omission of the agricultural production. A second infestation was detected in 2015 in a greenhouse near 68 Ljubljana where *M. luci* caused severe damage and decline of more than 80 % of tomato crop (Gerič Stare et al. 69 2018). The finding of virulent populations of *M. luci* in Turkey that can reproduce on tomato plants bearing *Mi*-1 70 resistance gene adds to the concern on damaging potential of this species (Aydinli and Mennan 2016a). Although 71 Mi-1 resistance gene has been introgressed into many commercial tomato cultivars to control RKN M. incognita, 72 M. javanica and M. arenaria, it has been shown that Mi-1 also prevents the reproduction of M. luci (Strajnar and 73 Širca 2011; Conceição et al. 2012). In Middle Black Sea Region of Turkey Mi-1 tomato cultivars are widely 74 used to control RKN including M. luci (Aydınlı and Mennan 2016b). Another close species M. inornata was 75 described from soybean in Brazil by Lordello (1956) and designated also as a sister species to M. ethiopica 76 (Whitehead 1968). It was also detected on tobacco, yacon and common bean (Figueiredo 1958; Carneiro et al. 77 2008; Machado et al. 2013) but there are no reports on the economic damage. As M. ethiopica and M. luci 78 represent serious phytosanitary risk both species were included on the EPPO Alert List of harmful organisms in 79 2011 and 2017, respectively (EPPO).

80 A combination of diagnostic methods is used for the identification of closely related M. ethiopica, M. 81 luci and M. inornata: morphometry, analysis of the isozyme patterns and different molecular (DNA) markers. 82 The most reliable method to distinguish between the three species is the esterase isozyme phenotype analysis 83 (Janssen et al. 2016; Gerič Stare et al. 2017) however, L3 and E3 phenotypes differ slightly in migration rate of 84 one band only, which is hard to spot unless isolates with both phenotypes are analysed on the same gel (Gerič 85 Stare et al. 2017). The use of morphometrics demands a well-trained specialist as the sister species M. luci and 86 *M. ethiopica* are very difficult to distinguish. Identification based on DNA markers is challenging due to closely 87 related lineages indicating a recent speciation (Janssen et al. 2016), hybrid origins of the species (Lunt et al. 88 2014) and related taxonomic ambiguity (Janssen et al. 2016). ITS, SSU and LSU of the rDNA regions are not 89 appropriate diagnostic markers while mtDNA regions proved to be useful in phylogenetic studies (Janssen et al. 90 2016; Gerič Stare et al. 2017). Besides mtDNA, the analysis of taxonomically restricted genes of map-1 gene 91 family provided additional information of evolutionary relationship and speciation in the tropical RKN group. 92 The analysis of the *map-1* genes presence in the RKNs showed that these genes are specifically present in the 93 species that reproduce by mitotic parthenogenesis, with the exception of *M. floridensis*, and could not be 94 detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis (Tomalova et al. 2012). In 95 addition, identical structure of genes of map-1 family in M. ethiopica and M. inornata was observed which was 96 unique in comparison to the rest of the analysed species (Tomalova et al. 2012) suggesting the common 97 evolutionary history of these parasites.

98 The objective of this study was to clarify the relations between three morphologically similar RKN 99 species. According to the analysis of the region of mtDNA stretching from the 3' end portion of the cytochrome 100 oxidase II (COII) gene through a 5' portion of the 16S rRNA sequences of these three species form a 101 monophyletic group in which M. luci forms a subclade while M. ethiopica and M. inornata couldn't be 102 distinguished (Gerič Stare et al. 2017). A close relationship of these three species was also shown based on 103 several mtDNA genes by Janssen et al. 2016. A second objective was to identify species-specific diagnostic 104 parameters which could be of diagnostic value. A third objective was to test if the emergence of virulent M. luci 105 populations correlates with the loss of map-1 genes as it was previously indicated for M. incognita (Castagnone-106 Sereno et al. 2009). We reviewed information on the host plants in order to find any biological differences, 107 reanalysed morphological characters and sequenced the structural genes of map-1 family in the selected species 108 M. ethiopica, M. luci and M. inornata. We proposed Meloidogyne ethiopica group and developed a diagnostic 109 method for its detection.

110

111 Materials and Methods

112

113 Nematode isolates. RKN isolates were collected from different geographical origin (Table 1 and Table 2).
114 Selected isolates were maintained on tomato cv. Val, type Cuore di bue or cv. Falcon cultures, kept in a
115 greenhouse at 20 - 25°C. Nematodes used for analyses were isolated from the fresh cultures.

116

Morphometric analysis. Using a dissecting microscope SMZ 800 (Nikon), females and egg masses were
isolated from infested roots with a scalpel and a nematological needle. Males and second stage juveniles (J2)

were extracted from the sand by the decanting method (Hržič 1973) followed by Baerman's funnel extraction. Isolated males and J2s were fixed in 2% formalin solution before analyses, while female parameters were analysed on fixed females in 45% lactic acid. Nematode images and morphometrical analyses were performed using Leica, M125 or Nikon TiE light microscope with a system of image analyses. Common nematode body features were measured in a set of *Meloidogyne* spp. isolates (Table 2) on 10 fixed nematode specimens of each nematode life stage.

125

DNA extraction. DNA was extracted from a single egg mass of each selected isolate (Table 1). A Promega
Genomic DNA Wizard purification kit (Madison, WI, USA) was used according to manufacturer's instructions.
Extracted DNA was diluted in 10 μl of DNA rehydration solution (10mM Tris-HCl, 1mM EDTA).

129

130 Structure of map-1 genes. Sequences of repetitive domains in map-1 genes in a set of Meloidogyne spp. 131 isolates, including Mi-1 virulent M. luci isolate from Turkey, Ordu (Table 2) were determined. Repetitive 132 domains in *map-1* genes were amplified with primers m1 and m2 as described by Semblat et al. (2001). 133 Electrophoresis of all amplified DNA products was performed on a 0.8% TBE agarose gel. Individual bands 134 were excised from the gel and DNA was extracted with GeneJetGel Extraction Kit (Thermo Scientific) following 135 manufacturer's instructions. Individual bands were cloned with the pGEM-T Easy Vector System II (Promega) 136 according to the manufacturer's instructions. Plasmid DNA was isolated by JetQuick Plasmid Miniprep 137 (Genomed) following the manufacturer's instructions. Macrogen Inc. (Korea) provided sequencing of plasmids 138 with universal primers SP6 and T7. DNA sequences were edited and aligned using the BioEdit v. 7.0.5.2 139 software (Hall 1999).

140

141 Molecular identification tests. Primers were designed manually in parallel with alignment of Meloidogyne 142 mitochondrial DNA available in the public domain. The region of mtDNA stretching from the 3' end portion of 143 the cytochrome oxidase II (COII) gene through a 5' portion of the 16S rRNA (IRNA) gene was selected as a 144 target sequence as sequences of this marker region are available for many nematode species. Specific primers 145 Me309F (CTAATTTGGGTGAATTT) and Me549R (AATCAAAATCTTCTCCT) were selected for M. 146 For RKN Mt575R ethiopica group. the tropical group, the specific reverse primer 147 (AGAACTTAAACTCTAAATAAC) was selected to be used in combination with the forward primer C2F3 148 (GGTCAATGTTCAGAAATTTGTGG) described previously (Powers and Harris 1993). PCR reactions contained 2 μl of isolated DNA, 10 mM Tris-HCl pH 8.3, 1.5 mM MgCl₂, 2.5 mM of each of the dNTPs, 1 μM
of each corresponding primer (Sigma), 1U Go*Taq* DNA Polymerase (Promega) and distilled water up to 50 μl.
The amplification was carried out in a thermal cycler Veriti (Applied Biosystems) using the following program:
initial denaturation at 94°C for 5 min; 35 cycles of denaturation at 94°C for 30 s, 30 s for annealing at 50°C for *M. ethiopica* group and at 54°C for the tropical group of RKN, elongation at 72°C for 30 s for *M. ethiopica*group and for 1 min for the tropical group of RKN; followed by a final extension at 72°C for 5 min. Amplified
DNA products were visualised on a 1% TBE agarose gel.

- 156
- 157 Results
- 158

159 Morphometric analysis

160 Morphometric characters of females, males and J2 of thirteen M. luci isolates from Turkey, an isolate of M. luci 161 from Slovenia and an isolate of M. inornata from Chile were measured and compared with previous reports of 162 M. ethiopica (Carneiro et al. 2004), M. inornata (Carneiro et al. 2008) and M. luci (Carneiro et al. 2014) (Table 163 1S). The values of all life stage morphological characteristics studied here overlapped in all species and isolates. 164 In females, stylets were robust with developed knobs and ranged in length from 11.3 to 18.7 µm in M. luci, from 165 12 to 15 µm in M. ethiopica and from 14.7 to 17 µm in M. inornata. Mean value of stylet length in M. ethiopica 166 females was shorter compared to other two species while stylet knob height in M. inornata was higher than in 167 other two analysed species. The mean values of distance from anterior end to metacorpus in females of two M. 168 luci isolates were 71.4 and 73.6 µm which is shorter than in *M. inornata* isolates (95.3 and 104.0 µm). Female 169 excretory pore position was similar in *M. luci* and *M. inornata* while more posteriorly positioned excretory pore 170 was observed in *M. ethiopica*. In males, stylet length and spicule length in *M. ethiopica* were longer than in other 171 two species. The rest of the measured and published morphometrical characteristics of males were similar among 172 isolates and species. In juveniles, M. ethiopica showed the highest average values for body length (468 µm) and 173 tail length (62 µm), whereas M. luci and M. inornata had lower average values for these characters. Reported 174 measurements for two characters i.e. the anterior end to metacorpus and the anterior end to excretory pore in M. 175 inornata from Brazil seems rather high compared to measurements of these characters in all other species and 176 populations included in Supplementary Table 1, including M. inornata from Chile. The measurements of 177 anterior end to metacorpus in juveniles ranged from 47.5 to 67.6 µm and from 46.2 to 66.0 µm in M. luci from 178 Turkey and Slovenia, respectively. In *M. inornata* isolate from Chile this character ranged from 55.7 to 61.5 µm

179 (this study data) which is similar to all studied isolates except for *M. inornata* from Brazil where the character 180 ranged from 102 to 134 μ m (Carneiro et al. 2008). Similar deviation was observed in measurements for anterior 181 end to excretory pore.

182

183 Structure of *map-1* genes

The presence of two *map*-1 genes was determined in all of our tested RKN isolates (Table 2). In accordance with gene designations by Tomolova et al (2012) the determined genes belong to *map*-1 alleles 1 and 6 each with certain length and unique structure of repetitive domains. Combination of *map*-1 genes denominated as allele 1 and allele 6 was found in all three tested species: *M. luci, M. ethiopica* and *M. inornata* (Table 2, Fig. 1), confirming their close relationship. Two genes/alleles with the same structure of repetitive domains were present in the avirulent as well as in the virulent isolate of *M. luci*. The emergence of virulence does not correlate with the loss of *map*-1 gene in *M. luci*.

191 The sequences generated during the current study were deposited at ENA database (acc. nos.
192 LT835071-LT835099, LT996917 - LT996918).

193

Molecular identification tests

195 We have developed two PCR identification methods based on the mtDNA sequences of RKNs from the 196 database. The group of three species, M. ethiopica, M. luci and M. inornata also referred to as M. ethiopica 197 group can be identified based on amplification of a group-specific, 241 bp long amplicon with group-specific 198 PCR primers designed in this study (Fig. 2). With an additional PCR reaction presence of RKNs belonging to the 199 tropical group can be checked by amplifying a group-specific, 621 bp long amplicon (Fig. 2). Tropical RKN test 200 was performed with one group-specific primer designed in this study and the primer C2F3 (Powers and Harris 201 1993), which is a widely used primer for molecular identification of *Meloidogyne* species. Specificity of both 202 identification methods was tested on a range of RKN species and isolates of diverse geographical origin: eight 203 M. arenaria, three M. chitwoodi, five M. ethiopica, one M. fallax, three M. hapla, two M. hispanica, twelve M. 204 incognita, two M. inornata, seven M. javanica and twenty-six M. luci isolates (Table 1).

205

206 Discussion

The biological species concept defines a species as members of populations capable of interbreeding in
nature and producing fertile offspring, not according to similarity of appearance (Mayr, 1942, cited in Adams,

209 1998). However, biological species concept cannot be applied to organisms that do not reproduce sexually. One 210 such example is the tropical group of RKNs, where majority of species reproduces by obligate mitotic 211 parthenogenesis (Castagnone-Sereno & Danchin, 2014). In such cases we can apply the Linnean species concept 212 or typological morphospecies concept, which delimits species as groups of organisms that have the most overall 213 similarity (Mayr, 1963, cited in Adams, 1998). However, this approach is most prone to errors including 214 overestimating and underestimating the number of species and misrepresenting their phylogenetic relationships. 215 To overcome the species problem De Queiroz (2007) proposed a unified species concept, not as a new species 216 concept but rather a view that encompasses all the above species concepts (and others not mentioned in this 217 paper) in the light of continuum of speciation process. A unified species concept treats existence as a separately 218 evolving metapopulation lineage as the only necessary property of species while evidence (operational criteria) 219 relevant to assessing lineage separation can be presence of any of the different important biological properties 220 (e.g., intrinsic reproductive isolation, diagnosability, monophyly, occupation of a distinct niche, phenetic 221 distinguishability). But he points out that these different secondary properties arise at different times during the 222 process of speciation. So, in species that are in process of speciation, delimitation of species can be based on 223 different properties (operational criterion) emphasized in different species concepts. This argument seems in 224 favour of M. ethiopica, M. luci and M. inornata being recognised as separate species as any evidence of 225 delimitation under unified concept is a proof of a new species. As M. ethiopica, M. luci and M. inornata exhibit 226 many similarities on biological (common hosts), morphological (overlapping morphological characteristics) and 227 molecular levels (demonstrated on mtDNA), and share the evolutionary path distinct from the other tropical 228 RKN species (demonstrated by the unique structure of map-1 genes) we have classified the three studied species 229 as a *M. ethiopica* group.

230 Meloidogyne ethiopica can affect numerous plant species, including many important crops such as 231 grapevine and potato (Whitehead 1968; O'Bannon 1975; Carneiro et al. 2003, 2004; Lima et al. 2009). As there 232 is no reliable differential host between M. ethiopica and M. luci found so far, it seems that these two species are 233 so closely related that there is no biological difference between them in terms of parasitizing different plant 234 species (Gerič Stare et al. 2017). Therefore both species represent a serious threat to agriculture (Carneiro et al. 235 2003, 2007; Aballay et al. 2009; Medina et al. 2014; Maleita et al. 2017) and were therefore included in the 236 EPPO Alert list of harmful organisms. Less host plant species have been reported for M. inornata (Lordello 237 1956; Figueiredo 1958; Carneiro et al. 2008; Machado et al. 2013). Meloidogyne inornata had the same response 238 as *M. javanica* in differential host dependent tests where tomato cv. Rutgers, tobacco cv. NC95 and watermelon cv. Charleston Gray were defined as good hosts, whereas cotton cv. Deltapine 61, pepper cv. California Wonder
and peanut cv. Florunner were non-hosts (Carneiro et al. 2008). Although not many plant host species are
reported for *M. inornata* and there has not been an extensive study to determine its host range, all reported hosts
of *M. inornata* can also be parasitized by *M. ethiopica* and/or *M. luci*.

243 In addition to the common hosts the three studied species exhibit also morphological similarities. In the 244 species description of M. inornata Lordello (1956) a close relation to M. incognita was noticed but some 245 morphological characteristics including broader eggs, second-stage juvenile heading with only one post-labial 246 annule and female excretory pore located further posterior differ from M. incognita. Moreover, the author 247 considered that the single wide annule immediately posterior to the head cap of the male was the most 248 outstanding character for distinguishing these species. Whitehead (1968) and Hewlett and Tarjan (1983) 249 considered M. inornata to be closely related to M. incognita. Therefore, Jepson (1987) and Eisenback and 250 Triantaphyllou (1991) synonymised these two species based on morphological characteristics. In 2008 Carneiro 251 et al. re-described this species and indicated some distinctive morphological characteristics of females, males 252 and J2s including the perineal pattern with *incognita*-type and excretory pore location of female, a single annule 253 posterior to the head cap in males and J2s, tail length and c ratio of the J2, and stylet morphology of males. 254 According to Carneiro et al. (2008), the isolate of *M. inornata* from Brazil had the metacorpus positioned much 255 more posteriorly (ranges from 102 to 134 µm) compared to the J2s of M. inornata from Chile (55.7 to 61.5 µm) 256 or M. luci from Turkey and Slovenia. However, our measurements of M. inornata from Chile were consistent 257 with *M. inornata* species original description where the character ranged between 46.5 and 64.8 µm (Lordello, 258 1956). Morphological characteristics of M. luci, M. inornata and M. ethiopica recorded in this study and in 259 previous reports (Carneiro et al. 2004, 2008, 2014) were similar and the ranges for certain characters overlapped 260 (Table 1S). In previous reports, morphology of these species was examined in detail and morphometric values 261 from different nematode stages were reported. Carneiro et al (2014) stated that distinctly different morphology of 262 knobs shape in male stylet was observed between three species on electron scans but other morphological 263 characteristics of females, males and J2s were similar for at least two species. For example, the perineal patterns 264 of M. luci and M. ethiopica were similar whereas stylet conus of female in M. luci and M. inornata was similar 265 and at the same time different from M. ethiopica (Carneiro et al. 2014). These differences are difficult to observe 266 using the most widely used light microscopy and even then highly trained and experienced diagnostic specialists 267 are needed. Therefore, we evaluated the morphological characters that can be easily measured with light 268 microscopy and do not require highly experienced analyst. Jepson (1983) noted tail length as the least variable 269 and most differential quantitative character in second-stage juveniles. Overlapping values were obtained in three 270 species for tail length of J2s. However, M. ethiopica isolate from Brazil (Carneiro et al. 2004) exhibits longer tail 271 in J2s (52-72 µm) compared the original described *M. ethiopica* (Whitehead, 1968) tail length in J2s (41-52 µm) 272 which indicates greater intra-specific variability for this character. Tail length in M. luci and M. inornata J2s 273 exhibited similar ranges. For the distance from anterior end to excretory pore of J2s only M. inornata isolate 274 from Brazil (Carneiro et al. 2008) exhibited much higher values ranging from 152 to 164 µm, but the parameter 275 was in the same range in all isolates including *M. inornata* from Chile (this study data) which ranged from 60.2 276 to 93.5 µm. Similar deviation was observed in measurements for anterior end to excretory pore in *M. inornata* 277 isolate from Brazil which indicates possible incorrect measurements taken by Carneiro et al. (2008) for these two 278 characters. Similarly, morphological measurements from M. luci and M. inornata in this study contradicted the 279 finding of Carneiro et al (2014) who reported that the distance of DGO to stylet base in males were different 280 between these species. The values for this character in males of *M. inornata* isolate from Chile were in the same 281 range as in M. luci isolates. Few morphometric characters in all there analysed species exhibited species 282 distinguishing potential but when comparing morphometry of different isolates and original species description 283 data the overlapping between the species was noticed. Based on these findings, the sister species are very 284 difficult to distinguish on morphological characteristics alone.

The biochemical properties as the isozyme esterase phenotypes were reported as the most distinguishing character for the studied species (Carneiro et al., 2008, 2014; Gerič Stare et al., 2017). In general, analysing phenotypes of malate dehydrogenase (MDH) and esterase (EST) isozymes has proved to be a useful approach in RKN species identification (Esbenshade and Triantaphyllou 1985). Species of *M. ethiopica* group can be differentiated by their EST profiles E3 or E2, L3 and I3 found in *M. ethiopica, M. luci* and *M. inornata,* respectively. However, L3 and E3 phenotypes differ in migration rate of one band only which is hard to spot unless isolates with both phenotypes are analysed on the same gel (Gerič Stare et al., 2017).

The accurate RKN species identification is the first step toward appropriate management strategies. A combination of several diagnostic methods is used for the RKN identification: morphology, determination of the host plants, analysis of the isozyme patterns and different molecular (DNA) markers. Advantages of molecular approaches in identification of RKNs are that live material and different live stages are not needed. Further, it should be stressed that rDNA repeating units have been shown to be of valuable diagnostic benefit in the case of species for which a risk of confusion exists, e.g., distinguishing *M. enterolobii* from the other tropical RKN species or *M. chitwoodi* from its sibling species *M. fallax* and *M. hapla*. However, these rDNA repeating units 299 cannot be used with confidence to identify the tropical RKN species, where intraspecific and inter-individual 300 variations were observed (Castagnone-Sereno et al. 2013). Many species-specific primer pairs have been 301 developed for tropical RKNs and some of them seem to be more reliable and robust than others (Groover 2017). 302 While species-specific primer pairs are developed for the more common *Meloidoyne* species (Zijlstra et al. 2000; 303 Adam et al. 2007; Tigano et al. 2010), they are not available or are not working reliably for many other 'minor' 304 species including M. ethiopica M. luci and M. inornata (Correa et al. 2014). Similar is true for PCR-RFLP 305 approach; while it seems to work for identification of some species, the approach does not enable identification 306 of all or at least the majority of clade I species in the genus Meloidoyne (Powers & Harris, 1993; Zijlstra et al. 307 1995; Stanton et al. 1997; Maleita et al. 2012; Pagan et al. 2015; Baidoo et al. 2016). While we could not find 308 any species-specific diagnostic parameters that could be used for an easy identification on morphological level, 309 we were able to identify group-specific parameters (conserved nucleotide sites) on molecular level. The methods 310 for M. ethiopica group and tropical RKN identification developed in this study could be a valuable tool for 311 quick, simple and unambiguous identification to this taxonomical level or one step in a scheme towards selection 312 of further species-specific tests. Specificity of both developed tests was tested with a wide selection of RKN 313 species and isolates from different geographical origin. Further, the specificity of the method for M. ethiopica group identification was tested with alignment of the primers to the mtDNA sequences of M. luci reported from 314 315 Portugal. As primers Me309F and Me549R showed 100% identity to the sequences with accession numbers 316 KM042847 and KM042848, this in silico annealing test is indicating that this isolate would probably give a 317 positive result in a PCR test, although *in vitro* test would be needed for confirmation. A substantial number of M. 318 luci isolates from Turkey was included in this study as this nematode species is widely distributed in the Black 319 See region of Turkey in greenhouses as well as in open field production (Aydinli and Mennan 2016b; Aydinli 320 2018). Six M. luci isolates from Turkish Samsun province included in our testing originate from open fields (Aydinli 2018). Although this nematode was first recorded in Turkey only in 2009 (Aydinli et al. 2013) and at 321 322 that time reported as M. ethiopica, but later recognised as M. luci (Gerič Stare et al. 2017), there is an indication 323 that M. luci may have been present in Turkey much earlier. Esbenshade and Triantaphyllou (1985) reported an 324 esterase profile designated as M3 in one *Meloidogyne* spp. isolate from Turkey which could not be identified to 325 species. This esterase profile M3 was later renamed as L3 and reported as a species specific esterase profile 326 characteristic for M. luci (Carneiro et al. 2014).

While real-time PCR based diagnostic methods have been on the rise for over a decade as they amongother advantages ensure a higher sensitivity of detection than a conventional PCR, molecular identification

329 methods developed in this work were deliberately developed for the conventional PCR, because many diagnostic 330 laboratories do not have the real-time PCR thermocyclers. Further, developed methods based on conventional 331 PCR are sensitive enough to give a positive result with DNA extracted from a single egg mass. Additionally, the 332 lengths of PCR amplicons (241 and 621 bp) are not optimal for real-time PCR where shorter amplicons are 333 preferred to ensure a good efficiency (E value) of the real-time PCR reaction. The lengths of PCR amplicons are 334 dependent on positions of variable and conserved sites in target DNA, which were crucial in primers design. We 335 were able to upgrade M. ethiopica group identification method to a real-time PCR, but the E value was not 336 within the proposed range for an optimal real-time PCR reaction (data not shown.)

337 Although mtDNA regions have a certain discriminatory power to distinguish the sister species in 338 phylogenetic analyses (Janssen et al. 2016; Gerič Stare et al. 2017), we have opted for the analysis of structural 339 genes linked to pests' ability for parasitism in order to test phylogenetic relationships of tropical RKN species. 340 MAP-1 protein and corresponding map-1 gene were first described from M. incognita by Semblat et al. (2001) 341 and thought to be secreted from the amphids, chemosensory organs in the nematode head region. The internal 342 part of the protein is characterised by 58AA and 13AA long tandemly arranged repetitive motives. Although 343 MAP-1 was initially hypothesised to be an expansin-like protein (Tomalova et al. 2012; Semblat et al. 2001), 344 further studies suggested it contained a 14 AA mofits with sequence similarity to CLE-like peptides, a plant 345 peptide hormone mimic and that the gene may be expressed in the subventral gland cells (Rutter et al. 2014). 346 CLE effectors secreted by cyst nematodes (Globodera and Heterodera spp.) influence plant signalling pathways 347 resulting in the formation and maintenance of syncytia (Guo et al. 2011), while the function of MAP-1 proteins 348 in *Meloidogyne* spp. parasitism is not well understood. However, it has been shown that *map*-1 gene family is a 349 set of taxonomically restricted genes found only in tropical RKNs (Tomolova et al. 2012). In addition to the 350 morphometric similarity between species and close relationship revealed on mtDNA level (Jansen et al. 2016, 351 Gerič Stare et al. 2017), the identical structure of genes in map-1 family in M. ethiopica, M. luci and M. inornata 352 supports a close relationship of these three species and therefore we have classified them together as M. 353 ethiopica group. Further, the loss of one copy of map-1 gene in M. incognita near-isogenic lines has been 354 reported to correlate with the break of Mi-1 mediated resistance in tomatoes (Castagnone-Sereno et al. 2009). In 355 order to test if the same mechanism linked with loss of map-1 gene is responsible for virulence observed in M. 356 luci, we have determined the sequence of repetitive domains in map-1 genes in a set of tropical RKN isolates, 357 including avirulent and virulent M. luci isolates from Turkey. While the loss of one copy of map-1 gene in M. 358 incognita correlated with the break of Mi-1 mediated resistance (Castagnone-Sereno et al. 2009), we have shown 359 that the emergence of virulence does not correlate with the loss of map-1 genes in M. luci. Similar to our 360 observation, M. javanica isolate virulent to the Mi-resistant gene retains two homologues of map-1 genes (Adam 361 et al. 2009). Molecular mechanics for resistance break in M. luci virulent populations remains to be elucidated. 362 Analysis of whole genomes could reveal the basis for this resistance break as well as resolve phylogenetic 363 relationships of closely related populations of M. ethiopica, M. luci and M. inornata. As tropical RKN species 364 have evolved with hybridisation (Lunt et al. 2014), the whole genome datasets will be more useful for 365 establishing evolutionary trails and phylogenetic relationships of these species than any partial DNA sequence / 366 molecular marker.

367

Funding: This study was funded by Slovenian Research Agency (ARRS grants no. BI-TR/15-17-008, P4-0072),
by the Ministry of Agriculture, Forestry and Food of the Republic of Slovenia (grant no. C2337) and by
Scientific and Technological Research Council of Turkey (TUBİTAK grant no. 214 O 667) within Bilateral
project between Slovenia and Turkey. The study was partly funded within the frame of FP7 Project CropSustaIn,
grant agreement FP7-REGPOT-CT2012-316205.

373

374 Conflict of Interest: The authors declare that they have no conflict of interest

375

376 References

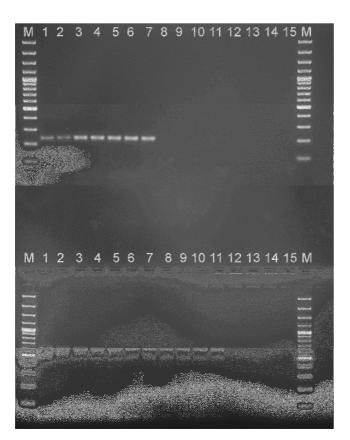
- 377 Aballay, E., Persson, P., Mårtensson, A. (2009). Plant-parasitic nematodes in Chilean vineyards. Nematropica, 39 (1), 85–97.
- 378 Adam, M. A. M., Phillips, M. S., Blok, V. C. (2007). Molecular diagnostic key for identification of single juveniles of seven
- 379 common and economically important species of root-knot nematode (*Meloidogyne* spp.). Plant Pathology, 56, 190–197.
- 380 Adam, M. A. M., Phillips. M. S., Tzortzakakis, E. A., Blok, V. C. (2009). Characterisation of *mjap* genes encoding novel
- **381** secreted proteins from the root-knot nematode, *Meloidogyne javanica*. Nematology, 11(2), 253–265.
- Adams, B.J. (1998). Species concepts and the evolutionary paradigm in modern nematology. Journal of Nematology, 30(1),
 1–21.
- 384 Aydinli, G. (2018). Detection of the root-knot nematode *Meloidogyne luci* (Carneiro et al., 2014) (Tylenchida:
- 385 Meloidogynidae) in vegetable fields of Samsun Province, Turkey. Turkish Journal of Entomology, 42(3), 229–237.
- 386 Aydinli, G. & Mennan, S. (2016a). Reproductive ability of *Meloidogyne ethiopica* populations on tomato plant with *Mi*
- 387 resistance gene. Abstract book of 32nd ESN (European Societety of Nematologists) Symposium. 28th Aug. 1st Sept. 2016,
- 388 Braga, Portugal, Universidade do Minho, European Society of Nematologists, 2016, p. 159. https://www.esn-
- 389 online.org/core/js/tinymce/plugins/moxiemanager/data/files/ESN2016_Abstract_Book.pdf. Accessed 14 April 2018.

- 391 Aydinli, G., Mennan, S. (2016b). Identification of root-knot nematodes (*Meloidogyne* spp.) from greenhouses in the Middle
- **392** Black Sea Region of Turkey. Turkish Journal of Zoology, 40(5), 675–685.
- 393 Aydinli, G., Mennan, S., Devran, Z., Širca, S., Urek, G. (2013). First report of the root-knot nematode Meloidogyne ethiopica
- on tomato and cucumber in Turkey. Plant Disease, 97(9), 1262.
- Baidoo, R., Joseph, S., Mengistu, T. M., Brito, J. A., McSorley, R., Stamps, R. H., Crow, W. T. (2016). Mitochondrial
- haplotype-based identification of root-knot nematodes (Meloidogyne spp.) on cut foliage crops in Florida. Journal of
- **397** Nematology, 48(3), 193–202.
- 398 Carneiro, R. M. D. G., Almeida, M. R. A., Cofcewicz, E. T., Magunacelaya, J. C., Aballay, E. (2007). Meloidogyne
- ethiopica, a major root-knot nematode parasitising Vitis vinifera and other crops in Chile. Nematology, 9(5), 635–641.
- 400 Carneiro, R. M. D. G., Gomes, C. B., Almeida, M. R. A., Gomes, A. C. M. M., and Martins, I. (2003). First record of
- 401 *Meloidogyne ethiopica* Whitehead, 1968 on kiwi in Brazil and reaction on different plant species. Nematologia Brasiliera,
- **402** 27(2), 151–158.
- 403 Carneiro, R. M. D. G., Randing, O., Almeida, M. R. A., Gomes, A. C. M. M. (2004). Additional information on *Meloidogyne*
- 404 *ethiopica* Whitehead, 1968 (Thylenchida: Meloidogynidae) a root-knot nematode parasitising kiwi fruit and grape-vine from
- 405 Brazil and Chile. Nematology, 6(1), 109–123.
- 406 Carneiro, R. M. D. G., Mendes, M. L., Almeida, M. R. A., Santos, M. F. A., Gomes, A. C. M. M., Karssen, G. (2008).
- 407 Additional information on *Meloidogyne inornata* Lordello, 1956 (Tylenchida: Meloidogynidae) and its characterisation as a
 408 valid species. Nematology, 10(1), 123–136.
- 409 Carneiro, R. M. D. G., Correa, V. R., Almeida, M. R. A., Gomes, A. C. M. M., Deimi, A. M., Castagnone-Sereno, P., et al.
- 410 (2014). Meloidogyne luci n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising different crops in Brazil,
- 411 Chile and Iran. Nematology, 16(3), 289–301.
- 412 Castagnone-Sereno, P., Danchin, E. G. J. (2014). Parasitic success without sex the nematode experience. Journal of
 413 Evolutionary Bioliology, 27(7), 1323–1333.
- 414 Castagnone-Sereno, P., Danchin, E. G., Perfus-Barbeoch, L., Abad, P. (2013). Diversity and evolution of root-knot
- 415 nematodes, genus *Meloidogyne*: new insights from the genomic era. Annual Review of Phytopathology, 51, 203–220.
- 416 Castagnone-Sereno, P., Semblat, P., Castagnone, C. (2009). Modular architecture and evolution of the *map*-1 gene family in
- 417 the root-knot nematode *Meloidogyne incognita*. Molecular Genetics and Genomics, 282, 547–554.
- 418 Conceição, I. L., Tzortzakakis, E. A., Gomes, P., Abrantes, I., da Cunha, M. J. (2012). Detection of the root-knot nematode
- 419 *Meloidogyne ethiopica* in Greece. European Journal of Plant Pathology, 134(3), 451–457.
- 420 Correa, V. R., Mattos, V. S., Almeida, M. R. A., Santos, M. F. A., Tigano, M. S., Castagnone-Sereno, P., et al. (2014).
- 421 Genetic diversity of the root-knot nematode *Meloidogyne ethiopica* and development of a species-specific SCAR marker for
- 422 its diagnosis. Plant Pathology, 63(2), 476–483.
- 423 De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56(6), 879–86.

- 424 Eisenback, J.D., & Triantaphyllou, H.H. (1991). Root-knot nematode: *Meloidogyne* spp. and races. In: W.R Nickle (Ed.),
- 425 Manual of agricultural nematology (pp.191-274). New York, NY, USA: Marcel Dekker Inc.
- 426 EPPO. <u>https://www.eppo.int/ACTIVITIES/plant_quarantine/alert_list_nematodes/meloidogyne_ethiopica_luci</u>,
- 427 <u>https://www.eppo.int/ACTIVITIES/plant_quarantine/alert_list</u>. Accessed 23 October 2018.
- 428 Esbenshade, P. R., & Triantaphyllou, A. C. (1985). Use of isozyme phenotypes for identification of *Meloidogyne* species.
- 429 Journal of Nematology, 17(1), 6–20.
- 430 Figueiredo, M. B. (1958). Algumas observações sobre nematóides que atacam fumo no estado de São Paulo. Revista de
- **431** Agricultura, 33, 69–73.
- 432 Gerič Stare, B., Strajnar, P., Susič, N., Urek, G. Širca, S. (2017). Reported populations of *Meloidogyne ethiopica* in Europe
- 433 identified as *Meloidogyne luci*. Plant disease, 101(9), 1627–1632.
- 434 Gerič Stare, B., Strajnar, P., Širca, S., Susič, N., Urek, G. (2018). Record of a new location for tropical root knot nematode
- 435 *Meloidogyne luci* in Slovenia. EPPO Bulletin, 48(1), 135–137.
- 436 Groover, W. L. (2017). An evaluation of multiple techniques for the creation of a diagnostic tool for *Meloidogyne* species
- 437 identification in Alabama. Master Thesis, Auburn University. pp 62. https://etd.auburn.edu/handle/10415/5887. Accessed 16
- 438 April 2018.
- 439 Guo, Y., Ni, J., Denver, R., Wang, X., Clark, S. E. (2011). Mechanisms of molecular mimicry of plant CLE peptide ligands
- 440 by the parasitic nematode *Globodera rostochiensis*. Plant Physiology, 157(1), 476–484.
- 441 Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows
- 442 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
- Hewlett, T. E. & Tarjan, A. C. (1983). Synopsis of the genus *Meloidogyne* Goeldi, 1987. Nematropica, 13(1), 79–102.
- 444 Hržič, A. (1973). Extraction of nematodes from soil with whirling motion. Zaštita Bilja, 122, 53–60.
- 445 Humphreys-Pereira, D.A., Flores-Chaves, L., Gomez, M., Salazar, L., Gomez-Alpizar, L. Elling, A.A. (2014). Meloidogyne
- 446 lopezi n. sp. (Nematoda: Meloidogynidae), a new root-knot nematode associated with coffee (Coffea arabica L.) in Costa
- 447 Rica, its diagnosis and phylogenetic relationship with other coffee-parasitising *Meloidogyne* species. Nematology, 16 (6),
- **448** 643–661.
- 449 Janssen, T., Karssen, G., Verhaeven, M., Coyne, D., Bert, W. (2016). Mitochondrial coding genome analysis of tropical root-
- 450 knot nematodes (*Meloidogyne*) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution.
- 451 Scientific reports, 6:22591, DOI: 10.1038/srep22591.
- Jepson, S.B. (1983). The use of second-stage juvenile tails as an aid in the identification of *Meloidogyne* species.
 Nematologica, 29, 11-28.
- 454 Jepson, S.B. (1987). Identification of root-knot nematodes (*Meloidogyne* species). Wallingford, UK: CAB. International,
 455 265pp.
- 456 Lima, E. A., Mattos, J. K., Moita, A. W., Carneiro, R. G., Carneiro, R. M. D. G. (2009). Host status of different crops for
- 457 *Meloidogyne ethiopica* control. Tropical Plant Pathology 34(3), 152–157.
- 458

- 459 Lordello, L.G.E. (1956). Meloidogyne inornata sp. n. a serious pest of soybean in the state of São Paulo, Brazil (Nematoda,
- 460 Heteroderidae). Revista Brasileira de Biológia, 16, 65–70.
- 461 Lunt, D. H., Kumar, S., Koutsovoulos, G., Blaxter, M. L. (2014). The complex hybrid origins of the root knot nematodes
- 462 revealed through comparative genomics. PeerJ 2:e356 <u>https://doi.org/10.7717/peerj.356</u>
- 463 Machado, A.C.Z., Dorigo, O.F., Mattei, D. (2013). First report of the root knot nematode, *Meloidogyne inornata*, on common
- 464 bean in Paraná State, Brazil. Plant Disease, 97(3), 431.
- 465 Maleita, C. M., Esteves, I., Cardoso, J. M. S., Cunha, J. M., Carneiro, R. M. D. G., Abrantes, I. (2017). Meloidogyne luci, a
- 466 new root-knot nematode parasitising potato in Portugal. Plant Pathology, https://doi.org/10.1111/ppa.12755
- 467 Maleita, C. M., José Simões, M., Egas, C., Curtis, R. H. C., Abrantes, I. M. O. (2012). Biometrical, biochemical, and
- 468 molecular diagnosis of Portuguese *Meloidogyne hispanica* isolates. Plant Disease, 96(6), 865–74.
- 469 Medina, I. L., Coila, V. H. C., Gomes, C. B., Pereira, A. S., Nazareno, N. R. X. (2014). Meloidogyne ethiopica report in
- 470 Parana state, Brazil, and reaction of potato cultivars to root-knot nematode. Horticultura Brasileira, 32(4), 482–485.
- 471 O'Bannon, J. H. (1975). Nematode survey in Ethiopia. Institute of Agricultural Research, Addis Ababa, Ethiopia. FAO,
 472 Rome.
- 473 Pagan, C., Coyne, D., Carneiro, R., Kariuki, G., Luambano, N., Affokpon, A., Williamson, V.M. (2015). Mitochondrial
- 474 haplotype-based identification of ethanol-preserved root-knot nematodes from Africa. Phytopathology, 105(3), 350–357.
- 475 Powers, T.O., & Harris T.S., (1993). A polymerase chain reaction method for identification of five major *Meloidogyne*476 species. Journal of Nematology, 25(1), 1–6.
- 477 Rutter, W. B., Hewezi, T., Maier, T. R., Mitchum, M. G., Davis, E. L., Hussey, R. S. & Baum, T. J. (2014). Members of the
- 478 *Meloidogyne* avirulence protein family contain multiple plant ligand-like motifs. Phytopathology, 104(8), 879–885.
- 479 Semblat, J.P., Rosso, M.N., Hussey, R.S., Abad, P., Castagnone-Sereno, P. (2001). Molecular cloning of a cDNA encoding
- 480 an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita. Molecular plant-
- **481** microbe interactions, 14 (1), 72–79.
- 482 Stanton, J., Hugall, A., Moritz, C. (1997). Nucleotide polymorphisms and an improved PCR-based mtDNA diagnostic for
- 483 parthenogenetic root-knot nematodes (*Meloidogyne* spp.). Fundamental and Applied Nematology, 20(3), 261–268.
- 484 Strajnar, P., & Širca, S. (2011). The effect of some insecticides, natural compounds and tomato cv. Venezia with Mi gene on
- the nematode *Meloidogyne ethiopica* (Nematoda) reproduction. Acta agriculturae Slovenica, 97 (1), 5–10.
- 486 Širca, S., Urek, G., Karssen, G. (2004). First report of the root-knot nematode *Meloidogyne ethiopica* on tomato in Slovenia.
 487 Plant Disease, 88(6), 680.
- 488 Tigano, M., De Siqueira, K., Castagnone-Sereno, P., Mulet, K., Queiroz, P., Dos Santos, M., Teixeira, C., Almeida, M.,
- 489 Silva, J., Carneiro, R. (2010). Genetic diversity of the root-knot nematode *Meloidogyne enterolobii* and development of a
- 490 SCAR marker for this guava damaging species. Plant Pathology, 59, 1054–1061.
- 491

- 492 Tomalova, I., Iachia, C., Mulet, K., Castagnone-Sereno, P. (2012). The map-1 gene family in root-knot nematodes,
- 493 Meloidogyne spp.: A set of taxonomically restricted genes specific to clonal species. PLoS ONE 7(6): e38656,
- 494 https://doi.org/10.1371/journal.pone.0038656
- 495 Whitehead, A. G. (1968). Taxonomy of *Meloidogyne* (Nematoda: Heteroderidae) with description of four new species.
- **496** Transactions of the Zoological Society of London, 31 (3), 263–401.
- 497 Zijlstra, C., Lever, A.E.M., Uenk, B.J., Van Silfhout, C.H. (1995). Differences between ITS regions of isolates of the root-
- 498 knot nematodes *Meloidogyne hapla* and *M. chitwoodi*. Phytopathology, 85(10), 1231–1237.
- 499 Zijlstra, C., Donkers-Venne, D.T.H.M., Fargette, M. (2000). Identification of *Meloidogyne incognita*, *M. javanica* and *M.*
- 500 *arenaria* using sequence characterized amplified region (SCAR) based PCR assays. Nematology, 2(8), 847–853.


502 Fig. 1 Representation of different combination of alleles from *map-*1 gene family present in certain tropical RKN

503 species representing sequences determined in this study and by Tomolova et al. (2012) and Humphreys-Pereira

- et al (2014). Modular architecture of the internal part schematically represented with light grey rectangles for 58-
- aa domains, dark grey squares for 13-aa domains and dark grey triangles for 5-aa domains (adopted from
- 506 Tomalova et al. 2012 and Castagnone-Sereno et al. 2009)

Species	Allele	Structure of <i>map</i> -1 repetative domains
M. arabidicida M. enterolobii M. floridensis	Allele 1	
M. hispanica M. koanensis M. lopezi	Allele 1 Allele 2	
M. paranaensis	Allele 1 Allele 2 Allele 3	
M. arenaría M. crucíani M. javanica	Allele 1 Allele 4	
M. izalcoensis	Allele 1 Allele 2 Allele 4 Allele 5 Allele 7	
M. ethiopica M. luci M. inomata	Allele 1 Allele 6	
M. Incognita	Allele 1 Allele 6 Allele 7	

- 508 Fig. 2 PCR Amplification with *M. ethiopica* group specific primers (above) and with tropical RKN specific
- 509 primers (below). From left to right: M DNA ladder 100 bp Plus (Thermo Scientific), 1 M. luci Slovenia, 2 -
- 510 M. luci Turkey, 3 M. luci Iran, 4 M. luci Guatemala, 5 M. ethiopica Brazil, 6 M. ethiopica South Africa, 7 -
- 511 *M. inornata* Chile, 8 *M. arenaria*, 9 *M. incognita*, 10 *M. javanica*, 11 *M. hispanica*, 12 *M. hapla*, 13 *M.*
- 512 *chitwoodi*, 14 *M. fallax*, 15 negative control, M DNA ladder 100 bp Plus (Thermo Scientific)

- 513
- 514
- 515
- **Table 1** *Meloidogyne* spp. isolates used for specificity testing of the molecular identification methods.
- 517

Species	Origin	Isolate	Kept at	M. ethiopica	Tropical
		designation		group test	RKN test
M. arenaria	Slovenia	M. arenaria SI	1	-	+
M. arenaria	Bulgaria	P66	4	-	+
M. arenaria	Turkey, Antalya province	K18	3	-	+
M. arenaria	Turkey, Muğla province	01	3	-	+
M. arenaria	Turkey, Samsun province	Çr-1	2	-	+

M. arenaria	Turkey, Samsun province	108	5	-	+
M. arenaria	Turkey, Samsun province	114	5	-	+
M. arenaria	Turkey, Tokat province	Er-1	2	-	+
M. chitwoodi	Netherlands		4	-	
M. chitwoodi	Turkey, Niğde province	NIG11	2^{h}	-	-
M. chitwoodi	Turkey, Nevşehir province	NEV10	2^{h}	-	-
M. ethiopica	Brazil	M. ethiopica BR	1 ^e	+	+
M. ethiopica	Brazil		4 ^a	+	+
M. ethiopica	South Africa	M. ethiopica JA	1,2 ^b	+	+
M. ethiopica	Chile	M. ethiopica ČI1	1 ^c	+	+
M. ethiopica	Chile	M. ethiopica ČI2	1 ^c	+	+
M. fallax	Unknown		4	-	_
M. hapla	Slovenia	M. hapla SI	1	-	
M. hapla	Slovenia	10166017	4	-	-
M. hapla	Turkey, Ordu province		5	-	-
M. hispanica	Spain		4 ^d	-	+
M. hispanica	Portugal		2 ^g	-	+
M. incognita	Slovenia	<i>M. incognita</i> SI	1	-	+
M. incognita	Slovenia	V463	4	-	+
M. incognita	Slovenia	47613	4	-	+
M. incognita	Monte Negro	ČG4	4	-	+
M. incognita	Turkey, Antalya province	G3	3	-	+
M. incognita	Turkey, Antalya province	A2	3	-	+
M. incognita	Turkey, Antalya province	S 6	3	-	+
M. incognita	Turkey, Antalya province	M1	3	-	+
M. incognita	Turkey, Antalya province	К5	3	-	+
M. incognita	Turkey, Antalya province	G2	3	-	+
M. incognita	Turkey, Samsun province	109	5	-	+
M. incognita	Turkey, Samsun province	Çr-20	2	-	+
M. inornata	Chile	639	4 ^e	+	+

M. inornata	Chile	695	4 ^e	+	+
M. javanica	Turkey, Antalya province	A1	3	-	+
M. javanica	Turkey, Antalya province	A4	3	-	+
M. javanica	Turkey, Antalya province	AKS2	3	-	+
M. javanica	Turkey, Antalya province	K16	3	-	+
M. javanica	Turkey, Antalya province	D3	3	-	+
M. javanica	Turkey, Antalya province	KA6	3	-	+
M. javanica	Turkey, Samsun province	B-26	2	-	+
M. luci	Slovenia, Dornberk	M. luci Dornberk	1,2	+	+
M. luci	Slovenia, Šmartno	<i>M. luci</i> Šmartno	1	+	+
M. luci	Greece	M. luci GR	$1^{ m f}$	+	+
M. luci	Iran	M. luci IR	1 ^e	+	+
M. luci	Guatemala	M. luci GVA	1 ^e	+	+
M. luci	Turkey, Samsun	M. luci TR1	1,2	+	+
M. luci	Turkey, Sinop province	Sn-3	2	+	+
M. luci	Turkey, Sinop province	Sn-12	2	+	+
M. luci	Turkey, Samsun province	Al-4	2	+	+
M. luci	Turkey, Samsun province	Tk-4	2	+	+
M. luci	Turkey, Samsun province	Tr-19	2	+	+
M. luci	Turkey, Samsun province	Çr-5	2	+	+
M. luci	Turkey, Samsun province	Çr-10	2	+	+
M. luci	Turkey, Samsun province	Çr-25	2	+	+
M. luci	Turkey, Samsun province	Çr-34	2	+	+
M. luci	Turkey, Samsun province	Çr-36	2	+	+
M. luci	Turkey, Samsun province	Çr-39	2	+	+
M. luci	Turkey, Ordu province	Or-1	2	+	+
M. luci	Turkey, Ordu province	Or-2	1,2	+	+
M. luci	Turkey, Samsun province	Çr-40	5	+	+
M. luci	Turkey, Samsun province	103	5	+	+
M. luci	Turkey, Samsun province	110	5	+	+

M. luci	Turkey, Samsun province	111	5	+	+
M. luci	Turkey, Samsun province	112	5	+	+
M. luci	Turkey, Samsun province	113	5	+	+
M. luci	Turkey, Samsun province	125	5	+	+

- 519 Isolates maintained in the following culture collections:
- 520 1: Plant Protection Department Agricultural Institute of Slovenia, Ljubljana, Slovenia;
- 521 2: Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey;
- 522 3: Department of Plant Protection, Faculty of Agriculture, Akdeniz University, Antalya, Turkey.
- 523
- 524 Material included in the nematode DNA collections:
- 4: Plant Protection Department, Agricultural Institute of Slovenia, Ljubljana, Slovenia;
- 526 5: Department of Plant Protection, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey.

527

- **528** Isolates or DNA obtained from these collections:
- ^a Vanessa Silva Mattos, University of Brasília, Department of Plant Pathology, Brasília, Brazil;
- ^b Dr. Mariette Marais, Agricultural research council, Pretoria, South Africa;
- ^c Dr. Pablo Meza D., Nematology Laboratory of INIA-La Platina, Santiago, Chile;
- ^d Dr. Philippe Castagnone-Sereno, INRA UMR1301, UNSA, CNRS UMR6243, Sophia Antipolis, France;
- ^e Dr. Gerrit Karssen, Plant Protection Service, Wageningen, The Netherlands;
- 534 ^f Dr. Isabel Luci Conceição, IMAR-CMA, Departamento de Ciências da Vida, Faculdade de Ciências e
- 535 Tecnologia, Universidade de Coimbra, Coimbra, Portugal;
- 536 ^g Dr. Carla Maleita, Chemical Process Engineering and Forest Products Research Centre, Department of
- 537 Chemical Engineering, University of Coimbra, Portugal;
- ^b Dr. Emre Evlice, Plant Protection Central Research Institute, Ankara, Turkey.

539

- 541 Table 2 Determined *map-*1 genes with specific structure of repetitive domains designated as different alleles
- 542 with accession numbers for sequences deposited at ENA database. Isolate *M. luci* from Turkey, Ordu (Or-2)
- 543 represents a virulent population.
- 544

Species	Origin	map-1, allele 1	map-1, allele 6
M. ethiopica	Brazil ^b	LT835071,	LT835084,
		LT835072	LT835085
M. ethiopica	South Africa ^c	LT835073	LT835086,
			LT835087
M. inornata	Chile ^b	LT996917	LT996918
M. luci	Turkey, Samsun ^a	LT835078	LT835092,
			LT835093
M. luci	Turkey, Ordu ^a	LT835079	LT835094,
			LT835095
M. luci	Slovenia, Dornberk ^d	LT835074,	LT835088,
		LT835075	LT835089
M. luci	Slovenia, Šmartno ^d	LT835076,	LT835090,
		LT835077	LT835091
M. luci	Greece ^e	LT835080,	LT835096,
		LT835081	LT835097
M. luci	Iran ^b	LT835082,	LT835098,
		LT835083	LT835099

- 545 Isolates obtained from these collections:
- ^a Dr. Gökhan Aydınlı, Bafra Vocational High School, Ondokuz Mayıs, Samsun, Turkey;
- 547 ^b Prof. Dr. Gerrit Karssen, Netherlands Food and Consumer Product Safety Authority, Wageningen, The
- 548 Netherlands;
- ^c Dr. Mariette Marais, Agricultural research council, Pretoria, South Africa;
- ^d Dr. Saša Širca, Agricultural Institute of Slovenia, Ljubljana, Slovenia;
- ^e Dr. Isabel Luci Conceição, IMAR-CMA, Departamento de Ciências da Vida, Faculdade de Ciências e
- 552 Tecnologia, Universidade de Coimbra, Coimbra, Portugal.

Supplementary Table 1 Morphometric comparison of females, males and second stage juveniles of *Meloidogyne luci* from Turkey, Slovenia and Brazil (Carneiro et al. 2014), *M. ethiopica* from Brazil (Carneiro et al. 2004), *M. inornata* from Brazil (Carneiro et al. 2008) and *M. inornata* from Chile. Data are presented as means ± standard deviation and ranges. All measurements are in µm. Data of *M. luci* from Turkey represent means of 13 isolates (locations) from the Middle Black Sea region (isolates designated Sn-3, Sn-12, Al-4, Tk-4, Tr-19, Çr-5, Çr-10, Çr-25, Çr-34, Çr-39, Çr-40, Or-1, Or-2). Further, isolates *M. luci* from Slovenia (Šmartno) and *M. inornata* from Chile (F2642/1) were used to measure morphometric characters in this study. * denotes possible incorrect measurements by Carneiro et al. (2008).

	M. luci, Turkey, this	M. luci, Slovenia,	<i>M. luci</i> , Brazil	<i>M. ethiopica</i> , Brazil,	M. inornata, Brazil,	M. inornata, Chile,				
Character\Species, Isolate	study	this study	Carneiro et al. 2014	Carneiro et al. 2004	Carneiro et al. 2008	this study				
	n=13x10=130	n=20	n=30	n=30	n=30	n=20				
	Females									
$\mathbf{D}_{\mathbf{r}} + \mathbf{L}_{\mathbf{r}} + \mathbf{L}_{\mathbf{r}} + \mathbf{L}_{\mathbf{r}}$	702±94	865.1±84.4	704±115	700±13	606±15	789.2±135.0				
Body length (L)	(555-920)	(785.0-982.9)	(570-800)	(594-798)	(594-781)	(676.2-1012.5)				
Maximum body width	508±78	520±69.9	503±55	522±12	517±12	509.5±39.0				
Maximum body widui	(314-682)	(433.4-602.6)	(440-550)	(120-282)	(437-675)	(448.8-555.3)				
Dody longth without nool	536±82	594.9±49.0		530±17	460±17.8	460±19.6				
Body length without neck	(400-774)	(533.1-657.3)	-	(420-750)	(300-656)	(552-726)				
Stulat langth	14.1±1.9	15.2±1.2	15.5±0.5	13.5±0.1	15.3±0.2	15.2±0.6				
Stylet length	(11.3-18.7)	(13.5-16.8)	(15-16)	(12-15)	(15-17)	(14.7-16.1)				
Studet langh haisht	2.0±0.3	1.8±0.5	2.0±0.1	2.0±0.1	2.8±0.2	2.5±0.3				
Stylet knob height	(1.0-2.7)	(1.3-2.8)	(1.8-2.3)	(1.5-2.5)	(2.5-3.5)	(2.0-2.9)				
Stylet knob width	3.7±0.6	3.6±0.8	3.6±0.5	3.4±0.1	4.0±0.5	3.8±0.2				
Stylet knob width	(2.4-5.0)	(2.4-4.8)	(3.2-4.0)	(3.0-5.0)	(4.0-4.5)	(3.5-4.1)				
Stulat Imah width/haight	1.9±0.3	2.1±0.4		1.7±0.3		1.6±0.2				
Stylet knob width/height	(1.2-2.7)	(1.5-2.8)	-	(1.5-2.5)	-	(1.4-1.9)				
Demail comband along demission (DCO)	3.7±0.7	3.3±0.6	3.2±0.8	3.8±0.1	3.9±0.1	4.1±0.6				
Dorsal esophageal gland orifice (DGO)	(2.6-5.2)	(2.3-4.1)	(3.0-4.0)	(3.0-5.0)	(3.5-4.5)	(3.2-4.6)				
Antonion and to mate compute	73.6±9.9	71.4±13.4			104±11	95.3±18.4				
Anterior end to metacorpus	(52.6-101.8)	(50.9-89.8)	-	-	(90-120)	(77.6-122.0)				
Matagornus longth	46.4±8.3	45.9±7.3				41.2±6.5				
Metacorpus length	(34.1-70.9)	(36.3-55.6)	-	-	-	(32.2-52.6)				
Matagamus diamatan	42.8±8.0	44.4±9.8				39.4±8.6				
Metacorpus diameter	(29.4-68.0)	(33.6-59.1)	-	-	-	(28.9-40.6)				

	38.9±11.6	46.9±16.9	31.3±18	65.3±2.1	36.9±2.8	49.1±4.7
Anterior end to excretory pore	(19.2-77.1)	(28.8-73.8)	(18.5-48.5)	(41-79)	(25.0-53.0)	(42.3-55.1)
	25.1±2.5	25.6±2.7	23.3±0.5	25.2±0.7	24.4±0.8	24.8±1.1
Vulva length	(16.2-31.2)	(20.9-29.4)	(20.0-26.0)	(25.4-26.9)	(22.5-26.2)	(23.2-25.9)
	18.3±2.7	20.1±3.0	17.4±0.6	19.2±0.5	19.0±0.5	20.5±1.7
Vulva-anus distance	(10.8-23.6)	(16.3-24.9)	(15.0-26.0)	(17.3-21.0)	(17.5-22.5)	(18.6-22.8)
	23.1±4.6	27.8±5.9	26.3±0.8	20.4±0.3	24.5±0.7	23.5±1.7
Interphasmidial distance	(11.5-35.0)	(18.2-35.2)	(20.0-36.5)	(19.0-23.0)	(22.5-26.3)	(21.6-25.3)
$\mathbf{D} = 1 + $	1.4±0.2	1.7±0.3	1.43±0.39		1.28±0.8	1.6±0.3
Body length/Maximum body width (a)	(1.0-1.8)	(1.3-2.0)	(1.04-1.82)	-	(1.11-1.44)	(1.4-2.0)
		N	fales	•	·	
Ded. Level. (L)	1252±308	1534.1±171.7	1602±520	1171±48	1594±58	1181.8±216.5
Body length (L)	(706-2038)	(1340.5-1940)	(1090-2130)	(890-1500)	(1101-2063)	(881.2-1423.0)
Maximum body width	41±7.9	37.3±7.2	43±5.0	48±0.8	47±0.9	33.7±4.0
Maximum body widu	(23-56)	(29.0-56.0)	(37-50)	(32-59)	(32-51)	(28.3-38.9)
Stylet length	20.7±1.4	21.2±1.7	22.1±2.7	24.8±0.6	21.7±0.6	22.3±1.5
Stylet leligtli	(17.3-23.6)	(17.5-23.7)	(20.8-23.0)	(23-27)	(20.0-25.0)	(20.8-24.9)
Stylet knob height	2.6±0.2	2.8±0.6	2.6±0.3	3.3±0.1	3.0±0.5	3.2±0.3
Stylet kilob height	(2.0-3.3)	(2.0-3.7)	(2.5-3.0)	(3.0-4.0)	(2.5-3.5)	(3.0-3.7)
Stylet knob width	4.0±0.5	4.2±0.4	4.2±0.4	4.3±0.6	4.8±0.6	4.0±0.6
Stylet Klob width	(3.1-5.4)	(3.3-4.6)	(3.8-4.5)	(3.5-5.0)	(4.0-5.0)	(3.2-4.9)
Stylet knob width/height	1.6±0.1	1.6±0.3		1.3±0.2		1.2±0.2
Stylet Kliob width/height	(1.2-2.0)	(1.1-2.1)	-	(1.1-1.5)	-	(1.1-1.6)
Dorsal esophageal gland orifice (DGO)	3.7±0.7	3.2±0.5	3.5±1.0	2.5±0.1	4.5±0.2	3.4±0.5
Dorsal esophagear grand office (DOO)	(2.2-5.4)	(2.4-3.8)	(2.5-4.5)	(2.0-3.5)	(4.0-5.0)	(2.8-4.2)
Anterior end to metacorpus	86.8±12.8	75.3.0±8.9	_	_	84.0±3.2	95.7±13.7
Anterior end to metaeorpus	(60.7-114.7)	(62.2-89.0)			(75.0-120.0)	(74.5-116.2)
Anterior end to excretory pore	162.1±24.6	150.3±30.2	199±30.2	200±31	167.3±3.1	154.9±14.6
Anterior end to exercisity pore	(108.9-233.4)	(111.0-181.0)	(150-217)	(187-215)	(135-200)	(134.5-172.0)
Tail length	12.4±1.9	13.0±2.1	9.5±1.0	13.4±0.5	13.5±0.5	12.9±1.2
- un tengui	(9.3-18.1)	(9.7-18.0)	(3.0-15.0)	(10.2-17.0)	(10-15)	(11.2-14.5)
Spicule length	26.8±2.6	31.2±3.0	31.3±4.0	39±0.6	33.0±0.6	31.2±4.3
	(22.7-36.2)	(27.0-37.6)	(24.0-35.0)	(34-42)	(26-38)	(27.0-37.2)
Body length/Maximum body width (a)	30.6±5.5	42.1±7.0	39.7±9.8	27.7±0.8	27.7±0.8	35.0±4.6
2007 Iongui muximum body widui (a)	(21.6-49.3)	(30.9-52.5)	(21.8-57.6)	(24.8-31.0)	(24.4-51.0)	(31.1-42.7)
Body length/tail length (c)	102±26.5	82.4±38.9	322±72	114±12.2	152±12.2	91.9±17.9
Body longuistan longui (c)	(56.1-180.5)	(30.9-156.5)	(73-710)	(69.5-147.2)	(104.5-187.2)	(64.3-117.6)

Second-stage juveniles (J2)								
Body length (L)	383±26	351.3±28.7	383±85	468±3	418±3	421.6±16.4		
	(321-439)	(321.2-408.0)	(300-470)	(326-510)	(394-487)	(401.0-446.2)		
Maximum body width	16.7±1.8	15.3±2.1	16±1.5	20±0.3	19.3±0.6	15.6±1.2		
	(13.6-21.0)	(12.4-21.0)	(13-20)	(15-22)	(17.0-22.0)	(13.9-16.8)		
Body width at anus	11.1±1.4 (8.3-13.7)	10.9±1.0 (9.5-13.0)	-	-	-	10.6±0.9 (9.5-11.9)		
Stylet length	13.6±0.7	13.6±0.4	12.5±0.2	12.2±0.1	11.5±0.1	12.6±0.9		
	(11.6-15.3)	(13.0-14.0)	(12.0-13.5)	(11-14)	(10-13)	(11.4-13.9)		
Dorsal esophageal gland orifice (DGO)	3.0±0.4	2.6±0.4	2.9±0.5	2.6±0.1	3.0±0.1	3.3±0.4		
	(2.1-3.8)	(2.1-3.4)	(2.3-3.3)	(2.0-3.0)	(2.5-3.5)	(2.9-4.0)		
Anterior end to metacorpus	54.3±3.6 (47.5-67.6)	55.2±4.6 (46.2-66.0)	-	-	* 122±2.8 (102-134)	58.4±2.7 (55.7-61.5)		
Anterior end to excretory pore	80.1±8.4	76.2±10.7	73±10.0	93±0.9	* 158±0.9	77.5±12.2		
	(64.3-103.8)	(63.0-92.0)	(62-82)	(75-106)	(152-164)	(60.2-93.5)		
Tail length	47.5±6.1	45.5±5.0	44.0±4.5	62±0.6	49.4±0.6	50.1±5.0		
	(30.6-58.6)	(37.6-58.0)	(40.0-48.5)	(52-72)	(35.0-58.0)	(42.6-55.8)		
Hyaline tail terminus length	11.3±1.3	11.1±1.4	11.7±3.0	13.5±0.2	13.9±0.25	11.1±1.6		
	(8.0-13.5)	(8.9-14.0)	(9-15)	(12.0-15.0)	(10.0-15.0)	(9.5-13.7)		
Body length/Maximum body width (a)	23.2±2.2	23.2±2.1	25.6±10.5	24.0±0.27	23.0±0.27	27.2±2.1		
	(17.8-27.6)	(19.4-26.8)	(15.0-36.1)	(21.3-28.2)	(17.9-28.7)	(25.3-31.1)		
Body length/tail length (c)	8.2±1.2	7.8±0.7	8.7±2.6	4.8±0.1	10.2±0.4	8.5±0.6		
	(5.5-12.1)	(5.8-8.7)	(6.2-11.5)	(3.9-6.4)	(6.7-13.9)	(7.7-9.4)		
Tail length/body width at anus (c')	4.3±0.6 (3.0-5.5)	4.2±0.3 (3.6-4.5)	-	-	-	4.8±0.7 (3.9-5.9)		