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Abstract: In this paper, we introduce the dendroTools R package for studying the statistical 10 

relationships between tree-ring parameters and daily environmental data. The core function of 11 

the package is the daily_response(), which works by sliding a moving window through daily 12 

environmental data and calculating statistical metrics with one or more tree ring proxies. 13 

Possible metrics are correlation coefficient, coefficient of determination and adjusted 14 

coefficient of determination. In addition to linear regression, it is possible to use nonlinear 15 

artificial neural network with Bayesian regularization training algorithm (brnn). The 16 

dendroTools provides the opportunity to use daily climate data and robust nonlinear functions 17 

for the analysis of climate-growth relationships.  Thus, models should be better adapted to the 18 

real (continuous) growth of trees and should gain in predictive capabilities. The dendroTools R 19 

package is freely available in the CRAN repository. The functionality of the package is 20 

demonstrated on two examples, one using mean vessel area (MVA) chronology and one 21 

traditional tree-ring width (TRW). 22 
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Introduction 25 

R computer language (R Core Team, 2017) is one of the most powerful platforms for analysing 26 

tree-ring data. In recent decades, many useful packages have been developed, which are freely 27 

available to the tree-ring community. The dplR package (Bunn, 2008, 2010) is widely used to 28 

perform several standard analyses, including interactive detrending, chronology building and 29 

the calculation of standard descriptive statistics, and is slowly replacing the traditional software 30 

for tree-ring standardisation ARSTAN. The R package treeclim (Zang and Biondi, 2015) 31 

provides a unified and fast compilation of established methods, while adding novel functions, 32 

such as static and moving bootstrapped response and correlation functions, seasonal correlation 33 

analysis, a test for spurious temporal changes in proxy-climate relations, and the evaluation of 34 

reconstruction skills. Some other useful R packages developed for tree-ring analysis are 35 

dendrometeR (van der Maaten et al., 2016), CAVIAR (Rathgeber et al., 2011), pointRes (van 36 

der Maaten-Theunissen et al., 2015), measuRing (Lara et al., 2015), TRADER (Altman et al., 37 

2014) and tracheideR (Campelo et al., 2016). These R packages are of significant importance 38 

and provide the opportunity of analysing tree-ring data more effectively. Beside R packages, 39 

there are also other types of software, that is commonly used for identifying climate signal in 40 



an annual tree-ring time series. Two of them are Seascorr (Meko et al., 2011), which runs in 41 

MATLAB; and DENDROCLIM2002 (Biondi and Waikul, 2004), a C++ program.   42 

The CLIMTREG programme was developed by Beck et al. (2013) and provides the possibility 43 

to calculate climate–growth correlations based on daily climate data using variable temporal 44 

width together with moving correlations to accommodate for short term as well as long term 45 

influences. The programme was used in several studies (e.g., Castagneri et al., 2015; Liang et 46 

al., 2013), but unfortunately has not been further developed, since the company that produced 47 

the GfaBasic32 programming language no longer exists. Despite the great potential of 48 

improving the understanding of climate-growth relationship, currently there is no similar 49 

function available in R. The identified methodological gap could be filled by our newly 50 

developed R package dendroTools (Jevšenak and Levanič, 2018), especially with its core 51 

function daily_response(). This function provides the opportunity of analysing linear and 52 

nonlinear relationships between tree-ring and daily environmental data, and could therefore be 53 

important to help researchers identify tree-climate relationships. With the proposed 54 

methodology, models should be better adapted to the real (continuous) growth of trees and 55 

should gain predictive capabilities, which should result in more accurate climate 56 

reconstructions and better understanding of climate-growth relationships. 57 

Common practice in dendroclimatology is to correlate one or more tree-ring proxies (predictors) 58 

to monthly or seasonal climate data (predictands). By using monthly data, some climate signal 59 

is inevitably lost, mainly because months are invented categories not based on any of the laws 60 

of nature. Growth is a continuous process and should not be limited by artificially set monthly 61 

borders. With the daily_response() function from the dendroTools R package, temporal changes 62 

in climate-growth response are analysed and results can be later used for various 63 

dendroclimatological applications. It is not new for daily environmental data to be used in 64 

combination with tree-ring proxies. The process-based Vaganov-Shashkin model uses daily 65 

temperature and precipitation data to simulate tree-ring chronologies (e.g. Touchan et al., 2012). 66 

Chun et al. (2017) used tree-ring width information to improve daily-scale reconstructions of 67 

rainfall extremes.  68 

The goal of this article is to present the functionality of the dendroTools R package, with an 69 

emphasis on the daily_response() function. Two case studies have been used to do so, one using 70 

a mean vessel area (MVA) and one using a tree-ring width (TRW) parameter.  71 

 72 

dendroTools description  73 

Package requirements, installation and dependences 74 

The dendroTools R package will run on R version 3.4 or higher, simply because it depends on 75 

certain other packages that do not work in older versions of R. After installing the right version 76 

of R, dendroTools can be installed from the Comprehensive R Archive Network (CRAN) with 77 

the following command: install.packages("dendroTools") and loaded with: 78 

library("dendroTools"). The current version (0.0.5) relies on 15 other R packages. Those 79 

that are important for the functionality of the daily_reponse() function are: ggplot2 (Wickham, 80 

2009), oce (Kelley and Richards, 2017), brnn (Pérez-Rodríguez and Gianola, 2016), reshape2 81 

(Wickham, 2007), scales (Wickham, 2016), stats (R Core Team, 2017), reshape (Wickham, 82 

2007), MLmetrics (Yan, 2016), dplyr (Wickham et al., 2017) and dcv (Li and Zhang, 2010). In 83 

https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/brnn/index.html
https://cran.r-project.org/web/packages/reshape2/index.html
https://cran.r-project.org/web/packages/scales/index.html


addition, R users should have installed the appropriate Java, i.e., 32-bit Java for 32-bit R and 84 

64-bit Java for the 64-bit R version.  85 

Package functionality 86 

The daily_response() function is the core function of the dendroTools R package. Although the 87 

name of this function suggests the connection to the response functions presented by Fritts 88 

(1976), this is not the case, those are two different concepts. The main purpose of the 89 

daily_response() is to analyse temporal changes of relationships between tree-ring proxies and 90 

daily environmental data. The function calculates all possible statistical metrics between 91 

different ranges of daily data and one or more response variables. The key purpose is to find 92 

the optimal consecutive sequence of days that are linearly or nonlinearly related to one or more 93 

response variable (i.e., tree-ring proxies).  94 

The function daily_response() works by sliding a moving window through daily environmental 95 

data, aggregating daily environmental data within each window and calculating its averages 96 

(Figure 1A), which are then used to calculate the selected statistical metric – i.e., correlation 97 

coefficient, coefficient of determination or adjusted coefficient of determination (Figure 1B). 98 

Two data frames have to be passed to daily_response(), i.e. response and env_data. response is 99 

a data frame with one or more tree-ring proxy variables. Rows represent years and columns 100 

represent proxy variables. Years should be included as row names of a data frame to avoid 101 

errors. env_data is a data frame with daily environmental data (e.g. temperature, precipitation 102 

or similar). Rows represent years and columns represent a day of a year, starting with day 1 of 103 

the year in column 1. Years should be included as row names of a data frame. The examples of 104 

response and env_data are given in Table 1.  105 

Table 1: Required data frame organization of the response (left and middle table) and env_data (right 106 
table) inputs for the daily_response() function. Years should be included as row names of data frames.  107 

 MVA   TRW   X1 X2 X3 X4 … X365 X366  
1961 7.18567  1757 1.392  1961 -0.1 0.5 1.9 2.5 … 4.3 NA 

1962 5.59846  1758 1.130  1962 4.7 6.5 -1.1 -3.3 … 1.4 NA 

1963 5.87261  1759 1.483  1963 -0.2 -0.2 0.8 1.5 … -4.3 NA 

1964 6.50313  1760 1.183  1964 -4.9 -5 -5.3 -5.6 … -3.9 -7.8 

1965 5.66054  1761 1.256  1965 -0.8 2.1 0.9 -1.8 … 0.4 NA 

1966 6.00276  1762 1.146  1966 -1.4 0.3 2 1.2 … 2 NA 

1967 6.01883  1763 1.440  1967 -1 0.8 -0.4 -3.5 … 0.2 NA 

1968 7.36647  1764 1.209  1968 -1.2 -3.5 -9.4 -8.4 … -11.1 -10.3 

1969 5.71727  1765 0.854  1969 -12.1 -8.6 -3.8 -2.3 … -1.6 NA 

1970 5.98721  1766 0.614  1970 -1.3 -3.1 -1.1 2.1 … 0.1 NA 

1971 6.07254  1767 0.677  1971 -3.5 -6.5 -7.8 -9.9 … 0.9 NA 

1972 5.87815  1768 0.602  1972 0.8 0.8 0.4 1.1 … -4.6 -4.3 

1973 5.13292  1769 0.875  1973 -1.6 -0.2 1.1 0.8 … 0.2 NA 

1974 6.26117  1770 0.559  1974 0.2 0.4 1 1.3 … 1.9 NA 

1975 5.74098  1771 0.578  1975 0.9 1.1 1.7 -2.7 … -3.8 NA 

1976 5.75330  1772 0.541  1976 -1.2 4.3 2.7 3.8 … -8.7 -8.5 

1977 5.93055  1773 0.631  1977 4.6 2.1 1.7 0.5 … 2.1 NA 

1978 5.52767  1774 0.773  1978 1.7 3.4 5.8 5.3 … 8.2 NA 

1979 5.52998  1775 1.171  1979 1.1 -8.2 -10.6 -7.8 … -0.6 NA 

108 



 109 

Figure 1: Schematic presentation of the running window of the daily_response() function. In this example, the initial window width is set to 4  110 



To use the daily_response(), the user should first decide whether to use a fixed or progressive 111 

window for calculations of moving averages. To use a fixed window, select its width by 112 

assigning an integer to the argument fixed_width. When the user is interested in many different 113 

windows, lower_limit and upper_limit arguments are available. In this case, all window widths 114 

between the lower and upper limits will be considered. In this context, window width 115 

representative of a specific day of year (DOY) is defined as the values for this particular day 116 

and a number of subsequent days corresponding to window width. All calculated metrics are 117 

stored in a matrix (Figure 1C). This matrix is available as the first element of the output list of 118 

the daily_response() function. Then, the optimal window (i.e. optimal consecutive sequence of 119 

days) is found, that returns the highest calculated metric. For a full description of all the other 120 

arguments, including examples, see the dendroTools manual at https://cran.r-121 

project.org/web/packages/dendroTools/dendroTools.pdf. The output of the daily_reponse() 122 

function is a list with 13 elements (see Table 2), which could be retrieved by calling their names, 123 

such as demonstrated in later examples. 124 

Table 2: The description of the output list elements of the daily_response() function 125 

Element name Element description 
$calculations a matrix with calculated metrics 
$method the character string of a method 
$metric the character string indicating the metric used for calculations 
$analysed_period the character string specifying the analysed years 
$optimized_return data frame of aggregated (averaged) daily data that return the highest metric 
$optimized_return_all a data frame with aggregated daily data that returned the optimal result for 

the entire env_data (and not only subset of analysed years) 
$transfer_function a scatter plot and transfer function of optimized return and response data 
$cross_validation a data frame with cross validation results 
$temporal_stability a data frame with calculations of selected metric for different temporal 

subsets 
$plot_heatmap ggplot2 object: a heatmap of calculated metrics 
$plot_extreme ggplot2 object: line plot of a row with the highest value in a matrix of 

calculated metrics 
$plot_specific ggplot2 object: line plot of a row with a selected window width in a matrix 

of calculated metrics 
$PCA_output princomp object: the result output of the PCA analysis 

 126 

Nonlinear brnn function 127 

The daily_response() function enables linear and nonlinear climate-tree analysis. As a nonlinear 128 

method, artificial neural network with a Bayesian Regularization (brnn) training algorithm is 129 

implemented. This method is implemented because 1) it has already been successfully applied 130 

to tree-ring data by Jevšenak and Levanič (2016), 2) is robust to overfitting, 3) easy to use and 131 

4) usually produces a sigmoid shaped function between tree-ring parameter and climate data, 132 

which should in theory be better fit to tree-climate data. brnn model in R could be fitted with 133 

the brnn R package (Pérez-Rodríguez and Gianola, 2016). A simple code is needed, such as 134 

brnn_model <- brnn(y ~ x, data = data, neurons = 1).  The only tuning parameter 135 

needed is neurons. In dendroclimatological models with 1 independent variable, this argument 136 

should be between 1 and 3. 137 

Briefly, the brnn function fits a two-layer neural network as described by Mackay (1992) and 138 

Foresee and Hagan (1997). It uses the algorithm introduced by Nguyen and Widrow (1990) to 139 

assign initial weights and the Gauss-Newton algorithm to perform the optimization. For a full 140 

https://cran.r-project.org/web/packages/dendroExtra/dendroExtra.pdf
https://cran.r-project.org/web/packages/dendroExtra/dendroExtra.pdf


description, including a mathematical derivation of the brnn algorithm, see Pérez-Rodríguez et 141 

al. (2013). The biggest disadvantage related to this black box principle is that there are no 142 

coefficients with confidence intervals to estimate the uncertainty related to predictions.    143 

Examples of workflow 144 

Example data 145 

Two examples are used to demonstrate the use of our method of studying the relationship of 146 

tree-ring parameters and daily temperatures. For example_MVA, we try to identify correlations 147 

between the mean vessel area (MVA) parameter of Quercus robur and daily mean temperature 148 

data for the meteorological station Ljubljana. 6 trees for wood-anatomical analysis were cored 149 

from a lowland forest in fall 2012. For more information about the site and chronology 150 

characteristic, see Jevšenak and Levanič (2015). In example_TRW, similarly, the tree-ring width 151 

(TRW) parameter of Picea abies is used to find the optimal sequence of consecutive days that 152 

maximizes the climate signal. TRW chronology represents Alpine forest and was downloaded 153 

from the National Centre for Environmental Information (https://www.ncdc.noaa.gov/). For 154 

more information about TRW chronology, see Schweingruber (1981). The climate data used 155 

for example_TRW is the mean daily temperature for the meteorological station Kredarica. 156 

Climate data for our study was downloaded from the KNMI Climate Explorer 157 

(https://climexp.knmi.nl). All datasets used in this paper are included in the dendroTools R 158 

package and can be obtained with the function data(). Some additional information about the 159 

data for both examples is given in Table 3. 160 

Table 3: General information about the data used for examples 1 and 2.  161 

 
Tree-ring 

parameter 
Species 

Analysed 

period 
Location Elevation Daily climate data 

example_MVA MVA (raw) 
Quercus 

robur 
2012 – 1940 

Mlace 
(Lat: 46.3, Long: 15.51) 

300 m 
Ljubljana 

(Lat: 46.06, Long: 14.51) 

example_TRW TRW (std) 
Picea 

abies 
1955 – 1981 

Vršič  

(Lat: 46.47, Long: 13.76)  
1600 m 

Kredarica 

(Lat: 46.38, Long: 13.85) 

 162 

example_MVA 163 

Data for example_MVA is saved in the data frame designated data_MVA. Daily data for the 164 

meteorological station Ljubljana is saved in the data frame called LJ_daily_temperatures. For 165 

example_MVA, simple running correlations will be used to find the optimal sequence of 166 

consecutive days. All possible window widths between 21 and 270 days, including the previous 167 

year, will be considered. The latter is achieved by setting the previous_year argument to TRUE. 168 

Specifically, we are interested in temporal changes of correlations for a window width of 90 169 

days, therefore, the parameter plot_specific_window is set to 90. For the example_MVA, the 170 

row_names_subset argument is set to TRUE. This argument is particularly useful and allows 171 

the use of data frames of response and env_data with different years, i.e., different number of 172 

rows, such as in Table 1. If row_names_subset is set to TRUE, the algorithm will automatically 173 

subset both data frames (i.e., environmental and tree-ring data) and keep only matching years, 174 

which will be used for calculations. To use this feature, years must be included as row names. 175 

There are many ways how to do this but there is also a years_to_rownames() function available 176 

in the dendroTools package. For the example_MVA, all insignificant correlations were removed 177 

by setting the argument remove_insignificant to TRUE. The threshold for significance is set 178 

with the alpha argument.  The method to assess the temporal stability 179 

https://www.ncdc.noaa.gov/
https://climexp.knmi.nl/


(temporal_stability_check) of correlations is set to "progressive".  Progressive method splits 180 

data into k parts, calculates metric for the first part and then progressively adds 1 part at a time 181 

and calculates selected metric. 182 

> library(dendroTools) 183 
> data(data_MVA) 184 
> data(LJ_daily_temperatures) 185 
> example_MVA <- daily_response(response = data_MVA, env_data = 186 
LJ_daily_temperatures, method = "cor", lower_limit = 21, upper_limit = 270, 187 
row_names_subset = TRUE, previous_year = TRUE, remove_insignificant = TRUE, 188 
alpha = 0.05, plot_specific_window = 90, temporal_stability_check = 189 
"progressive", k = 5) 190 
> example_MVA$plot_extreme 191 
> example_MVA$plot_heatmap 192 
> example_MVA$plot_specific 193 
> example_MVA$temporal_stability 194 
 195 

Results for the example_MVA are visualised by retrieving the elements of the output list. The 196 

optimal sequence of consecutive days is visualised by calling example_MVA$plot_extreme 197 

(Figure 2A). This feature explores the matrix of calculated metrics, finds the window width 198 

with the highest calculated metric, graphs it and indicates the sequence of days that returns the 199 

highest calculated metric. In titles, there is information about analysed period, maximal 200 

correlation coefficient and optimal window width. The highest correlation coefficient, 0.77, 201 

was calculated with a window width of 59 days, starting on DOY 74 of the current growing 202 

season. The MVA parameter from the analysed site therefore contains the optimal climate 203 

signal from March 15 (DOY 74) to May 12 (DOY 132). This calculation is consistent with the 204 

study of xylogenesis in oak from a nearby site (Gričar, 2010), which reported that the period of 205 

most intense xylem cell production was assessed to be in the period April-May.  206 

The average temperature from March 15 to May 12 for the analysed period is saved as a data 207 

frame - the fifth element of the output list. It could be retrieved by typing 208 

example_MVA$optimized_return. This data frame is used to calculate the temporal stability 209 

(example_MVA$temporal_stability) of correlation coefficients. The calculated values for 210 

different periods show that correlations are stable in time (Table 4). 211 

Table 4: Temporal stability of correlation coefficients for the example_MVA 212 

 Period  Correlation 
1 1941 - 1955        0.615 
2 1941 - 1969        0.760 
3 1941 - 1983        0.654 
4 1941 - 1997        0.682 
5 1941 - 2012        0.770 

 213 

Temporal changes of correlations for different window widths were visualised by typing 214 

example_MVA$plot_heatmap (Figure 2B). The highest correlations were calculated for DOY 215 

around 440 with window width between 40 and 70. Note the temporal patterns, i.e. clear vertical 216 

and diagonal structures. Those are discussed later in the section Caveats and limitations of the 217 

daily_response() function. To visualize the temporal correlations of pre-defined window width 218 

of 90 days (Figure 2C), type example_MVA$plot_specific. This window width shows a 219 

similar influence of temperatures from previous and current growing season. 220 



 221 

Figure 2: Results for example_MVA: A) the maximised correlation coefficient, B) temporal patterns of 222 
climate-growth relationship and C) plot for a specific window width of 90 days. DOY on the x axis 223 
represents starting DOY and subsequent days of the respective window width. The broken line for A) 224 
and C) and white areas for B) are due to the removal of insignificant calculations (remove_insignificant 225 
argument in the daily_response() was set to TRUE). 226 



example_TRW 227 

TRW data for example_TRW is saved in the data frame designated data_TRW. Daily data for 228 

the meteorological station Kredarica is saved in the data frame called KRE_daily_temperatures. 229 

In this example, the metric coefficient of determination is calculated using linear (method = 230 

“lm”) and nonlinear (method = “brnn”) method. All possible window widths are considered 231 

between 21 days (three weeks) and 270 days (9 months).  232 

> library(dendroTools) 233 
> data(data_TRW) 234 
> data(KRE_daily_temperatures) 235 
> example_TRW_lm <- daily_response(response = data_TRW, env_data = 236 
KRE_daily_temperatures, method = "lm", metric = “r.squared”, lower_limit = 237 
21, upper_limit = 270, row_names_subset = TRUE) 238 
> example_TRW_lm$plot_extreme 239 
> example_TRW_lm$plot_heatmap 240 
 241 
> example_TRW_brnn <- daily_response(response = data_TRW, env_data = 242 
KRE_daily_temperatures, method = "brnn", metric = “r.squared”, lower_limit = 243 
21, upper_limit = 270,row_names_subset = TRUE) 244 
> example_TRW_brnn$plot_extreme 245 
> example_TRW_brnn$plot_heatmap 246 

To visualise the optimal sequence of consecutive days, type example_TRW_lm$plot_extreme 247 

(Figure 3A) and example_TRW_brnn$plot_extreme (Figure 3D). Both linear and nonlinear 248 

algorithms suggested an optimal window starting on May 15 (DOY 135), with a span of 44 249 

days (DOY 179, June 28). The highest calculated coefficient of determination with a linear 250 

algorithm (0.362) is slightly better than the coefficient of determination calculated with a 251 

nonlinear brnn algorithm (0.348). The optimal window width is in accordance with the typical 252 

growing season of conifers in the Alpine region close to the tree line. Rossi et al. (2007) reported 253 

the growing season of Larix decidua, Picea abies and Pinus cembra to be from May to July-254 

August. Similarly, Swidrak et al. (2011) reported the onset and maximum growth rate of Pinus 255 

cembra from Eastern Alps to be on April 27 and June 23, respectively.  256 

Temporal patterns of coefficients of determination are visualised by typing 257 

example_TRW_lm$plot_heatmap (Figure 3B) and example_TRW_brnn$plot_heatmap 258 

(Figure 3E). Again, both heatmaps show similar pattern with significant correlations only in 259 

late spring and summer with window widths lower than 150 days. Transfer functions of both 260 

algorithms show the relationship between the inputs and outputs. Both transfer functions are 261 

visualised by typing example_TRW_lm$transfer_function (Figure 3C) and 262 

example_TRW_brnn$transfer_function (Figure 3F).  Both transfer functions assume similar 263 

relationship between TRW and average temperature from May 15 – June 28. However, the 264 

differences are greater for the predictions close to the edges of calibration data.  265 

From daily_response() to climate reconstruction 266 

Climate reconstruction is one of the most widely used application in dendroclimatology. 267 

Therefore, we provide here an example of R code, how to use the output list of the 268 

daily_response() for the example_TRW to reconstruct climate with lm and brnn function. 269 

Aggregated daily data (i.e. optimal selection) is stored as an element in the output list 270 

($optimized_return) and can be used directly to calibrate models for climate reconstruction.271 



 272 

 273 

Figure 3: Results for example_TRW: A) and D) maximised coefficient of determination, B) and E) temporal patterns of climate-growth relationship and C) and 274 
F) transfer functions for the lm and brnn models, respectively. DOY on the x axis represents starting DOY and subsequent days of the respective window width. 275 



 276 

> linear_model <- lm(Optimized_return ~ TRW, data = 277 
example_TRW_lm$optimized_return) 278 
> library(brnn) 279 
> brnn_model <- brnn(Optimized_return ~ TRW, data = 280 
example_TRW_brnn$optimized_return, neurons = 1) 281 
 282 
> lm_reconstruction <- data.frame(predictions = predict(linear_model, newdata 283 
= data_TRW)) 284 
> brnn_reconstruction <- data.frame(predictions = predict(brnn_model, newdata 285 
= data_TRW)) 286 
 287 
> plot(x = row.names(data_TRW), y = lm_reconstruction$predictions, col = 288 
"red", type = "l", xlab = "Year", ylab = "Average temperature May 15 - June 289 
27 [ºC]", cex.lab = 1.5, cex.axis = 1.5) 290 
> lines(x = row.names(data_TRW), y = brnn_reconstruction$predictions, lty = 291 
3, col = "blue") 292 
> legend(1915, 0.75, legend = c("linear reconstruction", "brnn 293 
reconstruction"), lty =c(1, 3), col = c("red", "blue"), cex = 1.2) 294 

First, linear and brnn models are calibrated by using the $optimized_return data frame, and 295 

then used to reconstruct (predict) climate for the past period. Reconstructed temperatures are 296 

given in Figure 4. Both reconstructions are similar, however, linear reconstruction provides 297 

more extreme predictions. Those differences in reconstructed temperatures are directly related 298 

to differences between lm and brnn transfer functions (Figure 3C and 3F). Linear transfer 299 

function assumes that the effect of temperatures on TRW is the same for the whole spectrum of 300 

temperatures. On the other hand, brnn function assumes different (more moderate) effect of 301 

temperatures for extreme conditions. 302 

 303 

Figure 4: Linear and nonlinear brnn climate reconstruction for the example_TRW.  304 

 305 

 306 



Caveats and limitations of the daily_response() 307 

Our methodology is not robust to spurious correlations that may arise due to coincidence, 308 

autocorrelation etc. In Figure 2B there are patterns, i.e. clear vertical and diagonal (from top 309 

left to bottom right) structures. The vertical lines strongly suggest two things. First of all, the 310 

sometimes abrupt colour change from one day to another suggests influential outliers, i.e. at a 311 

particular DOY the average over the window will abruptly change either because a specific 312 

value now is included or another one is left out. Secondly, the vertical lines depict that specific 313 

windows which show a strong correlation (e.g. the windows around DOY 440) will indicate 314 

strong correlations for this DOY for most of the window sizes, but this despite the fact that 315 

some of these window sizes will include periods which on a shorter window-scale expressed 316 

low correlations or even insignificant correlations (as indicated by the diagonal lines which 317 

represent the ‘later’ representation of this window but with shorter window sizes). As an 318 

example, the correlation for window size 250 for the period around DOY 440 is in the order of 319 

0.7 but includes a period around DOY 650 with correlations lower than 0.4. Therefore, it would 320 

not be meaningful to choose this particular window and period, but for another data set and 321 

other specifications (range of window sizes) coincidentally this may turn out to be the highest 322 

correlation. Another feature of the diagonal lines is that they clearly show that the correlations 323 

abruptly change in dependence of the window size. Some of those issues maybe accounted for 324 

by using median instead of mean. To do so, set the argument use_median to TRUE. However, 325 

median is less affected by very hot/ cold temperatures and might therefore diminish correlations 326 

between response and env_data. All users of our tool should make their final selection of 327 

window size and period carefully. 328 

Regarding window widths, we recommend not to select too small window sizes, since the 329 

likelihood of obtaining spurious correlations for small window widths may be comparably 330 

higher as small window sizes will incorporate more high-frequency variations which may 331 

coincidentally match the proxy variations. In addition, by selecting window width that exceeds 332 

the period of growing season, may also result in some spurious correlations. However, if 333 

selected window size is less than 14 (2 weeks) or greater than 270 (9 months), warning is given, 334 

but calculations will be performed anyway. Users should therefore select window sizes 335 

reasonably. 336 

The daily_response() function does not address the risks that arise from repeating multiple 337 

significance tests, simultaneously. For the example_MVA and example_TRW, 55375 338 

calculations were needed to find the optimal sequence of consecutive days, therefore the use of 339 

any kind of p correction method would result in a very low number of significant correlations. 340 

With no correction, the chance of finding one or more significant correlations by chance alone 341 

is high. For our two examples, theoretically, around 2700 calculations results in type I error. 342 

The potential users should note this risk and set the threshold of significant correlations below 343 

0.05 to reduce the likelihood of type I error.   344 

There is no special treatment for leap years, users should decide how to organize the env_data. 345 

Therefore, February 29 of non-leap years could be skipped, assigned NA, modelled as average 346 

of value in February 28 and March 1 or similarly. In examples used in this paper, February 29 347 

of non-leap years was skipped, therefore those years had 365 days, while leap years had 366 348 

days. However, users should note the small difference between various treatments and interpret 349 



results accordingly. The dates indicated by plotting methods in our examples (Figures 2A, 2C 350 

3A and 3D) are based dates from a non-leap year, therefore there is no February 29 included.  351 

Finally, the daily_response() allows for including multiple tree-ring proxies simultaneously as 352 

potential independent variables for daily environmental data. However, users should select 353 

multiple proxies reasonably and with caution, since there is nothing to prevent from including 354 

colinear variables. Including several proxies will result in higher explained variance but at the 355 

cost of degrees of freedom. In those cases, users should use the adjusted coefficient of 356 

determination and check the cross-validation results (e.g. example_MVA$cross_validation). 357 

If metrics on validation data are much lower than on calibration data, there is a problem of 358 

overfitting and users should exclude some proxies and repeat the analysis  359 

Conclusions 360 

The approach to analysing the relationship between daily data and tree-ring proxies with the 361 

dendroTools R package was introduced using two examples, one using MVA and one using 362 

TRW data. With the daily_response() function, the optimal sequence of consecutive days that 363 

is linearly or non-linearly related to a response variable can easily be found. As expected, TRW 364 

was related to late spring and early summer temperatures, while MVA corresponds to early 365 

spring temperatures.  366 

The daily_response() function is a conceptually simple method and easy to use. It has many 367 

potential applications. The application of climate reconstruction is given for the example_TRW. 368 

Climate changes affect tree-growth and, using our method, changes in optimal window between 369 

past and present can also be analysed. It is also possible to run PC regression within the 370 

daily_response() function. To see the examples for the above mentioned applications, see on-371 

line vignette for the dendroTools R package (https://cran.r-372 

project.org/web/packages/dendroTools/vignettes/Examples_daily_response.html). 373 

The future development of the dendroTools package will be focused on the improvement of 374 

functionality of current functions and the implementation of new ones. One of them is 375 

compare_methods(), which effectively compares several regression methods and proposes the 376 

most suitable one. However, this function is not yet fully developed and is therefore not 377 

presented in this paper.  378 
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