
Door Opening by joining Reinforcement Learning and
Intelligent Control ∗

Bojan Nemec, Leon Žlajpah, and Aleš Ude
Humanoid and Cognitive Robotics Lab

Jozef Stefan Institute, Ljubljana, Slovenia
bojan.nemec@ijs.si, leon.zlajpah@ijs.si, ales.ude@ijs.si

Abstract— In this paper we address a problem of how to
open the doors with an articulated robot. We propose a novel
algorithm, that combines widely used reinforcement learning
approach with intelligent control algorithms. In order to speed
up learning, we formed more structured search, which exploits
physical constraints of the problem to be solved. The underlying
controller, which acts as a policy search agent, generates
movements along the admissible directions defined by physical
constraints of the task. This way we can efficiently solve many
practical problems such as door opening without almost any
previous knowledge of the environment. The approach was
verified in simulation as well as with real robot experiment.

Index Terms— Reinforcement Learning, Intelligent Control,
Autonomous Exploration

I. INTRODUCTION

One of the most common operation of future generation of
service robot is the door opening. Doors are used everywhere
in human populated environments - to separate rooms, in
wardrobes and cabinets, home appliances such as refrigerator,
dishwasher. There are a lot of different parameters that affect
the way doors can be opened: doors can be left or right
handed, they can be opened by pushing or pulling, some
doors in cabinets open vertically, doors can be sliding, etc.
Many of previous work relied on detailed geometrical models
of doors, where the required policy can be computed analyt-
ically [1]. Door opening can be also solved by intelligent
control algorithms, which exploit natural constraints of the
interactive mechanism to generate the corresponding move-
ment [2], [3], [4]. Yet another approaches rely on learning
and combining of motor primitives [5], [6], [7]. Despite of
all previous work, door opening still remains a challenging
task if the robot has to act autonomously. There will always
be cases, for which solutions can not provided in advance.
Moreover, to open the door it is usually necessary to unlatch
them by moving the handle appropriately or release the latch.
Such compound operations can not be solved using only the
control approaches. Therefore, it is essential that a robot is
capable of solving this task for any combination of doors
types, handles and latches by autonomous exploration and
learning.

∗The research leading to these results has received partial funding from
Horizon 2020 EU project AUTOWARE under grant agreement no 723909.

Learning of motor primitives has been heavily investigated
in the past decades [8]. Currently, the majority of approaches
rely on human demonstration and subsequent adaptation of
the acquired policy to the actual robot dynamics while ful-
filling given task and environment constraints. Reinforcement
learning (RL) algorithms, which incrementally improve the
initial policy, are used for model free autonomous adaptation.
However, the main problem is a huge search space affected
not only by the high degrees of freedom of modern humanoid
and service robots, but also by the underlying parametric
policy representation. In order to encode a typical policy
with the duration of few seconds, it is required to learn 30
to 100 parameters for each joint, which makes the problem
almost untraceable. Modern stochastic reinforcement learning
algorithms [9] can deal also with such large scale problems.
However, the learning is still slow. In order to overcome this
problem, many approaches were proposed with the general
aim to diminish the search space by diminishing the number
of learning parameters [10], [11], [12]. The drawback of
these approaches is that they are not general and that they
require to manually design algorithms tailored for specific
cases. Adaptation can be successfully used also by intelligent
control algorithms such as ILCs [13], [14]. However, the
latter approach is limited to some specific problems and
requires to carefully tune adaptation parameters. In many
cases it can adapt the policy only to some extent. Further
improvements are possible with standard RL approaches
applying random search algorithms [15].

This work proposes another approach, which aims to
improve learning and adaptation speed by applying more
focused search applied to RL. We propose that the search
of the policy parameters is governed by intelligent control
algorithms. Whenever this algorithms are not applicable or
do not converge any more (or even diverge), we switch back
to the classical random search. This paradigm was first used
in bi-manual glass wiping policy adaptation, where adaptive
ILC algorithm was applied for policy search [16]. In this
work, we combine the RL and control policies to enhance
the autonomous learning of door opening policies. We focus
on learning of door opening skill only; we assume that we
know the position of the handle/latch in advance and we also
know how to grasp it. Everything beyond this, e.g how to

manipulate the handle/bolt and how to manipulate the door,
was solved by learning.

The paper consists of five sections. In Section II we review
the existing control policies for door opening that inspired our
approach and introduce an extension of force based control
policy for orientations. Section III starts with presentation
of the policy parametrization method used in our approach.
Next, we introduce RL with control based policy parameter
search algorithm. The proposed approach was verified in
simulation, where we demonstrated the applicability of the
proposed approach to diverse cases, as well as in real robot
experiment. Results and implementation details are given
in section of the experimental evaluation on two different
platforms are given in Section IV, followed by final remarks
and conclusion in Section V.

II. CONTROL BASED APPROACH FOR DOOR OPENING

Many real world tasks, e.g. opening the doors, pushing the
drawers or turning a crank, exhibit the workspace constraints
which considerably limit the freedom-of-motion. The motion
allowed by such constraints is actually the motion necessary
to do the task. The challenge is to find this feasible path
which accomplishes the task while considering all workspace
constraints. For example, when opening a door with a robot,
the procedure could be as follows. As soon as the robot grasps
the handle, the kinematic chain is closed and the motion of
the robot arm becomes very constraint. Next, to unlock the
doors, turning the handle is necessary. After unlocking the
door, the robot has to push or pull the doors to open them.
During the motion, the robot has also to avoid any collisions
or ill configurations. Therefore, it is preferred that the robots
exhibits enough dexterity for such tasks.

Knowing the base position of the robot relative to the
door, it is possible to calculate all the necessary paths and
trajectories to turn the handle and to open the door. There
have been many methods and strategies proposed to solve
this path planning problem [17], [18], [19]. Common to all
of them is that they are exploring the joint and/or task space
to find trajectories satisfying the constraints and completing
the task.

As an alternative to the above mentioned path planning
strategies and methods, we want to present a concept how
to execute tasks, where the path is defined by the task
constraints. For that, we are using the compliancy. By ob-
serving how humans complete such tasks, we see that they
make their body compliant in relevant directions. Then, by
applying some forces or torques in the directions, which are
not constraint by the object or environment, they move toward
the position, or into the configuration which is necessary
to complete the task. As the motion is “guided” by the
constraints, no calculations of paths or trajectories necessary
to accomplish the task are needed.

As only the concept of path following is the issue, we
are assuming that the robot is equipped with some sensory

system and a control system which allows the robot to
move into the configuration where the kinematic chain can
be closed, i.e. the robot can grasp the object. After the
object is grasped, task constraints restrict the motion of the
robot. Any attempt to move the robot in restricted directions
results in high internal forces. We want to make use of these
internal forces to reconfigure the robot into the configuration
where internal forces are minimized. To keep the internal
forces during the reconfiguration low, the robot should be as
compliant as possible.

For a serial link manipulator consisting of n links with
rotational or prismatic joints the configuration of the ma-
nipulator can be represented by the n-dimensional vector q
of joint positions. As we want to define the compliance of
the whole robot, we have used a cascade controller with the
inner-loop controller in the form

τu = K(qd − q) + D(d) + τc + fdyn(q, q̇, q̈) , (1)

where τu ∈ Rn are commanded torques, K is a diagonal
matrix defining the joint stiffness, D(d) is defining the
joint space damping, and fdynamics(q, q̇, q̈) is representing a
known dynamic model of the robot. The term τc represents
superposed joint torques. To achieve a good behavior, very
low joint stiffness K has been used and the desired joint
position qd have been equal to the actual joint positions q,

qd = q . (2)

Such a control allows to freely move the robot while applying
external forces on the body of the robot. Note that with such
a control the robot stands still in the current position when
no external forces are applied to the robot.

The aim of the outer control loop is to generate the motion
necessary to perform the task. As already mentioned, when
the robot is in contact with the environment, it can move only
in the direction which is not restricted by the environmental
constraints. Assume for a moment that the robot is tightly
coupled with the environment and that the robot is already
moving. For above mentioned classes of tasks this motion
is exactly the one needed to finish the task - any motion
not contributing to the task competition is restricted by the
environment. So, the goal of the outer control loop is to
preserve the existing motion until the task is finished.

The idea is to apply a virtual force Fo to the robot end-
effector which will push the robot in the moving direction
until the task is completed. The original approach, proposed
be Niemeier and Slotine [2], consist of two blocks; a) a
velocity estimation, which robustly estimates the direction
of the motion , and b) a controller, which applies the desired
force and shape it in order to maintain the desired/admissible
velocities. In an ideal case, the applied force is calculated as
[2]

F = Kpṗ(vd − ‖ṗ‖) (3)

where F ∈ R3 is force vector, applied to the robot TCP,
p ∈ R3 are robot positions measured at the end-effector,
Kp ∈ R3×3 is the diagonal positional controller gain matrix
and vd is the desired translational velocity. In the above
equation the direction of the motion is determined by ṗ,
which might fail in noisy velocity estimates. In [2], authors
proposed a spatial filtering to overcome this problem. A
spatial filter smooths the direction of the motion estimates
using a first order filter and assures, that the filtering does
not affect the normalization. The resulting smoothed and
normalized direction of linear motion dp can be computed
from

ḋp = λ(1− dpdTp)ṗ, (4)

where λ is the filter bandwidth. A discrete time implemen-
tation of the above filter is

dp(k) = dp(k-1) + λ(1− dp(k-1)dTp (k-1))(p(k)− p(k-1)),
(5)

where k denotes the k-th time sample. In order to control the
robot, forces

F (k) = Kpdp(k)(vd(k)− ‖ṗ(k)‖) (6)

are applied as command values to the robot controller. The
original formulation neglects torques. In practice, it is often
necessary to apply also torques, for, e.g. turning the door
knobs. Therefore, it is necessary to extend Eq. 7 for torques.
Straightforward extension yields

M = Koω(ωd − ‖ω‖), (7)

where M ∈ R3 is torque vector, applied to the robot TCP,
Ko ∈ R3×3 is the diagonal rotational controller gain matrix,
ω ∈ R3 are robot rotation velocities and scalar ωd is the
desired rotation velocities. For the specification of the robot
orientation, unit quaternions are usually used, as they provide
convenient singularity free mathematical notation. We will
denote them as Q = {η, ε} ∈ R4, where η and ε are
the corresponding scalar and vector part of the quaternion,
respectively. Angular velocities can be calculated from two
subsequent quaternions as

ω(k) = 2 log(Q(k) ∗ Q̄(k − 1)), (8)

where ∗ denotes the quaternion multiplication and the quater-
nion logarithm is calculated as

log(Q) = log(η, ε) =

 arccos(η)
ε

‖ε‖
, η 6= 0

[0, 0, 0]T, otherwise

, (9)

The smoothed direction of angular motion do can be calcu-
lated as

do(k) = do(k−1)+Tλ(1−do(k−1)dTo (k−1))ω(k), (10)

and used to calculate the commanded torques

M(k) = Kdo(k)(ωd − ‖ω‖). (11)

T denotes the sampling frequency.
As we are not controlling directly the robot pose, some of

the joints may move into the limits or the robot may move
into an ill configuration. To avoid these, we have used the
available redundant DOFs to optimize the pose of the robot,
i.e. the robot should move to a predefined pose whenever
possible. For that, we have used the self-motion of the robot.

To calculate the motor torques in each sampling interval k
we have used the control (1) with superposed joint torques
τc

τc(k) = JT
[
F (k)
M(k)

]
+ NT (k) τn(k) (12)

where J ∈ R6×n is the robot Jacobian, N ∈ Rn×n is a
matrix representing the projection into the null space of J,
and τn ∈ Rn are the null-space torques used to maintain the
desired pose.

Flowing this policy, a robot can perform many tasks from
everyday life such as closing and opening doors, drawers,
sliding doors, etc.. without any previous knowledge of the
objects, which are involved in interaction. It applies forces
solely in the direction of the movement, whereas it is in-
trinsically compliant in orthogonal directions. This property
effectively minimizes internal wrenches, which can arise in
position based policies due to the kinematics/dynamics model
errors. The only think the robot has to know in advance is
where to apply such forces, e.g. where is the door handle and
how to grasp it. This problem was extensively studied in [5],
where computer vision was applied to locate door handle.

However, this approach alone can not generate complex
policies, which are composed of various primitives, such as
pushing the door handle and opening the door. Another prob-
lem with this approach are backlashes, which are manifested
as additional degrees of freedom. In order to overcome above
mentioned problems, we will apply reinforcement learning.

III. LEARNING OF DOOR OPENING

Reinforcement Learning (RL) is widely used in ma-
chine learning for solving problems where exact models are
not available. Traditional RL approaches based on discrete
states/actions need to encode each possible combination of
the robot state and action as a discrete Markov decision
process (MDP), which results in huge action-state space [20].
For this reason, classical RL algorithms like Q-learning and
SARSA are rarely used in robotics. In the door opening
problem, the robot can not visit every possible state, since
the robot motion is restricted by the physical constraints
of the door. Therefore, the course of dimensionality is not
as crucial as for the robot motion in free space. However,
states and actions are still discrete, which can result in non
smooth policies. For this reason we will apply probabilistic
policy improvement RL algorithms PI2 [21], which can scale
to complex learning systems and minimizes the number of
tuning parameters.

PI2 learns such policy parameters W, which minimize the
expected cost J of each learning cycle (refereed also as roll
out)

J(W) = ct +

∫ T

to

(ci(t) +
1

2
uTRu)dt, (13)

where ct is the terminal cost received after the accomplished
roll out, ci(t) is cost at each sampling interval (refereed
also as intermediate cost), u is the control signal and R
is the weighting matrix, which minimizes control cost [10].
Policy search is usually obtained by applying zero mean
Gaussian noise N (0, σ2) to the policy parameters W, where
noise variance σ2 remains the only tunning parameter. After
each roll out L, new optimized policy parameters W∗ are
calculated using all previous policy parameters, terminal and
intermediate costs,

W∗ = Υ(Wl, ci,l, ct,l, l = 1, . . . L). (14)

Υ denotes the reinforcement learning algorithm PI2. Detailed
description of the of PI2 is out of the scope of this paper. A
good step by step instructions how to implement PI2 can be
found in [10]. In order to speed up learning and reject the
unsuccessful attempts, the input data to (14) are reordered
after each learning cycle using the importance sampling [9].

A. Policy representation

Modern reinforcement learning algorithms, that can gen-
erate continuous action/states policies, require appropriate
policy representation. A choice of policy representation is
not trivial, as it must fulfill a number of requirements,
such as the smoothness of resulting policy, the scalability to
high dimensional problems, the compactness in encoding a
policy, the regularization ability, the invariance to different
topological representations, the adaptability of the policy,
etc. [22]. Among the most popular policiy representations
suitable for RL are Gaussian Mixture Models (GMM) [23],
Dynamic Motion Primitives (DMP) [24], Probabilistic Mo-
tion Primitives (PMP) [25] and Radial Basis Functions (RBF)
[26]. Latter representation use a series of kernel functions,
usually formed as Gaussian functions, and weights to encode
an arbitrary time dependent function. By introducing a simple
canonical system, the time dependency of the policy is
removed, which enables to generalize to similar policies with
different duration/velocity profiles.

Forces and torques, which are to be learned, are encoded
as a weighted sum of m Gaussian kernels for each dimension

F (s) =

∑m
i=1wf,j,iΨi(s)∑m

i=1 Ψi(s)
s, (15)

M(s) =

∑m
i=1wm,j,iΨi(s)∑m

i=1 Ψi(s)
s, (16)

Ψi(s) = exp
(
−hi (s− ci)2

)
, (17)

where the free parameters wf,j,i and wm,j,i determine the
shape of force and torque trajectories. ci are the centers of
RBFs, evenly distributed along the trajectory, with hi their
widths. A canonical systems

τ ṡ = −αss. (18)

sets the phase variable s, which is initially set to 1 and decays
to 0. αs is the appropriately set decay factor.

To calculate wf,j,i from j-th component of the force vector
F , Fj(k), 1 ≤ k ≤ T, we need to solve

Bwf,j = u, (19)

with

wf,j =

 wf,1,j
...

wf,M,j

 ,u =

 Fj(1)
...

Fj(T)

 , (20)

and the system matrix B ∈ RT×M defined as

B =



ψ1(s(1))∑M
j=1 ψj(s(1))

· · · ψM (s(1))∑M
j=1 ψj(s(1))

...
...

...
ψ1(s(T))∑M
j=1 ψj(s(T))

· · · ψM (T∆t)∑M
j=1 ψj(s(T))

 . (21)

The weights wm,j are calculated in the same way.

B. Policy Learning

In Section II we introduced the controller that is able to
autonomously perform simple actions such as door opening
and pushing the door handle, if the initial direction of
the motion is known in advance. As we aim to obtain
autonomous robot behavior, that solves also situations which
have never been encountered before, this information should
be obtained by the autonomous exploration and learning.
For this, we propose a novel approach, where the control
algorithm acts as a parameter search process within the RL
method. In this way, we can effectively solve also a jamming,
collisions and other unexpected situations, that might arise
during the learning.

The general strategy is again very simple. In each learning
cycle the robot checks first if the forces and torques applied
so far result in a motion. In this case the robot continues mo-
tion in the estimated direction. Otherwise, the robot applies
forces and torques learned so far, perturbed by some random
forces and torques, generated as uniformly distribute random
number with specified variance. Robot collects intermediate
costs, applied forces and torques. The roll out is ended after
the reaching the goal (which is the door opening in our case)
or after the maximal allowed time for each episode. At this
time, the robot collects also the terminal cost and calculates
new estimate of forces and torques for the next roll out using
PI2. This procedure is repeated until the robot learns the
desired policy.

Intermediate and terminal cost were assigned as

ci(k) =

 10|vd − ‖ṗ(k)‖|, doors opening

100‖ṗ(k)‖, otherwise

ct =

 to, ϕ ≥ ϕd

10(ϕd − ϕ), otherwise

where to is time needed to open the door and ϕ, ϕd denote
the actual and the desired door opening angle, respectively.

In practice, the procedure is a little bit more complicated.
For successful learning, all signals have to be of equal length
and spatially aligned. Namely, we can not simply compare
two action, that happen at the same time. Rather, we have to
compare actions, that happen at the same place. To accom-
plish spatial alignment, we use the following algorithm.

First, we compute translational and rotation distances ν(k)
in each sampling interval, ν(k) =

∑i=k
i=0 |v(i)|+ γ|ω(i)| and

the corresponding phase signal s(k) (18) for each roll-out and
express the phase s(ν) as a function of distance. Scalar γ is
used to weight the angular velocities, as they are summed
with translational velocities. We save these functions in the
importance sampler of length Li [9]. During the next roll
out, we compute ν(k) and phases from functions saved in
the importance sampler, s(k) = sj(ν(k)), j = 1 . . . Li. The
auxiliary phase is then computed by reweighing the phase
estimates according to the terminal cost ct,j ,

sa(k) =

∑j=Li

j=1
sj(ν(k))
ct,j∑j=Li

j=1
1
ct,j

(22)

With this auxiliary phase we estimate command force and
torque signals using Eq. (15,16).

Next, we have to provide that all signals involved in the
learning (forces, torques and intermediate costs) have equal
lengths. This is accomplished by copying the final value of
signals of all prematurely finished roll outs (in our case this is
when the robot opens the door) until the end. Next, forces and
torques obtained this way are encoded as RBF (19) and are
passed to the RL algorithm, which computes next estimates
of weights of RBF. This estimates are used in the next roll
out. Note also, that the random search variance σ2 was scaled
by the factor αl, α < 1. This choice assures smoother policy
search in subsequent cycles. The entire learning procedure is
summarized in Algorithm 1.

IV. RESULTS

The proposed algorithm was verified both in simulated
environment and using a real robot. For this purpose, we
applied state of the art MuJoCo HAPTIX simulation envi-
ronment [27], which was used to simulate KUKA LWR 4
robot interacting with the environment. Control and learning
algorithms were implemented in MATLAB. The control

Algorithm 1: door opening learning algorithm

Input: Initial position of the door handle
initialize control gains Kp, Ko

initialize F (k) = 0, M(k) = 0, k = 1, . . . T
Output: Learned policy (F (k), M(k))

1 for l = 1, . . . , max learning cycles do
2 for k = 1, . . . , T do
3 if robot is moving then
4 calculate directions dp and do (5,10)
5 calculate F (k) and M(k) (6,11)

else
6 calculate auxilary phase variable sa (22)
7 calculate F (s) and M(s) learned so far

(15,16)
8 add noise F (k) = F (s) +N (0, σ2

p)
9 add noise M(k) = M(s) +N (0, σ2

o)

10 calculate and apply joint torques to the motors
(12)

11 collect intermediate cost ci(k)

12 collect terminal cost ct
13 calculate wf,l and wm,l from F (k),M(k) (19)
14 save data in the importance sampler
15 estimate new optimized weights wf,l+1 and wm,l+1

using PI2 (14)
16 update search noise variance σ2

p = ασ2
p; σ2

o = ασ2
o ;

sampling rate of the outer control loop was 0.05 sec while
the inner loop sampling rate was 0.002 sec.

The learning algorithm (Eqs. (6) and (11)) was imple-
mented at slower sampling rate of 0.1 sec. The control gains
Kp and Ko were chosen as 50 I, where I is the identity
matrix. The initial value of the σ2 was set to 50 (N) and α
was 0.97. In order to evaluate the success of the learning,
we performed greedy cycle after each 5-th roll-out, where
the robot was controlled only by learned forces.

In simulation, we evaluated how good is the performance
of the proposed algorithm for the following cases: 1) Right
hand door opening with normal handle (see Fig. 11); 2) Open-
ing of cabinet sliding door, where the doors are unlatched by
pushing latch up (see Fig. 12); 3) Left hand cabinet door
opening with a handle, which has to be lifted to unlatch
(see Fig. 13); 4) Opening a cabinet drawer, which has to
be lifted to unlatch (see Fig. 14); 5) Opening a horizontal
cabinet door (see Fig. 15). In all case we applied identical
learning algorithm. The only difference was in assigning the
terminal cost for drawer and sliding door opening, where we
specified the desired distance instead of the desired angle. In
all of this cases, the task was successfully accomplished by
applying only forces. Note that also the tool orientation was
changing although we didn’t apply any torques. This property

Fig. 1. Graphical output of MuJoCo simulation of: 1) Door opening; 2) Sliding cabinet door; 4) Drawer opening; 5) Vertical cabinet door;

Fig. 2. Mean value (red line) and standard deviation (shaded region)
of terminal cost during learning of door opening. Learning resulted in
successful door closing at most after 6 roll outs in all cases.

was provided by the intrinsically compliant controller, which
minimizes the interaction forces.

We performed 20 learning experiments consisting of 20
roll-outs. In simulation, we obtained 100% success for all
tasks. In average, robot took 6 roll-outs to learn the ap-
propriate policy except for the drawer opening, which took
in average 10 roll outs. Namely, in this case the robot had
to learn the force profile that is composed of vertical (z)
force followed by the negative pulling force (x). Only after
discovering this pattern, the controller can help to continue
the motion in the unconstrained direction. Learning costs and
standard deviation of door opening are given in Fig. 2.

Next, we evaluated the proposed learning procedure also
experimentally. For this purpose we used bi manual robot
composed of of two KUKA LWR4 robot arms, equipped with
Barret hand and mounted on the torso with one rotational
d.o.f. The task of the robot was to open right hand door
with left robot arm. The setup is shown in Fig. 3. The robot

pose required to grasp the door handle was obtained with
kinesthetic guiding in zero gravity mode. We performed 20
roll out of learning with the same parameter settings as used
in simulated environment. In this experiment, we didn’t learn
torques M , since this was not necessary for this task. In
average, the robot learned the required policy in 9 roll outs.
Learned force policy is shown in Fig. 4.

Fig. 3. Experimental setup for door opening.

V. CONCLUSIONS

In the paper we proposed a novel algorithm for learning
of tasks, where the robot motion is constrained by the
environment interaction (e.g. a mechanism). It joins the RL

Fig. 4. Mean values and standard deviations (shaded regions) of learned
force profiles

and intelligent control. The approach is inspired by previous
work, where a controller applies forces to the unconstrained
degrees of freedom of the robot. The task of the learning part
of the algorithm is to determine the unconstrained degrees of
freedom, that result in the given task accomplishment. The
underlying controller is acting as exploration in the action
space [8]. With this algorithm, the robot efficiently learns
many tasks such as door and drawer opening. It can learn
also complex motions, where it is necessary to manipulate
the door handle or latch, without any presumption how to
do this. In this work we assumed that the robot already
knows how to grasp a door handle or latch. Algorithm was
verified in simulated environment and with the real bimanual
robot, composed of the two KUKA LWR 4 robot arms
mounted on the torso with 1 d.o.f. Both simulations and
real experiment demonstrated 100% success of learning. In
future we will experimentally evaluate the proposed method
on more complex cases and with different reward functions,
which will minimize applied forces and assure smoother
policies.

REFERENCES

[1] K. Nagatani and S. Yuta, “An experiment on opening-door-behavior by
an autonomous mobile robot with a manipulator,” Proceedings 1995
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 45–50, 1995.

[2] G. Niemeyer and J.-j. E. Slotine, “A simple strategy for opening an un-
known door,” Proceedings of the 1997 IEEE International Conference
on Control Applications, pp. 1448–1453, 1997.

[3] Y. Karayiannidis, C. Smith, P. Ögren, and D. Kragic, “Adaptive
force/velocity control for opening unknown doors,” 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 753–758, 2012.

[4] M. Levihn and M. Stilman, “Using environment objects as tools:
Unconventional door opening,” IEEE International Conference on
Intelligent Robots and Systems (IROS), pp. 2502–2508, 2014.

[5] E. Klingbeil, A. Saxena, and a. Y. Ng, “Learning to open new doors,”
2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) , pp. 2751–2757, 2010.

[6] F. Endres, J. Trinkle, and W. Burgard, “Learning the dynamics of
doors for robotic manipulation,” IEEE International Conference on
Intelligent Robots and Systems (IROS), pp. 3543–3549, 2013.

[7] S. Otte, J. Kulick, M. Toussaint, and O. Brock, “Entropy-based
strategies for physical exploration of the environment’s degrees of
freedom,” IEEE International Conference on Intelligent Robots and
Systems (IROS), pp. 615–622, 2014.

[8] M. P. Deisenroth, “A Survey on Policy Search for Robotics,” Founda-
tions and Trends in Robotics, vol. 2, no. 1, pp. 1–142, 2011.

[9] J. Kober, J. a. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[10] F. Stulp and O. Sigaud, “Path Integral Policy Improvement with
Covariance Matrix Adaptation,” arXiv preprint arXiv:1206.4621, 2012.

[11] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning
to adjust parametrized motor primitives to new situations,” Autonomous
Robots, vol. 33, no. 4, pp. 361–379, 2012.

[12] B. Nemec, R. Vuga, and A. Ude, “Efficient sensorimotor learning
from multiple demonstrations,” Advanced Robotics, vol. 27, no. 13,
pp. 1023–1031, 2013.

[13] F. J. Abu-Dakka, B. Nemec, J. A. Jørgensen, T. R. Savarimuthu,
N. Krüger, and A. Ude, “Adaptation of manipulation skills in physical
contact with the environment to reference force profiles,” Autonomous
Robots, vol. 39, no. 2, pp. 199–217, 2015.

[14] B. Nemec, T. Petrič, and A. Ude, “Force adaptation with recursive re-
gression Iterative Learning Controller,” IEEE International Conference
on Intelligent Robots and Systems (IROS), pp. 2835–2841, 2015.

[15] R. Vuga, B. Nemec, and A. Ude, “Enhanced Policy Adaptation
Through Directed Explorative Learning,” International Journal of
Humanoid Robotics, vol. 12, no. 03, 2015.

[16] B. Nemec, M. Simonic, N. Likar, and A. Ude, “Enhancing the
performance of adaptive iterative learning control with reinforcement
learning,” in Submitted to 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

[17] Z. Yao and K. Gupta, “Path planning with general end-effector
constraints,” Robotics and Autonomous Systems, vol. 55, no. 4, pp.
316–327, 2007.

[18] S. LaValle, J. Yakey, and L. Kavraki, “A probabilistic roadmap ap-
proach for systems with closed kinematic\nchains,” Proceedings 1999
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1671–1676, 1999.

[19] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Transactions on Robotics, vol. 26, no. 3, pp.
576–584, 2010.

[20] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[21] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” The Journal of Machine
Learning Research, vol. 11, pp. 3137–3181, 2010.

[22] P. Kormushev, S. Calinon, D. G. Caldwell, and B. Ugurlu, “Challenges
for the policy representation when applying reinforcement learning in
robotics,” Proceedings of the International Joint Conference on Neural
Networks, pp. 10–15, 2012.

[23] S. Calinon, “Robot Learning with Task-Parameterized Generative Mod-
els,” Proc. Intl Symp. on Robotics Research, pp. 1–16, 2015.

[24] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors.” Neural computation, vol. 25, no. 2, pp. 328–73, 2013.

[25] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
Movement Primitives,” Neural Information Processing Systems, pp.
1–9, 2013.

[26] D. Buhmann, Radial Basis Functions: Theory and Implementations.
Cambridge Univ. Press, 2003.

[27] E. Todorov. Mujoco advanced physics simulation. [Online]. Available:
http://www.mujoco.org/

