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Abstract

Social media are becoming an increasingly important source of information about the public

mood regarding issues such as elections, Brexit, stock market, etc. In this paper we focus

on sentiment classification of Twitter data. Construction of sentiment classifiers is a stan-

dard text mining task, but here we address the question of how to properly evaluate them as

there is no settled way to do so. Sentiment classes are ordered and unbalanced, and Twitter

produces a stream of time-ordered data. The problem we address concerns the procedures

used to obtain reliable estimates of performance measures, and whether the temporal

ordering of the training and test data matters. We collected a large set of 1.5 million tweets

in 13 European languages. We created 138 sentiment models and out-of-sample datasets,

which are used as a gold standard for evaluations. The corresponding 138 in-sample data-

sets are used to empirically compare six different estimation procedures: three variants of

cross-validation, and three variants of sequential validation (where test set always follows

the training set). We find no significant difference between the best cross-validation and

sequential validation. However, we observe that all cross-validation variants tend to overes-

timate the performance, while the sequential methods tend to underestimate it. Standard

cross-validation with random selection of examples is significantly worse than the blocked

cross-validation, and should not be used to evaluate classifiers in time-ordered data

scenarios.

Introduction

Online social media are becoming increasingly important in our society. Platforms such as

Twitter and Facebook influence the daily lives of people around the world. Their users create

and exchange a wide variety of contents on social media, which presents a valuable source of

information about public sentiment regarding social, economic or political issues. In this con-

text, it is important to develop automatic methods to retrieve and analyze information from

social media.

In the paper we address the task of sentiment analysis of Twitter data. The task encompasses

identification and categorization of opinions (e.g., negative, neutral, or positive) written in

quasi-natural language used in Twitter posts. We focus on estimation procedures of the
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predictive performance of machine learning models used to address this task. Performance

estimation procedures are key to understand the generalization ability of the models since they

present approximations of how these models will behave on unseen data. In the particular case

of sentiment analysis of Twitter data, high volumes of content are continuously being gener-

ated and there is no immediate feedback about the true class of instances. In this context, it is

fundamental to adopt appropriate estimation procedures in order to get reliable estimates

about the performance of the models.

The complexity of Twitter data raises some challenges on how to perform such estimations,

as, to the best of our knowledge, there is currently no settled approach to this. Sentiment clas-

ses are typically ordered and unbalanced, and the data itself is time-ordered. Taking these

properties into account is important for the selection of appropriate estimation procedures.

The Twitter data shares some characteristics of time series and some of static data. A time

series is an array of observations at regular or equidistant time points, and the observations are

in general dependent on previous observations [1]. On the other hand, Twitter data is time-

ordered, but the observations are short texts posted by Twitter users at any time and frequency.

It can be assumed that original Twitter posts are not directly dependent on previous posts.

However, there is a potential indirect dependence, demonstrated in important trends and

events, through influential users and communities, or individual user’s habits. These long-

term topic drifts are typically not taken into account by the sentiment analysis models.

We study different performance estimation procedures for sentiment analysis in Twitter

data. These estimation procedures are based on (i) cross-validation and (ii) sequential

approaches typically adopted for time series data. On one hand, cross-validations explore all

the available data, which is important for the robustness of estimates. On the other hand,

sequential approaches are more realistic in the sense that estimates are computed on a subset

of data always subsequent to the data used for training, which means that they take time-order

into account.

Our experimental study is performed on a large collection of nearly 1.5 million Twitter

posts, which are domain-free and in 13 different languages. A realistic scenario is emulated by

partitioning the data into 138 datasets by language and time window. Each dataset is split into

an in-sample (a training plus test set), where estimation procedures are applied to approximate

the performance of a model, and an out-of-sample used to compute the gold standard. Our

goal is to understand the ability of each estimation procedure to approximate the true error

incurred by a given model on the out-of-sample data.

The paper is structured as follows. Related work provides an overview of the state-of-the-art

in estimation methods. In section Methods and experiments we describe the experimental set-

ting for an empirical comparison of estimation procedures for sentiment classification of

time-ordered Twitter data. We describe the Twitter sentiment datasets, a machine learning

algorithm we employ, performance measures, and how the gold standard and estimation

results are produced. In section Results and discussion we present and discuss the results of

comparisons of the estimation procedures along several dimensions. Conclusions provide the

limitations of our work and give directions for the future.

Related work

In this section we briefly review typical estimation methods used in sentiment classification of

Twitter data. In general, for time-ordered data, the estimation methods used are variants of

cross-validation, or are derived from the methods used to analyze time series data. We exam-

ine the state-of-the-art of these estimation methods, pointing out their advantages and

drawbacks.
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Several works in the literature on sentiment classification of Twitter data employ standard

cross-validation procedures to estimate the performance of sentiment classifiers. For example,

Agarwal et al. [2] and Mohammad et al. [3] propose different methods for sentiment analysis

of Twitter data and estimate their performance using 5-fold and 10-fold cross-validation,

respectively. Bermingham and Smeaton [4] produce a comparative study of sentiment analysis

between blogs and Twitter posts, where models are compared using 10-fold cross-validation.

Saif et al. [5] asses binary classification performance of nine Twitter sentiment datasets by

10-fold cross validation. Other, similar applications of cross-validation are given in [6, 7].

On the other hand, there are also approaches that use methods typical for time series data.

For example, Bifet and Frank [8] use the prequential (predictive sequential) method to evaluate

a sentiment classifier on a stream of Twitter posts. Moniz et al. [9] present a method for pre-

dicting the popularity of news from Twitter data and sentiment scores, and estimate its perfor-

mance using a sequential approach in multiple testing periods.

The idea behind the K-fold cross-validation is to randomly shuffle the data and split it in K
equally-sized folds. Each fold is a subset of the data randomly picked for testing. Models are

trained on the K − 1 folds and their performance is estimated on the left-out fold. K-fold cross-

validation has several practical advantages, such as an efficient use of all the data. However, it

is also based on an assumption that the data is independent and identically distributed [10]

which is often not true. For example, in time-ordered data, such as Twitter posts, the data are

to some extent dependent due to the underlying temporal order of tweets. Therefore, using K-

fold cross-validation means that one uses future information to predict past events, which

might hinder the generalization ability of models.

There are several methods in the literature designed to cope with dependence between

observations. The most common are sequential approaches typically used in time series fore-

casting tasks. Some variants of K-fold cross-validation which relax the independence assump-

tion were also proposed. For time-ordered data, an estimation procedure is sequential when

testing is always performed on the data subsequent to the training set. Typically, the data is

split into two parts, where the first is used to train the model and the second is held out for test-

ing. These approaches are also known in the literature as the out-of-sample methods [11, 12].

Within sequential estimation methods one can adopt different strategies regarding train/

test splitting, growing or sliding window setting, and eventual update of the models. In order

to produce reliable estimates and test for robustness, Tashman [11] recommends employing

these strategies in multiple testing periods. One should either create groups of data series

according to, for example, different business cycles [13], or adopt a randomized approach,

such as in [14]. A more complete overview of these approaches is given by Tashman [11].

In stream mining, where a model is continuously updated, the most commonly used esti-

mation methods are holdout and prequential [15, 16]. The prequential strategy uses an incom-

ing observation to first test the model and then to train it.

Besides sequential estimation methods, some variants of K-fold cross-validation were pro-

posed in the literature that are specially designed to cope with dependency in the data and

enable the application of cross-validation to time-ordered data. For example, blocked cross-

validation (the name is adopted from Bergmeir [12]) was proposed by Snijders [17]. The

method derives from a standard K-fold cross-validation, but there is no initial random shuf-

fling of observations. This renders K blocks of contiguous observations.

The problem of data dependency for cross-validation is addressed by McQuarrie and Tsai

[18]. The modified cross-validation removes observations from the training set that are depen-

dent with the test observations. The main limitation of this method is its inefficient use of the

available data since many observations are removed, as pointed out in [19]. The method is also

known as non-dependent cross-validation [12].

How to evaluate sentiment classifiers for Twitter time-ordered data?
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The applicability of variants of cross-validation methods in time series data, and their

advantages over traditional sequential validations are corroborated by Bergmeir et al. [12, 20,

21]. The authors conclude that in time series forecasting tasks, the blocked cross-validations

yield better error estimates because of their more efficient use of the available data. Cerqueira

et al. [22] compare performance estimation of various cross-validation and out-of-sample

approaches on real-world and synthetic time series data. The results indicate that cross-valida-

tion is appropriate for the stationary synthetic time series data, while the out-of-sample

approaches yield better estimates for real-world data.

Our contribution to the state-of-the-art is a large scale empirical comparison of several

estimation procedures on Twitter sentiment data. We focus on the differences between the

cross-validation and sequential validation methods, to see how important is the violation of

data independence in the case of Twitter posts. We consider longer-term time-dependence

between the training and test sets, and completely ignore finer-scale dependence at the level of

individual tweets (e.g., retweets and replies). To the best of our knowledge, there is no settled

approach yet regarding proper validation of models for Twitter time-ordered data. This work

provides some results which contribute to bridging that gap.

Methods and experiments

The goal of this study is to recommend appropriate estimation procedures for sentiment clas-

sification of Twitter time-ordered data. We assume a static sentiment classification model

applied to a stream of Twitter posts. In a real-case scenario, the model is trained on historical,

labeled tweets, and applied to the current, incoming tweets. We emulate this scenario by

exploring a large collection of nearly 1.5 million manually labeled tweets in 13 European lan-

guages (see subsection Data and models). Each language dataset is split into pairs of the in-

sample data, on which a model is trained, and the out-of-sample data, on which the model is

validated. The performance of the model on the out-of-sample data gives an estimate of its

performance on the future, unseen data. Therefore, we first compute a set of 138 out-of-sam-

ple performance results, to be used as a gold standard (subsection Gold standard). In effect,

our goal is to find the estimation procedure that best approximates this out-of-sample

performance.

Throughout our experiments we use only one training algorithm (subsection Data and

models), and two performance measures (subsection Performance measures). During training,

the performance of the trained model can be estimated only on the in-sample data. However,

there are different estimation procedures which yield these approximations. In machine learn-

ing, a standard procedure is cross-validation, while for time-ordered data, sequential valida-

tion is typically used. In this study, we compare three variants of cross-validation and three

variants of sequential validation (subsection Estimation procedures). The goal is to find the in-

sample estimation procedure that best approximates the out-of-sample gold standard. The

error an estimation procedure makes is defined as the difference to the gold standard.

Data and models

We collected a large corpus of nearly 1.5 million Twitter posts written in 13 European lan-

guages. This is, to the best of our knowledge, by far the largest set of sentiment labeled tweets

publicly available. We engaged native speakers to label the tweets based on the sentiment

expressed in them. The sentiment label has three possible values: negative, neutral or positive.

It turned out that the human annotators perceived the values as ordered. The quality of anno-

tations varies though, and is estimated from the self- and inter-annotator agreements. All the

details about the datasets, the annotator agreements, and the ordering of sentiment values are
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in our previous study [23]. The sentiment distribution and quality of individual language data-

sets is in Table 1. The tweets in the datasets are ordered by tweet ids, which corresponds to

ordering by the time of posting.

There are many supervised machine learning algorithms suitable for training sentiment

classification models from labeled tweets. In this study we use a variant of Support Vector

Machine (SVM) [24]. The basic SVM is a two-class, binary classifier. In the training phase,

SVM constructs a hyperplane in a high-dimensional vector space that separates one class from

the other. In the classification phase, the side of the hyperplane determines the class. A two-

class SVM can be extended into a multi-class classifier which takes the ordering of sentiment

values into account, and implements ordinal classification [25]. Such an extension consists of

two SVM classifiers: one classifier is trained to separate the negative examples from the neu-

tral-or-positives; the other separates the negative-or-neutrals from the positives. The result is a

classifier with two hyperplanes, which partitions the vector space into three subspaces: nega-

tive, neutral, and positive. During classification, the distances from both hyperplanes deter-

mine the predicted class. A further refinement is a TwoPlaneSVMbin classifier. It partitions

the space around both hyperplanes into bins, and computes the distribution of the training

examples in individual bins. During classification, the distances from both hyperplanes deter-

mine the appropriate bin, but the class is determined as the majority class in the bin.

The vector space is defined by the features extracted from the Twitter posts. The posts are

first pre-processed by standard text processing methods, i.e., tokenization, stemming/lemmati-

zation (if available for a specific language), unigram and bigram construction, and elimination

of terms that do not appear at least 5 times in a dataset. The Twitter specific pre-processing is

then applied, i.e, replacing URLs, Twitter usernames and hashtags with common tokens, add-

ing emoticon features for different types of emoticons in tweets, handling of repetitive letters,

etc. The feature vectors are then constructed by the Delta TF-IDF weighting scheme [26].

In our previous study [23] we compared five variants of the SVM classifiers and Naive

Bayes on the Twitter sentiment classification task. TwoPlaneSVMbin was always between the

top, but statistically indistinguishable, best performing classifiers. It turned out that monitor-

ing the quality of the annotation process has much larger impact on the performance than the

Table 1. Sentiment label distribution of Twitter datasets in 13 languages. The last column is a qualitative assessment of the annotation quality, based on the levels of the

self- and inter-annotator agreement.

Language Negative Neutral Positive Total Quality

Albanian alb 7,062 15,066 23,630 45,758 poor

Bulgarian bul 14,374 28,961 19,932 63,267 fair

English eng 23,250 38,457 25,721 87,428 v.good

German ger 19,039 52,166 26,743 97,948 fair

Hungarian hun 9,062 17,833 30,410 57,305 good

Polish pol 59,027 48,658 84,245 191,930 good

Portuguese por 56,008 53,026 43,009 152,043 fair

Russian rus 30,249 37,401 25,671 93,321 good

Ser/Cro/Bos scb 58,796 61,265 73,766 193,827 fair

Slovak slk 15,060 13,112 30,598 58,770 good

Slovenian slv 34,164 48,458 30,210 112,832 good

Spanish spa 27,675 88,481 117,048 233,204 poor

Swedish swe 22,381 15,387 13,630 51,398 good

Total 376,147 518,271 544,613 1,439,031

https://doi.org/10.1371/journal.pone.0194317.t001
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type of the classifier used. In this study we fix the classifier, and use TwoPlaneSVMbin in all

the experiments.

Performance measures

Sentiment values are ordered, and distribution of tweets between the three sentiment classes is

often unbalanced. In such cases, accuracy is not the most appropriate performance measure [8,

23]. In this context, we evaluate performance with the following two metrics: Krippendorff’s

Alpha [27], and F1 [28].

Alpha was developed to measure the agreement between human annotators, but can also be

used to measure the agreement between classification models and a gold standard. It general-

izes several specialized agreement measures, takes ordering of classes into account, and

accounts for the agreement by chance. Alpha is defined as follows:

Alpha ¼ 1 �
Do

De
ð1Þ

where Do is the observed disagreement between models, and De is a disagreement, expected by

chance. When models agree perfectly, Alpha = 1, and when the level of agreement equals the

agreement by chance, Alpha = 0. Note that Alpha can also be negative. The two disagreement

measures are defined as:

Do ¼
1

N

X

c;c0
Nðc; c0Þ � d2

ðc; c0Þ ; ð2Þ

De ¼
1

NðN � 1Þ

X

c;c0
NðcÞ � Nðc0Þ � d2

ðc; c0Þ : ð3Þ

The arguments, N, N(c, c0), N(c), and N(c0), refer to the frequencies in a coincidence matrix,

defined below. c (and c0) is a discrete sentiment variable with three possible values: negative
(−1), neutral (0), or positive (+1). δ(c, c0) is a difference function between the values of c and c0,
for ordered variables defined as:

dðc; c0Þ ¼ jc � c0j c; c0 2 f� 1; 0;þ1g : ð4Þ

Note that disagreements Do and De between the extreme classes (negative and positive) are

four times larger than between the neighbouring classes.

A coincidence matrix tabulates all pairable values of c from two models. In our case, we

have a 3-by-3 coincidence matrix, and compare a model to the gold standard. The coincidence

matrix is then the sum of the confusion matrix and its transpose. Each labeled tweet is entered

twice, once as a (c, c0) pair, and once as a (c0, c) pair. N(c, c0) is the number of tweets labeled by

the values c and c0 by different models, N(c) and N(c0) are the totals for each value, and N is the

grand total.

F1 is an instance of the F score, a well-known performance measure in information retrieval

[29] and machine learning. We use an instance specifically designed to evaluate the 3-class sen-

timent models [28]. F1 is defined as follows:

F1¼
F1ð� 1Þ þ F1ðþ1Þ

2
: ð5Þ

F1 implicitly takes into account the ordering of sentiment values, by considering only the

extreme labels, negative (−1) and positive (+1). The middle, neutral, is taken into account only
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indirectly. F1(c) is the harmonic mean of precision and recall for class c, c 2 {−1, +1}. F1¼ 1

implies that all negative and positive tweets were correctly classified, and as a consequence, all

neutrals as well. F1¼ 0 indicates that all negative and positive tweets were incorrectly classi-

fied. F1 does not account for correct classification by chance.

Gold standard

We create the gold standard results by splitting the data into the in-sample datasets (abbrevi-

ated as in-set), and out-of-sample datasets (abbreviated as out-set). The terminology of the in-

and out-set is adopted from Bergmeir et al. [12]. Tweets are ordered by the time of posting. To

emulate a realistic scenario, an out-set always follows the in-set. From each language dataset

(Table 1) we create L in-sets of varying length in multiples of 10,000 consecutive tweets, where

L = bN/10000c. The out-set is the subsequent 10,000 consecutive tweets, or the remainder at

the end of each language dataset. This is illustrated in Fig 1.

The partitioning of the language datasets results in 138 in-sets and corresponding out-sets.

For each in-set, we train a TwoPlaneSVMbin sentiment classification model, and measure its

performance, in terms of Alpha and F1, on the corresponding out-set. The results are in Tables

2 and 3. Note that the performance measured by Alpha is considerably lower in comparison to

F1, since the baseline for Alpha is classification by chance.

The 138 in-sets are used to train sentiment classification models and estimate their perfor-

mance. The goal of this study is to analyze different estimation procedures in terms of how

well they approximate the out-set gold standard results shown in Tables 2 and 3.

Estimation procedures

There are different estimation procedures, some more suitable for static data, while others are

more appropriate for time-series data. Time-ordered Twitter data shares some properties of

both types of data. When training an SVM model, the order of tweets is irrelevant and the

model does not capture the dynamics of the data. When applying the model, however, new

tweets might introduce new vocabulary and topics. As a consequence, the temporal ordering

of training and test data has a potential impact on the performance estimates.

We therefore compare two classes of estimation procedures. Cross-validation, commonly

used in machine learning for model evaluation on static data, and sequential validation, com-

monly used for time-series data. There are many variants and parameters for each class of pro-

cedures. Our datasets are relatively large and an application of each estimation procedure

Fig 1. Creation of the estimation and gold standard data. Each labeled language dataset (Table 1) is partitioned into L in-sets and corresponding out-

sets. The in-sets always start at the first tweet and are progressively longer in multiples of 10,000 tweets. The corresponding out-set is the subsequent

10,000 consecutive tweets, or the remainder at the end of the language dataset.

https://doi.org/10.1371/journal.pone.0194317.g001
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takes several days to complete. We have selected three variants of each procedure to provide

answers to some relevant questions.

First, we apply 10-fold cross-validation where the training:test set ratio is always 9:1. Cross-

validation is stratified when the fold partitioning is not completely random, but each fold has

roughly the same class distribution. We also compare standard random selection of examples

to the blocked form of cross-validation [12, 17], where each fold is a block of consecutive

tweets. We use the following abbreviations for cross-validations:

• xval(9:1, strat, block) - 10-fold, stratified, blocked;

• xval(9:1, no-strat, block) - 10-fold, not stratified, blocked;

• xval(9:1, strat, rand) - 10-fold, stratified, random selection of examples.

In sequential validation, a sample consists of the training set immediately followed by the

test set. We vary the ratio of the training and test set sizes, and the number and distribution of

samples taken from the in-set. The number of samples is 10 or 20, and they are distributed equi-

distantly or semi-equidistantly. In all variants, samples cover the whole in-set, but they are over-

lapping. See Fig 2 for illustration. We use the following abbreviations for sequential validations:

• seq(9:1, 20, equi) - 9:1 training:test ratio, 20 equidistant samples,

• seq(9:1, 10, equi) - 9:1 training:test ratio, 10 equidistant samples,

• seq(2:1, 10, semi-equi) - 2:1 training:test ratio, 10 samples randomly selected out of 20 equi-

distant points.

Table 2. Gold standard performance results as measured by Alpha. The baseline, Alpha = 0, indicates classification by chance.

alb bul eng ger hun pol por rus scb slk slv spa swe

0.210 0.321 0.414 0.391 0.419 0.409 0.338 0.369 0.275 0.367 0.327 0.171 0.470

0.102 0.324 0.433 0.420 0.453 0.432 0.336 0.420 0.393 0.411 0.380 0.222 0.463

0.084 0.339 0.449 0.423 0.482 0.479 0.360 0.441 0.408 0.425 0.414 0.255 0.458

0.106 0.363 0.474 0.416 0.460 0.499 0.428 0.435 0.457 0.438 0.439 0.269 0.473

0.375 0.513 0.387 0.475 0.486 0.183 0.478 0.421 0.454 0.453 0.211 0.480

0.397 0.513 0.403 0.487 0.176 0.452 0.327 0.478 0.227

0.541 0.406 0.483 0.224 0.492 0.293 0.455 0.226

0.526 0.354 0.512 0.333 0.474 0.341 0.418 0.227

0.351 0.467 0.388 0.489 0.358 0.425 0.151

0.513 0.409 0.384 0.418 0.193

0.491 0.425 0.382 0.320 0.196

0.526 0.434 0.485 0.220

0.549 0.439 0.528 0.233

0.535 0.453 0.551 0.207

0.541 0.472 0.512 0.202

0.500 0.533 0.179

0.544 0.418 0.159

0.532 0.514 0.207

0.528 0.479 0.216

0.251

0.241

0.110

0.142

https://doi.org/10.1371/journal.pone.0194317.t002
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Results and discussion

We compare six estimation procedures in terms of different types of errors they incur. The

error is defined as the difference to the gold standard. First, the magnitude and sign of the

errors show whether a method tends to underestimate or overestimate the performance, and

by how much (subsection Median errors). Second, relative errors give fractions of small, mod-

erate, and large errors that each procedure incurs (subsection Relative errors). Third, we rank

the estimation procedures in terms of increasing absolute errors, and estimate the significance

of the overall ranking by the Friedman-Nemenyi test (subsection Friedman test). Finally,

selected pairs of estimation procedures are compared by the Wilcoxon signed-rank test (sub-

section Wilcoxon test).

Median errors

An estimation procedure estimates the performance (abbreviated Est) of a model in terms of

Alpha and F1. The error it incurs is defined as the difference to the gold standard performance

(abbreviated Gold): Err = Est − Gold. The validation results show high variability of the errors,

with skewed distribution and many outliers. Therefore, we summarize the errors in terms of

their medians and quartiles, instead of the averages and variances.

The median errors of the six estimation procedures are in Tables 4 and 5, measured by

Alpha and F1, respectively.

Fig 3 depicts the errors with box plots. The band inside the box denotes the median, the

box spans the second and third quartile, and the whiskers denote 1.5 interquartile range. The

Table 3. Gold standard performance results as measured by F1. The baseline, F1¼ 0, indicates that all negative and positive examples are classified incorrectly.

alb bul eng ger hun pol por rus scb slk slv spa swe

0.479 0.509 0.545 0.578 0.610 0.621 0.356 0.551 0.492 0.616 0.485 0.436 0.627

0.396 0.501 0.567 0.595 0.624 0.632 0.358 0.560 0.569 0.657 0.533 0.452 0.620

0.387 0.498 0.571 0.588 0.637 0.653 0.383 0.572 0.577 0.669 0.567 0.504 0.629

0.388 0.510 0.595 0.561 0.628 0.670 0.449 0.571 0.626 0.670 0.593 0.473 0.630

0.513 0.634 0.533 0.640 0.651 0.243 0.604 0.580 0.675 0.603 0.446 0.658

0.535 0.640 0.537 0.663 0.252 0.588 0.485 0.624 0.454

0.654 0.529 0.656 0.322 0.617 0.469 0.550 0.440

0.647 0.409 0.682 0.448 0.610 0.493 0.521 0.438

0.413 0.654 0.529 0.614 0.503 0.524 0.429

0.672 0.556 0.526 0.507 0.424

0.659 0.589 0.573 0.415 0.412

0.680 0.605 0.654 0.407

0.696 0.608 0.686 0.431

0.679 0.624 0.696 0.398

0.682 0.638 0.665 0.403

0.650 0.684 0.402

0.670 0.644 0.390

0.663 0.661 0.446

0.663 0.625 0.479

0.516

0.516

0.423

0.449

https://doi.org/10.1371/journal.pone.0194317.t003
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dots correspond to the outliers. Fig 3 shows high variability of errors for individual datasets.

This is most pronounced for the Serbian/Croatian/Bosnian (scb) and Portuguese (por) data-

sets where variation in annotation quality (scb) and a radical topic shift (por) were observed.

Higher variability is also observed for the Spanish (spa) and Albanian (alb) datasets, which

have poor sentiment annotation quality (see [23] for details).

The differences between the estimation procedures are easier to detect when we aggregate

the errors over all language datasets. The results are in Figs 4 and 5, for Alpha and F1, respec-

tively. In both cases we observe that the cross-validation procedures (xval) consistently overes-

timate the performance, while the sequential validations (seq) underestimate it. The largest

overestimation errors are incurred by the random cross-validation, and the largest underesti-

mations by the sequential validation with the training:test set ratio 2:1. We also observe high

variability of errors, with many outliers. The conclusions are consistent for both measures,

Alpha and F1.

Fig 2. Sampling of an in-set for sequential validation. A sample consists of a training set, immediately followed by a test set. We consider two

scenarios: (A) The ratio of the training and test set is 9:1, and the sample is shifted along 10 or 20 equidistant points. (B) The training:test set ratio is 2:1

and the sample is positioned at 10 randomly selected points out of 20 equidistant points.

https://doi.org/10.1371/journal.pone.0194317.g002
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Relative errors

Another useful analysis of estimation errors is provided by a comparison of relative errors.

The relative error is the absolute error an estimation procedure incurs divided by the gold

standard result: RelErr = |Est − Gold|/Gold. We chose two, rather arbitrary, thresholds of 5%

and 30%, and classify the relative errors as small (RelErr< 5%), moderate (5%� RelErr�
30%), and large (RelErr> 30%).

Fig 6 shows the proportion of the three types of errors, measured by Alpha, for individual

language datasets. Again, we observe a higher proportion of large errors for languages with

poor annotations (alb, spa), annotations of different quality (scb), and different topics (por).

Figs 7 and 8 aggregate the relative errors across all the datasets, for Alpha and F1, respec-

tively. The proportion of errors is consistent between Alpha and F1, but there are more large

errors when the performance is measured by Alpha. This is due to smaller error magnitude

Table 4. Median errors, measured by Alpha, for individual language datasets and six estimation procedures.

Lang xval(9:1, strat, block) xval(9:1, no-strat, block) xval(9:1, strat, rand) seq(9:1, 20, equi) seq(9:1, 10, equi) seq(2:1,10, semi-equi)

alb 0.052 0.036 0.206 0.001 0.001 0.001

bul 0.009 0.013 0.046 −0.019 −0.025 −0.043

eng −0.016 −0.017 −0.010 −0.040 −0.042 −0.039

ger 0.037 0.049 0.059 0.009 0.010 0.001

hun 0.009 0.013 0.025 −0.011 −0.007 −0.007

pol 0.011 0.016 0.054 −0.020 −0.017 −0.031

por −0.048 −0.048 −0.015 −0.040 −0.045 −0.085

rus 0.008 0.008 0.029 −0.027 −0.029 −0.045

scb −0.046 −0.051 0.026 −0.047 −0.043 −0.069

slk 0.018 0.015 0.055 −0.025 −0.023 −0.039

slv 0.003 −0.004 0.040 −0.029 −0.026 −0.031

spa −0.008 0.031 0.070 0.012 0.011 −0.011

swe 0.055 0.057 0.106 0.011 0.006 −0.028

Median 0.009 0.013 0.046 −0.020 −0.023 −0.031

https://doi.org/10.1371/journal.pone.0194317.t004

Table 5. Median errors, measured by F1, for individual language datasets and six estimation procedures.

Lang xval(1.9 strat, block) xval(9:1, no-strat, block) xval(9:1, strat, rand) seq(9:1, 20, equi) seq(9:1, 10, equi) seq(2:1, 10, semi-equi)

alb 0.026 0.016 0.137 −0.014 −0.007 −0.009

bul 0.020 0.024 0.047 0.003 −0.002 −0.019

eng −0.019 −0.020 −0.015 −0.027 −0.027 −0.028

ger 0.056 0.058 0.072 0.025 0.028 0.014

hun 0.022 0.022 0.030 −0.006 −0.009 −0.005

pol 0.013 0.020 0.044 −0.001 0 −0.007

por −0.050 −0.045 −0.040 −0.049 −0.056 −0.092

rus 0.008 0.010 0.025 −0.019 −0.018 −0.021

scb −0.034 −0.037 0 −0.030 −0.032 −0.050

slk 0.005 0.008 0.025 −0.013 −0.015 −0.013

slv 0.003 0 0.029 −0.022 −0.026 −0.032

spa −0.001 0.024 0.060 0.007 0.010 0.012

swe 0.030 0.037 0.071 0.008 0.006 −0.011

Median 0.008 0.016 0.030 −0.013 −0.009 −0.013

https://doi.org/10.1371/journal.pone.0194317.t005
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when the performance is measured by Alpha in contrast to F1, since Alpha takes classification

by chance into account. With respect to individual estimation procedures, there is a consider-

able divergence of the random cross-validation. For both performance measures, Alpha and F1,

it consistently incurs higher proportion of large errors and lower proportion of small errors in

comparison to the rest of the estimation procedures.

Friedman test

The Friedman test is used to compare multiple procedures over multiple datasets [30–33]. For

each dataset, it ranks the procedures by their performance. It tests the null hypothesis that the

average ranks of the procedures across all the datasets are equal. If the null hypothesis is

rejected, one applies the Nemenyi post-hoc test [34] on pairs of procedures. The performance

of two procedures is significantly different if their average ranks differ by at least the critical

difference. The critical difference depends on the number of procedures to compare, the num-

ber of different datasets, and the selected significance level.

In our case, the performance of an estimation procedure is taken as the absolute error it

incurs: AbsErr = |Est − Gold|. The estimation procedure with the lowest absolute error gets the

Fig 3. Box plots of errors of six estimation procedures for 13 language datasets. Errors are measured in terms of Alpha.

https://doi.org/10.1371/journal.pone.0194317.g003
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lowest (best) rank. The results of the Friedman-Nemenyi test are in Figs 9 and 10, for Alpha
and F1, respectively.

For both performance measures, Alpha and F1, the Friedman rankings are the same. For six

estimation procedures, 13 language datasets, and the 5% significance level, the critical differ-

ence is 2.09. In the case of F1 (Fig 10) all six estimation procedures are within the critical differ-

ence, so their ranks are not significantly different. In the case of Alpha (Fig 9), however, the

two best methods are significantly better than the random cross-validation.

Wilcoxon test

The Wilcoxon signed-rank test is used to compare two procedures on related data [33, 35]. It

ranks the differences in performance of the two procedures, and compares the ranks for the

positive and negative differences. Greater differences count more, but the absolute magnitudes

are ignored. It tests the null hypothesis that the differences follow a symmetric distribution

around zero. If the null hypothesis is rejected one can conclude that one procedure outper-

forms the other at a selected significance level.

In our case, the performance of pairs of estimation procedures is compared at the level of

language datasets. The absolute errors of an estimation procedure are averaged across the in-

Fig 4. Box plots of errors of six estimation procedures aggregated over all language datasets. Errors are measured in terms of Alpha.

https://doi.org/10.1371/journal.pone.0194317.g004
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sets of a language. The average absolute error is then AvgAbsErr = ∑|Est − Gold|/L, where L is

the number of in-sets. The results of the Wilcoxon test, for selected pairs of estimation proce-

dures, for both Alpha and F1, are in Fig 11.

The Wilcoxon test results confirm and reinforce the main results of the previous sections.

Among the cross-validation procedures, blocked cross-validation is consistently better than

the random cross-validation, at the 1% significance level. Stratified approach is better than

non-stratified, but significantly (5% level) only for F1. The comparison of the sequential valida-

tion procedures is less conclusive. The training:test set ratio 9:1 is better than 2:1, but signifi-

cantly (at the 5% level) only for Alpha. With the ratio 9:1 fixed, 20 samples yield better

performance estimates than 10 samples, but significantly (5% level) only for F1. We found no

significant difference between the best cross-validation and sequential validation procedures

in terms how well they estimate the average absolute errors.

Data and code availability

All Twitter data were collected through the public Twitter API and are subject to the Twitter

terms and conditions. The Twitter language datasets are available in a public language resource

repository CLARIN.SI at http://hdl.handle.net/11356/1054, and are described in [23]. There are

Fig 5. Box plots of errors of six estimation procedures aggregated over all language datasets. Errors are measured in terms of F1.

https://doi.org/10.1371/journal.pone.0194317.g005
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15 language files, where the Serbian/Croatian/Bosnian dataset is provided as three separate

files for the constituent languages. For each language and each labeled tweet, there is the tweet

ID (as provided by Twitter), the sentiment label (negative, neutral, or positive), and the anno-

tator ID (anonymized). Note that Twitter terms do not allow to openly publish the original

tweets, they have to be fetched through the Twitter API. Precise details how to fetch the tweets,

given tweet IDs, are provided in Twitter API documentation https://developer.twitter.com/en/

docs/tweets/post-and-engage/api-reference/get-statuses-lookup. However, upon request to the

corresponding author, a bilateral agreement on the joint use of the original data can be

reached.

The TwoPlaneSVMbin classifier and several other machine learning algorithms are imple-

mented in an open source LATINO library [36]. LATINO is a light-weight set of software

components for building text mining applications, openly available at https://github.com/

latinolib.

All the performance results, for gold standard and the six estimation procedures, are pro-

vided in a form which allows for easy reproduction of the presented results. The R code and

Fig 6. Proportion of relative errors, measured by Alpha, per estimation procedure and individual language dataset. Small errors (< 5%) are in

blue, moderate ([5, 30]%) in green, and large errors (> 30%) in red.

https://doi.org/10.1371/journal.pone.0194317.g006
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data files needed to reproduce all the figures and tables in the paper are available at http://

ltorgo.github.io/TwitterDS/.

Conclusions

In this paper we present an extensive empirical study about the performance estimation proce-

dures for sentiment analysis of Twitter data. Currently, there is no settled approach on how to

properly evaluate models in such a scenario. Twitter time-ordered data shares some properties

of static data for text mining, and some of time series data. Therefore, we compare estimation

procedures developed for both types of data.

The main result of the study is that standard, random cross-validation should not be used

when dealing with time-ordered data. Instead, one should use blocked cross-validation, a con-

clusion already corroborated by Bergmeir et al. [12, 20]. Another result is that we find no sig-

nificant differences between the blocked cross-validation and the best sequential validation.

However, we do find that cross-validations typically overestimate the performance, while

sequential validations underestimate it.

Fig 7. Proportion of relative errors, measured by Alpha, per estimation procedure and aggregated over all 138 datasets. Small errors (< 5%) are in

blue, moderate ([5, 30]%) in green, and large errors (> 30%) in red.

https://doi.org/10.1371/journal.pone.0194317.g007
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The results are robust in the sense that we use two different performance measures, several

comparisons and tests, and a very large collection of data. To the best of our knowledge, we

analyze and provide by far the largest set of manually sentiment-labeled tweets publicly

available.

Fig 8. Proportion of relative errors, measured by F1, per estimation procedure and aggregated over all 138 datasets. Small errors (< 5%) are in blue,

moderate ([5, 30]%) in green, and large errors (> 30%) in red.

https://doi.org/10.1371/journal.pone.0194317.g008

Fig 9. Ranking of the six estimation procedures according to the Friedman-Nemenyi test. The average ranks are computed from absolute errors,

measured by Alpha. The black bars connect ranks that are not significantly different at the 5% level.

https://doi.org/10.1371/journal.pone.0194317.g009
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There are some biased decisions in our creation of the gold standard though, which limit

the generality of the results reported, and should be addressed in the future work. An out-

set always consists of 10,000 tweets, and immediately follows the in-sets. We do not consider

how the performance drops over longer out-sets, nor how frequently should a model be

updated. More importantly, we intentionally ignore the issue of dependent observations,

between the in- and out-sets, and between the training and test sets. In the case of tweets,

short-term dependencies are demonstrated in the form of retweets and replies. Medium- and

long-term dependencies are shaped by periodic events, influential users and communities, or

Fig 10. Ranking of the six estimation procedures according to the Friedman-Nemenyi test. The average ranks are computed from absolute errors,

measured by F1. The black bar connects ranks that are not significantly different at the 5% level.

https://doi.org/10.1371/journal.pone.0194317.g010

Fig 11. Differences between pairs of estimation procedures according to the Wilcoxon signed-rank test. Compared are the average absolute errors,

measured by Alpha (top) and F1(bottom). Thick solid lines denote significant differences at the 1% level, normal solid lines significant differences at the

5% level, and dashed lines insignificant differences. Arrows point from a procedure which incurs smaller errors to a procedure with larger errors.

https://doi.org/10.1371/journal.pone.0194317.g011
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individual user’s habits. When this is ignored, the model performance is likely overestimated.

Since we do this consistently, our comparative results still hold. The issue of dependent obser-

vations was already addressed for blocked cross-validation [21, 37] by removing adjacent

observations between the training and test sets, thus effectively creating a gap between the two.

Finally, it should be noted that different Twitter language datasets are of different sizes and

annotation quality, belong to different time periods, and that there are time periods in the

datasets without any manually labeled tweets.
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