Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (climate change) .

1 - 10 / 26
First pagePrevious page123Next pageLast page
1.
European genetic resources conservation in a rapidly changing world : three existential challenges for the crop, forest and animal domains in the 21st century
François Lefévre, Danijela Bojkovski, Magda Bou Dagher Kharrat, Michele Bozzano, Eléonore Charvolin-Lemaire, Sipke Joost Hiemstra, Hojka Kraigher, Denis Laloë, Gwendal Restoux, Suzanne Sharrock, Enrico Sturaro, Theo J. L. van Hintum, Marjana Westergren, Nigel Maxted, 2024, original scientific article

Abstract: Even though genetic resources represent a fundamental reservoir of options to achieve sustainable development goals in a changing world, they are overlooked in the policy agenda and severely threatened. The conservation of genetic resources relies on complementary in situ and ex situ approaches appropriately designed for each type of organism. Environmental and socioeconomic changes raise new challenges and opportunities for sustainable use and conservation of genetic resources. Aiming at a more integrated and adaptive approach, European scientists and genetic resources managers with long experience in the agricultural crop, animal and forestry domains joined their expertise to address three critical challenges: (1) how to adapt genetic resources conservation strategies to climate change, (2) how to promote in situ conservation strategies and (3) how can genetic resources conservation contribute to and benefit from agroecological systems. We present here 31 evidence-based statements and 88 key recommendations elaborated around these questions for policymakers, conservation actors and the scientific community. We anticipate that stakeholders in other genetic resources domains and biodiversity conservation actors across the globe will have interest in these crosscutting and multi-actor recommendations, which support several biodiversity conservation policies and practices.
Keywords: agroecology, climate change, in situ conservation, multi-actor engagement, policy
Published in DiRROS: 11.03.2024; Views: 87; Downloads: 44
.pdf Full text (666,43 KB)
This document has many files! More...

2.
A new approach towards a user-driven coastal climate service to enhance climate resilience in European cities
Roberta Paranunzio, Iulia Anton, Elisa Adirosi, Tasneem Ahmed, Luca Baldini, Carlo Brandini, Filippo Giannetti, Cécil J. W. Meulenberg, Alberto Ortolani, Francesco Pilla, 2024, original scientific article

Abstract: Coastal climate services play a crucial role in developing customised climate information for diverse end-users and stakeholders. To build climate-resilient societies, decision-makers should be empowered through easy access to powerful tools that enable timely adaptation to future and ongoing hazards. For this reason, fit-for-purpose climate services are needed to conduct accurate historical characterisation and projections for interpretative studies on climate- and water-related risks at the local coastal scale. The EU-funded SCORE project (Smart Control of Climate Resilience in European Coastal Cities) utilises climate and marine services for the development of smart technologies that support nature-based solutions to address specific concerns, including rising sea levels, coastal erosion, and coastal flooding due to extreme weather events. As part of the SCORE project, decision-makers will be able to address climate change-related coastal effects in their own cities through novel participatory approaches (Coastal City Living Labs—CCLLs). As part of this framework, this work (i) discusses the main requirements for the identification of fit-for-purpose coastal climate services for local-scale impact studies in European coastal cities based on CCLL requests and prior knowledge and (ii) provides relevant parameters and features that fulfil the users’ needs.
Keywords: ecosystem, ecosystem services, climate change adaptation, coastal climate service, urban areas, climate resilience, coastal hazards
Published in DiRROS: 05.01.2024; Views: 187; Downloads: 75
.pdf Full text (1,62 MB)
This document has many files! More...

3.
Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech
Marjana Westergren, Juliette Archambeau, Marko Bajc, Rok Damjanić, Adélaïde Theraroz, Hojka Kraigher, Sylvie Oddou-Muratorio, Santiago C. González-Martínez, 2023, original scientific article

Abstract: Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.
Keywords: climate change, Fagus sylvatica, heritability, in situ adaptation, response to selection, selection gradients
Published in DiRROS: 12.12.2023; Views: 174; Downloads: 77
.pdf Full text (6,82 MB)
This document has many files! More...

4.
5.
Forest commons responded efficiently - do we understand why?
Nevenka Bogataj, Janez Krč, 2023, published scientific conference contribution

Keywords: harvesting, natural disturbances, climate change effects, forest management, Slovenia
Published in DiRROS: 06.10.2023; Views: 210; Downloads: 78
.pdf Full text (116,68 KB)

6.
Family forestry issues in climate change mitigation contract policies
Jussi Leppänen, Emmi Haltia, 2023, published scientific conference contribution

Keywords: family forestry, climate change mitigation, contracts, choice experiment, informations, intergenerationality
Published in DiRROS: 06.10.2023; Views: 214; Downloads: 102
.pdf Full text (90,15 KB)

7.
Atmosphere–cryosphere interactions during the last phase of the Last Glacial Maximum (21 ka) in the European Alps
Costanza Del Gobbo, Renato R. Colucci, Giovanni Monegato, Manja Žebre, Filippo Giorgi, 2023, original scientific article

Abstract: Evidence that during the Last Glacial Maximum (LGM) glaciers extended well into the piedmont plains is still identifiable in the alpine foreland as a system of well-preserved moraines. Glaciers are strongly controlled by temperature and precipitation, and therefore, they are excellent indicators of climate change. Here, we use a regional climate model (RCM) to investigate some of the physical processes sustaining Alpine glaciers during the last phase of the LGM during Greenland Stadial 2 at 21 ka. We find a predominance of convection during summer and increased southwesterly stratiform precipitation over the southern Alps when compared to pre-industrial (PI) conditions. This precipitation pattern, along with lower temperatures, determined summer snowfall extending to low elevations, with a consequent substantial drop of the equilibrium line altitude (ELA), which is consistent with the estimated LGM glacier extent. Our RCM-based estimates of 21 ka ELA at the LGM yield excellent consistency with Alpine ELA reconstructions, further demonstrating the great potential of this technique for use in palaeoclimate studies.
Keywords: Quaternary, ice age, atmosphere, glaciers, climate change, the Alps
Published in DiRROS: 19.09.2023; Views: 325; Downloads: 111
.pdf Full text (10,56 MB)

8.
The potential global distribution of an emerging forest pathogen, Lecanosticta acicola, under a changing climate
Nikica Ogris, Rein Drenkhan, Petr Vahalík, Thomas L. Cech, Martin Mullett, Katherine Tubby, 2023, original scientific article

Abstract: Brown spot needle blight (BSNB), caused by Lecanosticta acicola (Thüm.) Syd., is an emerging forest disease of Pinus species originating from North America and introduced to Europe and Asia. Severity and spread of the disease has increased in the last two decades in North America and Europe as a response to climate change. No modeling work on spread, severity, climatic suitability, or potential distribution has been done for this important emerging pathogen. This study utilizes a global dataset of 2,970 independent observations of L. acicola presence and absence from the geodatabase, together with Pinus spp. distribution data and 44 independent climatic and environmental variables. The objectives were to (1) identify which bioclimatic and environmental variables are most influential in the distribution of L. acicola; (2) compare four modeling approaches to determine which modeling method best fits the data; (3) examine the realized distribution of the pathogen under climatic conditions in the reference period (1971–2000); and (4) predict the potential future global distribution of the pathogen under various climate change scenarios. These objectives were achieved using a species distribution modeling. Four modeling approaches were tested: regression-based model, individual classification trees, bagging with three different base learners, and random forest. Altogether, eight models were developed. An ensemble of the three best models was used to make predictions for the potential distribution of L. acicola: bagging with random tree, bagging with logistic model trees, and random forest. Performance of the model ensemble was very good, with high precision (0.87) and very high AUC (0.94). The potential distribution of L. acicola was computed for five global climate models (GCM) and three combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (SSP-RCP): SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5. The results of the five GCMs were averaged on combined SSP-RCP (median) per 30-year period. Eight of 44 studied factors determined as most important in explaining L. acicola distribution were included in the models: mean diurnal temperature range, mean temperature of wettest quarter, precipitation of warmest quarter, precipitation seasonality, moisture in upper portion of soil column of wettest quarter, surface downwelling longwave radiation of driest quarter, surface downwelling shortwave radiation of warmest quarter and elevation. The actual distribution of L. acicola in the reference period 1971–2000 covered 5.9% of Pinus spp. area globally. However, the model ensemble predicted potential distribution of L. acicola to cover an average of 58.2% of Pinus species global cover in the reference period. Different climate change scenarios (five GCMs, three SSP-RCPs) showed a positive trend in possible range expansion of L. acicola for the period 1971–2100. The average model predictions toward the end of the century showed the potential distribution of L. acicola rising to 62.2, 61.9, 60.3% of Pinus spp. area for SSP1-RCP2.6, SSP2-RCP4.5, SSP5-RCP8.5, respectively. However, the 95% confidence interval encompassed 35.7–82.3% of global Pinus spp. area in the period 1971–2000 and 33.6–85.8% in the period 2071–2100. It was found that SSP-RCPs had a little effect on variability of BSNB potential distribution (60.3–62.2% in the period 2071–2100 for medium prediction). In contrast, GCMs had vast impact on the potential distribution of L. acicola (33.6–85.8% of global pines area). The maps of potential distribution of BSNB will assist forest managers in considering the risk of BSNB. The results will allow practitioners and policymakers to focus surveillance methods and implement appropriate management plans.
Keywords: brown spot needle blight, BSNB, pines, species distribution model, climate change, biosecurity
Published in DiRROS: 02.08.2023; Views: 317; Downloads: 199
.pdf Full text (11,59 MB)
This document has many files! More...

9.
Radial increment of beech (Fagus sylvatica L.) Is under a strong impact of climate in the continental biogeographical region of Croatia
Tom Levanič, Damir Ugarković, Ivan Seletković, Mladen Ognjenović, Mia Marušić, Robert Bogdanić, Nenad Potočić, 2023, original scientific article

Abstract: European beech (Fagus sylvatica L.) is an important component of forests in the alpine and continental biogeographical regions of Croatia. This study aimed to (1) analyze the long-term response of beech to climate, (2) identify potentially critical climatic conditions that could negatively affect the radial increment (RI) and vitality of beech, and (3) evaluate differences in the response of beech between the two biogeographical regions in Croatia. We used the 16 × 16 km Croatian ICP Forests Level 1 network. On a total of 25 plots, we cored between 5 and 24 trees for dendrochronological analysis. Tree-ring widths (TRW) were measured and standardized using cubic spline. TRW chronologies for the two regions were calculated and correlated to the temperature and precipitation data and Standardized Precipitation and Evapotranspiration Index (SPEI) using bootstrapped correlations. Continental region precipitation from April to August and alpine region precipitation from June to August were significantly important for RI. Temperature was less important for RI than precipitation in both regions, but the importance of the negative impact of above-average temperatures in the continental region and the positive impact of above-average precipitation in the alpine region has increased over the last two decades. A comparison with the 3-month SPEI confirmed the significant influence of high temperatures and the lack of precipitation in August on the RI of beech trees in both regions.
Keywords: climate change, tree growth, forest productivity, drought, European beech
Published in DiRROS: 28.06.2023; Views: 401; Downloads: 200
.pdf Full text (4,96 MB)
This document has many files! More...

10.
Growth response of European beech (Fagus sylvatica L.) and Silver Fir (Abies alba Mill.) to climate factors along the Carpathian massive
Pia Caroline Adamič, Tom Levanič, Mihail Hanzu, Matjaž Čater, 2023, original scientific article

Abstract: European forests are becoming increasingly threatened by climate change and more frequent droughts. The likely responses of species to climate change will vary, affecting their competitiveness, their existence, and consequently, forest management decisions and measures. We determined the influence of climate on the radial growth of European beech and silver fir along the Carpathians to find similarities between the two species and the main differences. Along the Carpathian Mountains, seven sites with mature fir–beech stands above 800 m above sea level were selected and analyzed. Our study confirmed different responses depending on species and location. A more pronounced response of tree growth to climate was observed on the eastern side of the Carpathians, while it was less expressed or even absent on the southern sites. Both beech and fir show better radial growth with higher precipitation in July and slower growth with higher average and maximum temperatures in June of the current year. Fir demonstrates a positive correlation between radial growth and temperature in winter, while beech demonstrates a negative correlation between radial growth and temperature in summer. In the 1951–1960 decade, the average tree ring widths in fir and beech were largest at the southern sites compared to the other sites, but since 2011, the southern sites have had the lowest increase while northern sites have had the largest. Both species respond differently to climate and are likely to follow different competitive paths in the future.
Keywords: climate change, dendrochronology, radial growth response, meteorological parameters
Published in DiRROS: 28.06.2023; Views: 430; Downloads: 271
.pdf Full text (7,44 MB)
This document has many files! More...

Search done in 0.33 sec.
Back to top