Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "polno besedilo" .

Iskanje brez iskalnega niza vrača največ 500 zadetkov!

491 - 500 / 500
Na začetekNa prejšnjo stran41424344454647484950Na naslednjo stranNa konec
491.
Influence of oil viscosity on the tribological behavior of a laser-textured Ti6Al4V alloy
Marjetka Conradi, Aleksandra Kocijan, Bojan Podgornik, 2023, izvirni znanstveni članek

Povzetek: Laser texturing with a dimple pattern was applied to modify a Ti6Al4V alloy at the micro level, aiming to improve its friction and wear resistance in combination with oil lubrication to optimize the performance in demanding industrial environments. The tribological analysis was performed on four different dimple-textured surfaces with varying dimple size and dimple-to-dimple distance and under lubrication with three different oils, i.e., T9, VG46, and VG100, to reflect the oil viscosity’s influence on the friction/wear of the laser-textured Ti6Al4V alloy. The results show that the surfaces with the highest texture density showed the most significant COF reduction of around 10% in a low-viscosity oil (T9). However, in high-viscosity oils (VG46 and VG100), the influence of the laser texturing on the COF was less pronounced. A wear analysis revealed that the laser texturing intensified the abrasive wear, especially on surfaces with a higher texture density. For low-texturing-density surfaces, less wear was observed for low- and medium-viscosity oils (T9 and VG46). For medium-to-high-texturing densities, the high-viscosity oil (VG100) provided the best contact conditions and wear results. Overall, reduced wear, even below the non-texturing case, was observed for sample 50–200 in VG100 lubrication, indicating the combined effect of oil reservoirs and increased oil-film thickness within the dimples due to the high viscosity.
Ključne besede: oil lubrication, surface modification, Ti-based alloy, tribology
Objavljeno v DiRROS: 01.02.2024; Ogledov: 131; Prenosov: 45
.pdf Celotno besedilo (4,00 MB)
Gradivo ima več datotek! Več...

492.
493.
494.
495.
496.
497.
498.
Effect of sucrose concentration on streptococcus mutans adhesion to dental material surfaces
Anamarija Zore, Franc Rojko, Nives Matijaković Mlinarić, Jona Veber, Aleksander Učakar, Roman Štukelj, Andreja Pondelak, Andrijana Sever Škapin, Klemen Bohinc, 2024, izvirni znanstveni članek

Povzetek: Enamel demineralization, known as dental caries, is instigated by the bacterium Streptococcus mutans, which generates acid during carbohydrate metabolism. Among carbohydrates, sucrose is the most cariogenic and capable of biofilm formation. This study aimed to explore and comprehend Streptococcus mutans’ adherence to two prevalent dental material surfaces, i.e., a cobalt–chromium(Co-Cr) alloy and a resin-based composite, under the influence of various sucrose concentrations. To understand bacterial adhesion, the surfaces were characterized using profilometry, tensiometry, and surface charge measurements. Bacterial adhesion was evaluated using scanning electron microscopy and crystal violet dye methods. Results revealed that the composite surface exhibited greater rough-ness compared with the Co-Cr alloy surface. Both surfaces displayed hydrophilic properties and a negative surface charge. Bacterial adhesion experiments indicated lower bacterial adherence to the Co-Cr alloy than to the composite surface before the addition of sucrose. However, the introduction of sucrose resulted in biofilm development on both surfaces, showcasing a similar increase in bacterial adhesion, with the highest levels being observed at a 5% sucrose concentration in the bacterial suspension. In conclusion, the findings suggest sucrose-rich foods could facilitate bacterial adaptation despite less favorable surface characteristics, thereby promoting biofilm formation.
Ključne besede: bacterial adhesion, streptococcus mutans, dental material surfaces, sucrose concentration
Objavljeno v DiRROS: 31.01.2024; Ogledov: 127; Prenosov: 52
.pdf Celotno besedilo (4,28 MB)
Gradivo ima več datotek! Več...

499.
The influence of different fibres quantity on mechanical and microstructural properties of alkali-activated foams
Katja Traven, Mark Češnovar, Barbara Horvat, Vilma Ducman, 2022, objavljeni znanstveni prispevek na konferenci

Povzetek: Alkali activated foams (AAFs) were produced using electric arc furnace steel slag (EAF) and ladle furnace basic slag (LS), obtained from two metallurgical companies in Slovenia. They were activated with a mixture of sodium water glass (Na2SiO3) and solid NaOH and foamed with hydrogen peroxide (H2O2). Pores were stabilized with the addition of Triton as a surfactant. Four types of fibres were added to the studied mixture (polypropylene (PP), polyvinyl-alcohol (PVA), basalt (B), and glass wool (GW)) in five different quantities: 0.5, 1.0, 1.25, 1.5 and 2.0 vol % in order to additionally stabilize the structure and thus improve its mechanical properties. The results of mechanical properties showed, that compressive strength was increased in all 20 specimens, partially due to the increased density as well as to the fibre addition. Flexural strength on the other hand was the most improved in the samples where PP and PVA fibres were added. The samples with the addition of B and GW fibres on the other hand showed only small or no improvement in flexural strength in comparison to the referenced sample. Additionally, the microstructure of used fibres and selected foams was also investigated by the means of SEM analysis.
Ključne besede: fibers, alkali activated foams, properties
Objavljeno v DiRROS: 31.01.2024; Ogledov: 117; Prenosov: 48
.pdf Celotno besedilo (4,05 MB)
Gradivo ima več datotek! Več...

500.
Bio-solution for global sand crisis and sustainable organic agriculture in desert states
Darina Štyriaková, Iveta Štyriakova, Jaroslav Šuba, Felix Föhre, 2022, objavljeni znanstveni prispevek na konferenci

Povzetek: Sand is an important component of many everyday items, and currently sand is the second most extracted resource on earth after water, but it is not sustainable: we are running out of sand! The black market is booming, and the sand mafia is mining sand at any price. Desert sand is unusable, even Dubai must import it. The smooth surface and iron impurities prevent its industrial use. In this study, bacteria in the bioleaching test attacked the surface of the mineral grains and dissolved impurities including iron through organic acids. Furthermore, the liquid residue containing dissolved iron, organic acids and bacteria stimulated the growth plant what can be a valuable biofertilizer and biostimulant for organic agriculture. Desert states have fertility problems. Despite this, Qatar, for example, is aiming for self-sufficiency in vegetables “in five years”. Results showed that bioleaching combined with magnetic separation resulted in iron removal of 73.23%. The sand after treatment can be suitable to produce clear flat glass, coloured container glass, insulating glass fibres or ceramics. The integrated technology based ecological study revealed overall as utilization potential of the desert sand and the liquid residue could support glass and food production in desert states.
Ključne besede: materials, sand, bioleaching, sustainable organic agriculture, desert states
Objavljeno v DiRROS: 31.01.2024; Ogledov: 155; Prenosov: 92
.pdf Celotno besedilo (443,33 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 1.65 sek.
Na vrh