Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "ključne besede" (canopy gap) .

1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Water regulation ecosystem services following gap formation in Fir-beech forests in the Dinaric Karst
Urša Vilhar, 2021, izvirni znanstveni članek

Povzetek: This paper investigates how variation in forest structural characteristics affects the water retention capacity of gaps and forests in fir-beech forests in the Dinaric Karst. Forests are identified as a key element of the landscape for provision of pristine water resources, particularly in highly vulnerable karst aquifers characterized by rapid infiltration of recharge water, high subsurface permeability, and heterogeneous underground flow. Indicators of hydrologic fluxes (drainage flux, canopy interception, transpiration, and soil evaporation) in a large experimental gap (approximately 0.2 ha in size) and those in a nearby old-growth gap were compared over a 13-year period using the Brook90 hydrological model and their structural characteristics were analyzed. In addition, the hydrologic fluxes were also simulated for a managed forest and an old-growth forest for reference. Water regulation capacity was lowest in the experimental gap, where drainage flux accounted for 81% of precipitation and the sum of canopy interception, transpiration, and soil evaporation (evapotranspiration) accounted for 18%. This was followed by the old-growth gap, where drainage flux accounted for 78% of precipitation and evapotranspiration for 23%. Water retention capacity was highest and generally similar for both forests, where 71%72% of annual precipitation drained to the subsurface. The results of this study suggest that the creation of large canopy gaps in fir-beech forests in the Dinaric Karst results in significant and long-lasting reduction in soil and vegetation water retention capacity due to unfavorable conditions for successful natural tree regeneration. For optimal provision of water regulation ecosystem services of forests in the Dinaric Karst, small, irregularly shaped canopy gaps no larger than tree height should be created, mimicking the structural characteristics of naturally occurring gaps in old-growth forests.
Ključne besede: water retention capacity, drainage flux, evapotranspiration, Brook90 hydrological model, experimental canopy gap, old-growth forest
Objavljeno v DiRROS: 05.03.2021; Ogledov: 960; Prenosov: 806
.pdf Celotno besedilo (1,38 MB)
Gradivo ima več datotek! Več...

2.
Evaluating short-term impacts of forest management and microsite conditions on understory vegetation in temperate fir-beech forests : floristic, ecological, and trait-based perspective
Janez Kermavnar, Aleksander Marinšek, Klemen Eler, Lado Kutnar, 2019, izvirni znanstveni članek

Povzetek: Forest understory vegetation is largely influenced by disturbances and given local abiotic conditions. Our research focuses on the early response of understory vegetation to various forest management intensities in Dinaric fir-beech forests in Slovenia: (i) control, (ii) 50% cut of stand growing stock, and (iii) 100% cut of stand growing stock. Apart from identifying overstory removal effects, we were interested in fine-scale variation of understory vegetation and environmental determinants of its species composition. Vegetation was sampled within 27 karst sinkholes, which represent a dominant landform in studied forests. Within each sinkhole, five sampling plots, varying in slope aspect (centre, north, east, south, west), were established (135 in total), where pre-treatment (in 2012) and post-treatment (in 2014) floristic surveys were conducted. The sampled understory species were characterized in terms of Ellenberg's indicator values (EIVs) and plant functional traits (plant height, seed mass, specific leaf area, leaf dry matter content). Diversity metrics (species richness, total cover, Shannon index) increased in plots where the silvicultural measures were applied. Tree species richness also increased in 100% cutting. A redundancy analysis revealed that species composition was related to environmental variables, which are directly influenced by management interventions (overstory canopy cover, microclimate maximum daily temperature, soil properties thickness of organic soil layer) as well as by topographic factors (slope inclination and surface rockiness). EIVs for light were significantly affected by treatment intensity, whereas soil-related EIVs (moisture, reaction, nutrients) depended more on the within-sinkhole position. Canopy gaps, compared with uncut control plots, hosted a higher number of colonizing species with a higher plant height and smaller seeds, while leaf traits did not show a clear response. We found a negative correlation between pre-treatment species (functional) richness and post-treatment shifts in floristic (functional) composition. Plots with higher richness exhibited smaller changes compared with species-poor communities. Incorporating different perspectives, the results of this study offer valuable insights into patterns of understory vegetation response to forest management in fir-beech forests.
Ključne besede: canopy gap, microsite environment, Ellenberg indicator values, plant functional traits, compositional resistance, karst topography, fir-beech forest
Objavljeno v DiRROS: 06.12.2019; Ogledov: 2444; Prenosov: 1522
.pdf Celotno besedilo (1,95 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh