Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (non-native species) .

1 - 10 / 42
First pagePrevious page12345Next pageLast page
1.
ReSurveyEurope : a database of resurveyed vegetation plots in Europe
Ilona Knollová, Milan Chytrý, Helge Bruelheide, Stefan Dullinger, Ute Jandt, Markus Bernhardt-Römermann, Idoia Biurrun, Francesco de Bello, Michael Glaser, Stephan M. Hennekens, Mateja Germ, Aleksandra Golob, Janez Kermavnar, Lado Kutnar, Urban Šilc, 2024, review article

Abstract: Aims We introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions. Results ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun-Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020. Conclusions ReSurveyEurope is a new resource to address a wide range of research questions on fine-scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well-established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.
Keywords: biodiversity, monitoring, species richness, vascular plants, vegetation dynamics
Published in DiRROS: 23.04.2024; Views: 29; Downloads: 4
.pdf Full text (6,59 MB)
This document has many files! More...

2.
Importance of habitat context in modelling risk maps for two established invasive alien plant species : the case of Ailanthus altissima and Phytolacca americana in Slovenia (Europe)
Maarten De Groot, Erika Kozamernik, Janez Kermavnar, Marija Kolšek, Aleksander Marinšek, Andreja Nève Repe, Lado Kutnar, 2024, original scientific article

Abstract: Forests are important ecosystems that face threats from climate change and global environmental shifts, with invasive alien plant species being a significant concern. Some of these invasive species have already become established, while others are in the process of naturalisation. Although forests are a relatively stable ecosystem, extreme weather events increase their vulnerability to change, and clearings left after natural disturbances are particularly susceptible to invasion by alien plant species (IAPS). We created risk maps of two species that have spread rapidly in the last decade: American pokeweed (Phytolacca americana) and the tree of heaven (Ailanthus altissima). We prepared a generalised linear model based on the occurrence data collected within the LIFE ARTEMIS project. Eleven environmental variables were used to determine habitat characteristics. We constructed two models for each species: one covering the entirety of Slovenia and the other specifically for the forested areas in Slovenia, with the latter incorporating forest-specific variables (such as forest sanitation felling and monocultures). We observed the presence of both species at lower altitudes and in close proximity to water sources. American pokeweed tends to occur nearer to railways, while the presence of the tree of heaven is associated with areas lacking carbonate parent material and influenced by land use patterns. In forested areas, the occurrence of American pokeweed is influenced by forest habitat characteristics, such as disturbances caused by extreme weather events or the prevalence of Norway spruce monocultures. In contrast, the occurrence of the tree of heaven is influenced by more general environmental variables, such as altitude and proximity to railways. Consequently, we have generated risk maps for the entirety of Slovenia and separately for forested areas, both of which indicate similar levels of risk, particularly for the tree of heaven. The risk map for American pokeweed highlights numerous vulnerable areas, especially forest edges, which are highly susceptible to invasion. Furthermore, there is a higher likelihood of this species occurring in areas that have undergone sanitation felling. This study suggests that the production of risk maps of IAPS could be improved by focussing on habitat types and taking into account habitat-specific variables. This approach could enhance the early detection and management of these invasive species.
Keywords: American pokeweed, tree of heaven, species distribution modelling, forests, forest disturbance, habitat suitability
Published in DiRROS: 26.03.2024; Views: 97; Downloads: 49
.pdf Full text (1,72 MB)
This document has many files! More...

3.
4.
Citizen science is a vital partnership for invasive alien species management and research
Michael J.O. Pocock, Tim Adriaens, Sandro Bertolino, René Eschen, Franz Essl, Philip E. Hulme, Jonathan M. Jeschke, Helen E. Roy, Heliana Teixeira, Maarten De Groot, 2023, original scientific article

Abstract: Invasive alien species (IAS) adversely impact biodiversity, ecosystem functions and socio-economics. Citizen science can be an effective tool for IAS surveillance, management and research, providing large datasets over wide spatial extents and long time periods, with public participants generating knowledge that supports action. We demonstrate how citizen science has contributed knowledge across the biological invasion process, especially for early detection and distribution mapping. However, we recommend that citizen science could be used more for assessing impacts and evaluating the success of IAS management. Citizen science does have limitations and we explore solutions to two key challenges: ensuring data accuracy and dealing with uneven spatial coverage of potential recorders (which limits the dataset’s ‘fit for purpose’). Greater co-development of citizen science with public stakeholders will help us better realise its potential across the biological invasion process and across ecosystems globally while meeting the needs of participants, local communities, scientists and decision-makers.
Keywords: biosecurity, community science, invasion continuum, invasive alien species, monitoring, volunteers
Published in DiRROS: 25.01.2024; Views: 205; Downloads: 114
.pdf Full text (3,81 MB)
This document has many files! More...

5.
Transnational strategy on the sustainable management and responsible use of non-native trees in the Alpine Space
Katharina Lapin, Anja M. Bindewald, Giuseppe Brundu, Aleksander Marinšek, Debojyoti Chakraborty, Janine Oettel, Janine Oettel, Konrad Heino, Nicola La Porta, Ajša Alagić, 2023, review article

Abstract: Non-native tree species – defined as those species intentionally or unintentionally introduced by humans – have long been a part of the Alpine Space, providing numerous benefits, but also posing a potential threat to native biodiversity and related ecosystem services. Compared to the urban space where non-native trees comprise most tree species, the number of non-native trees in forests and plantations is relatively low. To evaluate potential risks and benefits of non-native trees in the Alpine Space, a transnational strategy for the responsible use and management of non-native trees is needed. The goals of the strategy are to tailor management practices for a sustainable and responsible use or admixture of non-native trees, to reduce the risks connected with the invasive potential of some non-native tree species, to help forests and urban areas to adapt to climate change, and to improve coordination and cooperation regarding best practices between different regions of the Alpine Space. A proposal was developed in a four-step process including expert-based assessment, stakeholder mapping, an extensive data review, and a public consultation. For implementing the strategy fully, strong collaboration among diverse stakeholders is anticipated and robust governance and an adequate long-term and fair funding scheme is needed.
Keywords: adaptive forest management, non-native tree species, Alpine Space, biosecurity, green infrastructure
Published in DiRROS: 19.01.2024; Views: 192; Downloads: 109
.pdf Full text (1,98 MB)
This document has many files! More...

6.
Using the IUCN environmental impact classification for alien taxa to inform decision-making
Sabrina Kumschick, Sandro Bertolino, Tim M. Blackburn, Giuseppe Brundu, Katie E. Costello, Maarten De Groot, Thomas Evans, Belinda Gallardo, Piero Genovesi, Tanushri Govender, 2023, original scientific article

Abstract: The Environmental Impact Classification for Alien Taxa (EICAT) is an important tool for biological invasion policy and management and has been adopted as an International Union for Conservation of Nature (IUCN) standard to measure the severity of environmental impacts caused by organisms living outside their native ranges. EICAT has already been incorporated into some national and local decision-making procedures, making it a particularly relevant resource for addressing the impact of non-native species. Recently, some of the underlying conceptual principles of EICAT, particularly those related to the use of the precautionary approach, have been challenged. Although still relatively new, guidelines for the application and interpretation of EICAT will be periodically revisited by the IUCN community, based on scientific evidence, to improve the process. Some of the criticisms recently raised are based on subjectively selected assumptions that cannot be generalized and may harm global efforts to manage biological invasions. EICAT adopts a precautionary principle by considering a species’ impact history elsewhere because some taxa have traits that can make them inherently more harmful. Furthermore, non-native species are often important drivers of biodiversity loss even in the presence of other pressures. Ignoring the precautionary principle when tackling the impacts of non-native species has led to devastating consequences for human well-being, biodiversity, and ecosystems, as well as poor management outcomes, and thus to significant economic costs. EICAT is a relevant tool because it supports prioritization and management of non-native species and meeting and monitoring progress toward the Kunming–Montreal Global Biodiversity Framework (GBF) Target 6.
Keywords: biological invasions, evidence synthesis, impact assessment, managing invasive species, precautionary principle
Published in DiRROS: 11.12.2023; Views: 251; Downloads: 140
.pdf Full text (537,30 KB)
This document has many files! More...

7.
More losses than gains? : Distribution models predict species-specific shifts in climatic suitability for European beech forest herbs under climate change
Janez Kermavnar, Lado Kutnar, Aleksander Marinšek, 2023, original scientific article

Abstract: Introduction: Herbaceous plant species constitute an essential element of the flora of European beech (Fagus sylvatica) forests. There is increasing evidence that rapidly changing climate is likely to modify the spatial distribution of plant species. However, we lack understanding of the impact that climate change might have on beech forest herbs across the European continent. We investigated the possible effects of predicted increasing rates of global warming and altered precipitation regimes on 71 forest herbs closely associated with beech forests, but with varying biogeographic and climatic niche attributes. Methods: By using a total of 394,502 occurrence records and an ensemble of species distribution models (SDMs), we quantified the potential current distribution and future (2061-2080) range shifts in climatic suitability (expressed as occurrence probability, OP) according to two climate change scenarios (moderate SSP2-4.5 and severe SSP5-8.5). Results: Overall, precipitation of the warmest quarter and temperature seasonality were the most influential predictors in shaping current distribution patterns. For SSP5-8.5 scenario, all studied species experienced significant reductions (52.9% on average) in the total size of highly suitable areas (OP >0.75). However, the magnitude and directions of changes in the climatic suitability were highly species-specific; few species might even increase OP in the future, particularly in case of SSP2-4.5 scenario. The SDMs revealed the most substantial decline of climatic suitability at the trailing edges in southern Europe. We found that climatic suitability is predicted to show unidirectional northward shift and to move toward higher elevations. The gain/loss ratio was generally higher for narrow-ranged species compared to widespread taxa. Discussion: Our findings are contextualized with regards to potential confounding factors (dispersal limitation, microclimatic buffering) that may mitigate or accelerate climate change impacts. Given the low long-distance migration ability, many beech forest herbs are unlikely to track the velocity with which macroclimatic isotherms are moving toward higher latitudes, making this species group particularly vulnerable to climate change.
Keywords: species distribution modelling, global warming, range shift, climatic niche, biogeography, Europe
Published in DiRROS: 29.11.2023; Views: 250; Downloads: 127
.pdf Full text (8,49 MB)
This document has many files! More...

8.
Congruence between vascular plants and bryophytes in response to ecological conditions in sustainably managed temperate forests (taxonomic- and trait-based levels)
Lado Kutnar, Janez Kermavnar, Marko S. Sabovljević, 2023, original scientific article

Abstract: Vascular plant species (VP) and bryophytes (B) constitute a significant portion of forest biodiversity and respond to both management intensity and natural disturbances within forests. In this study, we investigated the cross-taxa congruence between understorey VP and B at both diversity and composition levels across a wide range of sustainably managed forests in Slovenia. The taxonomic and functional characteristics of the selected plant groups were studied, with a particular emphasis on ground-dwelling species. We employed a trait-based approach to examine the functional characteristics. On average, the species richness of B in sustainably managed temperate forests increased with the corresponding number of VP. Furthermore, a moderate positive correlation in species composition between the studied groups of ground-dwelling organisms was also observed. The ground-dwelling VP and B were congruent in terms of trait-based composition, which was influenced by soil reaction and nutrients and light availability, while trait-based diversity was only slightly similar in response to moisture. A negative correlation between the composition of stress-tolerant VP and B hemeroby was found, indicating forest environments with a low level of disturbance. This is likely due to the sustainable management of Slovenian forests, where climate change and natural disturbances have intensified in recent years. A cross-taxon comparison of the two groups at four different levels, namely taxonomic-based diversity and composition and trait-based diversity and composition, revealed varying degrees of congruence. It is therefore important to monitor the status and temporal trends of both groups from different aspects to draw reliable conclusions.
Keywords: understory, mosses, terricolous species, diversity, composition, taxonomy, life-history traits, environmental gradients, managed forest, ICP Forests program, Slovenia
Published in DiRROS: 10.10.2023; Views: 463; Downloads: 172
.pdf Full text (2,04 MB)
This document has many files! More...

9.
The potential global distribution of an emerging forest pathogen, Lecanosticta acicola, under a changing climate
Nikica Ogris, Rein Drenkhan, Petr Vahalík, Thomas L. Cech, Martin Mullett, Katherine Tubby, 2023, original scientific article

Abstract: Brown spot needle blight (BSNB), caused by Lecanosticta acicola (Thüm.) Syd., is an emerging forest disease of Pinus species originating from North America and introduced to Europe and Asia. Severity and spread of the disease has increased in the last two decades in North America and Europe as a response to climate change. No modeling work on spread, severity, climatic suitability, or potential distribution has been done for this important emerging pathogen. This study utilizes a global dataset of 2,970 independent observations of L. acicola presence and absence from the geodatabase, together with Pinus spp. distribution data and 44 independent climatic and environmental variables. The objectives were to (1) identify which bioclimatic and environmental variables are most influential in the distribution of L. acicola; (2) compare four modeling approaches to determine which modeling method best fits the data; (3) examine the realized distribution of the pathogen under climatic conditions in the reference period (1971–2000); and (4) predict the potential future global distribution of the pathogen under various climate change scenarios. These objectives were achieved using a species distribution modeling. Four modeling approaches were tested: regression-based model, individual classification trees, bagging with three different base learners, and random forest. Altogether, eight models were developed. An ensemble of the three best models was used to make predictions for the potential distribution of L. acicola: bagging with random tree, bagging with logistic model trees, and random forest. Performance of the model ensemble was very good, with high precision (0.87) and very high AUC (0.94). The potential distribution of L. acicola was computed for five global climate models (GCM) and three combined pathways of Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathway (SSP-RCP): SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5. The results of the five GCMs were averaged on combined SSP-RCP (median) per 30-year period. Eight of 44 studied factors determined as most important in explaining L. acicola distribution were included in the models: mean diurnal temperature range, mean temperature of wettest quarter, precipitation of warmest quarter, precipitation seasonality, moisture in upper portion of soil column of wettest quarter, surface downwelling longwave radiation of driest quarter, surface downwelling shortwave radiation of warmest quarter and elevation. The actual distribution of L. acicola in the reference period 1971–2000 covered 5.9% of Pinus spp. area globally. However, the model ensemble predicted potential distribution of L. acicola to cover an average of 58.2% of Pinus species global cover in the reference period. Different climate change scenarios (five GCMs, three SSP-RCPs) showed a positive trend in possible range expansion of L. acicola for the period 1971–2100. The average model predictions toward the end of the century showed the potential distribution of L. acicola rising to 62.2, 61.9, 60.3% of Pinus spp. area for SSP1-RCP2.6, SSP2-RCP4.5, SSP5-RCP8.5, respectively. However, the 95% confidence interval encompassed 35.7–82.3% of global Pinus spp. area in the period 1971–2000 and 33.6–85.8% in the period 2071–2100. It was found that SSP-RCPs had a little effect on variability of BSNB potential distribution (60.3–62.2% in the period 2071–2100 for medium prediction). In contrast, GCMs had vast impact on the potential distribution of L. acicola (33.6–85.8% of global pines area). The maps of potential distribution of BSNB will assist forest managers in considering the risk of BSNB. The results will allow practitioners and policymakers to focus surveillance methods and implement appropriate management plans.
Keywords: brown spot needle blight, BSNB, pines, species distribution model, climate change, biosecurity
Published in DiRROS: 02.08.2023; Views: 327; Downloads: 206
.pdf Full text (11,59 MB)
This document has many files! More...

10.
Forest managers’ perspectives on environmental changes in the biosphere reserve Mura-Drava-Danube
Marcus Sallmannshofer, Rok Damjanić, Harald Vacik, Marjana Westergren, Tjaša Baloh, Gregor Božič, Mladen Ivanković, Gyula Kovács, Miran Lanšćak, Katharina Lapin, Laszlo Nagy, Silvija Krajter Ostoić, Saša Orlović, Srđan Stojnić, Peter Železnik, Milica Zlatković, Silvio Schueler, 2023, original scientific article

Abstract: Riparian forests are particularly vulnerable to environmental change and anthropogenic influences because they are highly dynamic ecosystems, thus proper adaptation measures are crucial. The implementation of these measures, however, strongly depends on the actors’ perceptions of the specific problems occurring in such forests. For understanding the constraints of specific interest groups toward different adaptation activities, information in this field is essential. By conducting a questionnaire survey we explore how different types of forest managers, i.e., forestry professionals, forest owners, and conservation managers, perceive the effects of environmental change on forest management in the recently established Transboundary Biosphere Reserve Mura-Drava-Danube. We show that these forest managers are highly aware of ongoing environmental changes and appraise deteriorating forest conditions, especially after observing changes themselves. Abiotic damage is expected to increase the most, followed by biotic damage, the spread of non-native species, and tree dieback. Nearly 80% of the survey respondents expect further changes and almost all of them intend to adapt their management of forests to mitigate or prepare for these changes. Nevertheless, we show differences in sensitivity to change and willingness to initiate adaptation actions by assessing adaptation thresholds: conservation managers appear generally more tolerant to changes, which results in higher thresholds to initiate management adaptation than forestry professionals
Keywords: biosphere reserve Mura-Drava-Danube, forest management, sensitivity to environmental change, stakeholder perception, adaptation thresholds, riparian forest tree species
Published in DiRROS: 31.05.2023; Views: 343; Downloads: 270
.pdf Full text (2,00 MB)
This document has many files! More...

Search done in 0.65 sec.
Back to top