Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (immunotherapy) .

1 - 10 / 16
First pagePrevious page12Next pageLast page
1.
Safety and efficacy of IL-12 plasmid DNA transfection into pig skin : supportive data for human clinical trials on gene therapy and vaccination
Urša Lampreht Tratar, Tanja Jesenko, Maša Omerzel, Alenka Seliškar, Urban Stupan, Mihajlo Djokić, Jerneja Sredenšek, Blaž Trotovšek, Gregor Serša, Maja Čemažar, 2024, original scientific article

Abstract: Gene electrotransfer (GET) of plasmids encoding interleukin 12 (IL-12) has already been used for the treatment of various types of tumors in human oncology and as an adjuvant in DNA vaccines. In recent years, we have developed a plasmid encoding human IL-12 (phIL12) that is currently in a phase I clinical study. The aim was to confirm the results of a non-clinical study in mice on pharmacokinetic characteristics and safety in a porcine model that better resembled human skin. The GET of phIL12 in the skin was performed on nine pigs using different concentrations of plasmid phIL12 and invasive (needle) or noninvasive (plate) types of electrodes. The results of our study demonstrate that the GET of phIL-12 with needle electrodes induced the highest expression of IL-12 at the protein level on day 7 after the procedure. The plasmid was distributed to all tested organs; however, its amount decreased over time and was at a minimum 28 days after GET. Based on plasmid copy number and expression results, together with blood analysis, we showed that IL-12 GET is safe in a porcine animal model. Furthermore, we demonstrated that pigs are a valuable model for human gene therapy safety studies.
Keywords: interleukin 12, gene electrotransfer, immunotherapy
Published in DiRROS: 18.04.2024; Views: 18; Downloads: 10
.pdf Full text (16,83 MB)
This document has many files! More...

2.
Adjuvant TNF-a therapy to electrochemotherapy with intravenous cisplatin in murine sarcoma exerts synergistic antitumor effectiveness
Maja Čemažar, Vesna Todorović, Janez Ščančar, Urša Lampreht Tratar, Monika Savarin, Urška Kamenšek, Simona Kranjc Brezar, Andrej Cör, Gregor Serša, 2015, original scientific article

Abstract: Background. Electrochemotherapy is a tumour ablation modality, based on electroporation of the cell membrane, allowing non-permeant anticancer drugs to enter the cell, thus augmenting their cytotoxicity by orders of magnitude. In preclinical studies, bleomycin and cisplatin proved to be the most suitable for clinical use. Intravenous administration of cisplatin for electrochemotherapy is still not widely accepted in the clinics, presumably due to its lower antitumor effectiveness, but adjuvant therapy by immunomodulatory or vascular-targeting agents could provide a way for its potentiation. Hence, the aim of the present study was to explore the possibility of adjuvant tumour necrosis factor % (TNF-%) therapy to potentiate antitumor effectiveness of electrochemotherapy with intravenous cisplatin administration in murine sarcoma. Materials and methods. In vivo study was designed to evaluate the effect of TNF-% applied before or after the electrochemotherapy and to evaluate the effect of adjuvant TNF-% on electrochemotherapy with different cisplatin doses. Results. A synergistic interaction between TNF-% and electrochemotherapy was observed. Administration of TNF-% before the electrochemotherapy resulted in longer tumour growth delay and increased tumour curability, and was significantly more effective than TNF-% administration after the electrochemotherapy. Tumour analysis revealed increased platinum content in tumours, TNF-% induced blood vessel damage and increased tumour necrosis after combination of TNF-% and electrochemotherapy, indicating an anti-vascular action of TNF-%. In addition, immunomodulatory effect might have contributed to curability rate of the tumours. Conclusion. Adjuvant intratumoural TNF-% therapy synergistically contributes to electrochemotherapy with intravenous cisplatin administration. Due to its potentiation at all doses of cisplatin, the combined treatment is predicted to be effective also in tumours, where the drug concentration is suboptimal or in bigger tumours, where electrochemotherapy with intravenous cisplatin is not expected to be sufficiently effective.
Keywords: electrochemotherapy, TNF, adjuvant immunotherapy, cisplatin
Published in DiRROS: 17.04.2024; Views: 43; Downloads: 5
.pdf Full text (978,26 KB)

3.
Gene immunotherapy of colon carcinoma with IL-2 and IL-12 using gene electrotransfer
Tilen Komel, Maša Omerzel, Urška Kamenšek, Katarina Žnidar, Urša Lampreht Tratar, Simona Kranjc Brezar, Klemen Dolinar, Sergej Pirkmajer, Gregor Serša, Maja Čemažar, 2023, original scientific article

Abstract: Gene immunotherapy has become an important approach in the treatment of cancer. One example is the introduction of genes encoding immunostimulatory cytokines, such as interleukin 2 and interleukin 12, which stimulate immune cells in tumours. The aim of our study was to determine the effects of gene electrotransfer of plasmids encoding interleukin 2 and interleukin 12 individually and in combination in the CT26 murine colon carcinoma cell line in mice. In the in vitro experiment, the pulse protocol that resulted in the highest expression of IL-2 and IL-12 mRNA and proteins was used for the in vivo part. In vivo, tumour growth delay and also complete response were observed in the group treated with the plasmid combination. Compared to the control group, the highest levels of various immunostimulatory cytokines and increased immune infiltration were observed in the combination group. Long-term anti-tumour immunity was observed in the combination group after tumour re-challenge. In conclusion, our combination therapy efficiently eradicated CT26 colon carcinoma in mice and also generated strong anti-tumour immune memory.
Keywords: colon carcinoma, gene electrotransfer, gene immunotherapy
Published in DiRROS: 21.03.2024; Views: 95; Downloads: 47
.pdf Full text (6,92 MB)
This document has many files! More...

4.
Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma
Tilen Komel, Maša Omerzel, Simona Kranjc Brezar, Mariangela De Robertis, M. Mastrodonato, G. Scillitani, G. Pesole, Emanuella Signori, Gregor Serša, Maja Čemažar, 2021, original scientific article

Abstract: Gene therapy has become an important approach for treating cancer, and electroporation represents a technology for introducing therapeutic genes into a cell. An example of cancer gene therapy relying on gene electrotransfer is the use of immunomodulatory cytokines, such as interleukin 2 (IL-2) and 12 (IL-12), which directly stimulate immune cells at the tumour site. The aim of our study was to determine the effects of gene electrotransfer with two plasmids encoding IL-2 and IL-12 in vitro and in vivo. Two different pulse protocols, known as EP1 (600 V/cm, 5 ms, 1 Hz, 8 pulses) and EP2 (1300 V/cm, 100 %s, 1 Hz, 8 pulses), were assessed in vitro for application in subsequent in vivo experiments. In the in vivo experiment, gene electrotransfer of pIL-2 and pIL-12 using the EP1 protocol was performed in B16.F10 murine melanoma. Combined treatment of tumours using pIL2 and pIL12 induced significant tumour growth delay and 71% complete tumour regression. Furthermore, in tumours coexpressing IL-2 and IL-12, increased accumulation of dendritic cells and M1 macrophages was obtained along with the activation of proinflammatory signals, resulting in CD4 + and CD8 + T-lymphocyte recruitment and immune memory development in the mice. In conclusion, we demonstrated high antitumour efficacy of combined IL-2 and IL-12 gene electrotransfer protocols in low-immunogenicity murine B16.F10 melanoma.
Keywords: gene therapy, gene electrotransfer, IL-12, immunotherapy, melanoma
Published in DiRROS: 23.09.2022; Views: 588; Downloads: 178
.pdf Full text (4,12 MB)

5.
Maintenance and gene electrotransfer efficiency of antibiotic resistance gene-free plasmids encoding mouse, canine and human interleukin-12 orthologues
Urška Kamenšek, Andrej Renčelj, Tanja Jesenko, Tinkara Remic, Gregor Serša, Maja Čemažar, 2022, original scientific article

Abstract: Interleukin 12 (IL-12) is a cytokine used as a therapeutic molecule in cancer immunotherapy. Gene electrotransfer mediated delivery of IL-12 gene has reached clinical evaluation in the USA using a plasmid that in addition to IL- 12 gene also carry an antibiotic resistance gene needed for its production in bacteria. In Europe however, Eu- ropean Medicines Agency recommends against the use of antibiotics during the production of clinical grade plasmids. We have prepared several antibiotic resistance gene-free plasmids using an antibiotic-free selection strategy called operator-repressor titration, including plasmids encoding mouse, canine and human IL-12 orthologues. The aim of this study was to evaluate the maintenance of these plasmids in bacterial culture and test their transfection efficiency using gene electrotransfer. Plasmid maintenance was evaluated by determining plasmid yields and topologies after subculturing transformed bacteria. Transfection efficiency was evaluated by determining the plasmid copy number, expression and cytotoxicity after gene electrotransfer to mouse, canine and human melanoma cells. The results demonstrated that our IL-12 plasmids without an antibiotic resistance gene are stably maintained in bacteria and provide sufficient IL-12 expression after in vitro gene electrotransfer; therefore, they have the potential to proceed to further in vivo evaluation studies.
Keywords: electrotransfer, interleukin-12, immunotherapy, mammals
Published in DiRROS: 23.09.2022; Views: 549; Downloads: 255
.pdf Full text (2,13 MB)
This document has many files! More...

6.
BAP1-defficient breast cancer in a patient with BAP1 cancer syndrome
Ana Blatnik, Domen Ribnikar, Vita Šetrajčič Dragoš, Srdjan Novaković, Vida Stegel, Biljana Grčar-Kuzmanov, Nina Boc, Barbara Perić, Petra Škerl, Gašper Klančar, Mateja Krajc, 2022, original scientific article

Abstract: BAP1 cancer syndrome is a rare and highly penetrant hereditary cancer predisposition. Uveal melanoma, mesothelioma, renal cell carcinoma (RCC) and cutaneous melanoma are considered BAP1 cancer syndrome core cancers, whereas association with breast cancer has previously been suggested but not confirmed so far. In view of BAP1 immunomodulatory functions, BAP1 alterations could prove useful as possible biomarkers of response to immunotherapy in patients with BAP1-associated cancers. We present a case of a patient with BAP1 cancer syndrome who developed a metastatic breast cancer with loss of BAP1 demonstrated on immunohistochemistry. She carried a germline BAP1 likely pathogenic variant (c.898_899delAG p.(Arg300Glyfs*6)). In addition, tumor tissue sequencing identified a concurrent somatic variant in BAP1 (partial deletion of exon 12) and a low tumor mutational burden. As her triple negative tumor was shown to be PD-L1 positive, the patient was treated with combination of atezolizumab and nab-paclitaxel. She had a complete and sustained response to immunotherapy even after discontinuation of nab-paclitaxel. This case strengthens the evidence for including breast cancer in the BAP1 cancer syndrome tumor spectrum with implications for future cancer prevention programs. It also indicates immune checkpoint inhibitors might prove to be an effective treatment for BAP1-deficient breast cancer.
Keywords: BAP1, breast cancer, hereditary cancer syndromes, immunotherapy
Published in DiRROS: 19.09.2022; Views: 446; Downloads: 180
.pdf Full text (1,12 MB)

7.
Art v 1 IgE epitopes of patients and humanized mice are conformational
Maja Zabel, Milena Weber, Bernhard Kratzer, Cordula Köhler, Beatrice Jahn-Schmid, Gabriele Gadermaier, Pia Gattinger, Urška Bidovec, Peter Korošec, Ursula Smole, Rudolf Valenta, Winfried F. Pickl, 2022, original scientific article

Abstract: Background: Worldwide, pollen of the weed mugwort (Artemisia vulgaris) is a major cause of severe respiratory allergy, with its major allergen, Art v 1, being the key pathogenic molecule for millions of patients. Humanized mice transgenic for a human T-cell receptor specific for the major Art v 1 T-cell epitope and the corresponding HLA have been made. Objective: We sought to characterize IgE epitopes of Art v 1–sensitized patients and humanized mice for molecular immunotherapy of mugwort allergy. Methods: Four overlapping peptides incorporating surface-exposed amino acids representing the full-length Art v 1 sequence were synthesized and used to search for IgE reactivity to sequential epitopes. For indirect mapping, peptide-specific rabbit antibodies were raised to block IgE against surface-exposed epitopes on folded Art v 1. IgE reactivity and basophil activation studies were performed in clinically defined mugwort-allergic patients. Secondary structure of recombinant (r) Art v 1 and peptides was determined by circular dichroism spectroscopy. Results: Mugwort-allergic patients and humanized mice sensitized by allergen inhalation showed IgE reactivity and/or basophil activation mainly to folded, complete Art v 1 but not to unfolded, sequential peptide epitopes. Blocking of allergic patients’ IgE with peptide-specific rabbit antisera identified a hitherto unknown major conformational IgE binding site in the C-terminal Art v 1 domain. Conclusions: Identification of the new major conformational IgE binding site on Art v 1, which can be blocked with IgG raised against non-IgE reactive Art v 1 peptides, is an important basis for the development of a hypoallergenic peptide vaccine for mugwort allergy.
Keywords: mugwort pollen allergy, IgE epitope, allergen-specific immunotherapy
Published in DiRROS: 31.08.2022; Views: 529; Downloads: 210
URL Link to file

8.
Treatment patterns, testing practices, and outcomes in the pre-FLAURA era for patients with EGFR mutation-positive advanced NSCLC : a retrospective chart review (REFLECT)
Alfredo Addeo, Maximilian J Hochmair, Urška Janžič, Elizabeth Dudnik, Andriani Charpidou, Adam Płużański, Tudor Ciuleanu, Ivan Shterev Donev, Judith Elbaz, Jørgen Aarøe, René Ott, Nir Peled, 2021, original scientific article

Abstract: Background. Immunotherapy with immune checkpoint inhibitors (ICIs) recently became the standard treatment for patients with advanced non-small cell lung cancer (NSCLC). Here, we present the first results of a real-world observational study on the effectiveness of ICI monotherapy in patients with advanced NSCLC treated at a single academic center in a Central and Eastern European (CEE) country. Materials and methods. Overall, 66 consecutive patients with advanced NSCLC treated with ICIs in everyday clinical practice, either with first-line pembrolizumab (26 patients) or second-line atezolizumab, nivolumab, or pembrolizumab (40 patients), from August 2015 to November 2018, were included. All data were retrieved from a hospital lung cancer registry, in which the data is collected prospectively. Results. Included patients had a median age of 64 years, most were male (55%), 6% were in performance status >/=2, and 18% had controlled central nervous system metastases at baseline. In first-line, the median progression-free survival (mPFS) was 9.3 months, while the median overall survival (mOS) was not reached. The 1-year overall survival (OS) was 62%. In second-line, the mPFS and mOS were 3.5 months and 9.9 months, respectively, with a 1-year OS of 35%. In the overall population, adverse events of any grade were recorded in 79% of patients and of severe grade (3-4) in 12% of patients. Conclusion. The first real-world outcomes of NSCLC immunotherapy from a CEE country suggest comparable effectiveness to those observed in clinical trials and other real-world series, mainly coming from North America and Western European countries. Further data to inform on the real-world effectiveness of immunotherapy worldwide are needed.
Keywords: non-small cell lung carcinoma, immunotherapy, advanced non-small cell lung cancer, real-world data, Europe, Central Europe, Eastern Europe
Published in DiRROS: 15.12.2021; Views: 788; Downloads: 414
URL Link to file

9.
Immunotherapy for metastatic non-small cell lung cancer : real-world data from an academic Central and Eastern European center
Marija Ivanović, Lea Knez, Ana Herzog, Mile Kovačević, Tanja Čufer, 2021, original scientific article

Abstract: Background. Immunotherapy with immune checkpoint inhibitors (ICIs) recently became the standard treatment for patients with advanced non-small cell lung cancer (NSCLC). Here, we present the first results of a real-world observational study on the effectiveness of ICI monotherapy in patients with advanced NSCLC treated at a single academic center in a Central and Eastern European (CEE) country. Materials and methods. Overall, 66 consecutive patients with advanced NSCLC treated with ICIs in everyday clinical practice, either with first-line pembrolizumab (26 patients) or second-line atezolizumab, nivolumab, or pembrolizumab (40 patients), from August 2015 to November 2018, were included. All data were retrieved from a hospital lung cancer registry, in which the data is collected prospectively. Results. Included patients had a median age of 64 years, most were male (55%), 6% were in performance status >/=2, and 18% had controlled central nervous system metastases at baseline. In first-line, the median progression-free survival (mPFS) was 9.3 months, while the median overall survival (mOS) was not reached. The 1-year overall survival (OS) was 62%. In second-line, the mPFS and mOS were 3.5 months and 9.9 months, respectively, with a 1-year OS of 35%. In the overall population, adverse events of any grade were recorded in 79% of patients and of severe grade (3-4) in 12% of patients. Conclusion. The first real-world outcomes of NSCLC immunotherapy from a CEE country suggest comparable effectiveness to those observed in clinical trials and other real-world series, mainly coming from North America and Western European countries. Further data to inform on the real-world effectiveness of immunotherapy worldwide are needed.
Keywords: non-small cell lung carcinoma, immunotherapy, advanced non-small cell lung cancer, real-world data, Central Europe, Europe, Eastern Europe
Published in DiRROS: 12.10.2021; Views: 927; Downloads: 283
URL Link to file

10.
Hymenoptera venom immunotherapy : immune mechanisms of induced protection and tolerance
Ajda Demšar, Peter Korošec, Mitja Košnik, Mihaela Zidarn, Matija Rijavec, 2021, review article

Abstract: Hymenoptera venom allergy is one of the most severe allergic diseases, with a considerable prevalence of anaphylactic reaction, making it potentially lethal. In this review, we provide an overview of the current knowledge and recent findings in understanding induced immune mechanisms during different phases of venom immunotherapy. We focus on protection mechanisms that occur early, during the build-up phase, and on the immune tolerance, which occurs later, during and after Hymenoptera venom immunotherapy. The short-term protection seems to be established by the early desensitization of mast cells and basophils, which plays a crucial role in preventing anaphylaxis during the build-up phase of treatment. The early generation of blocking IgG antibodies seems to be one of the main reasons for the lower activation of effector cells. Long-term tolerance is reached after at least three years of venom immunotherapy. A decrease in basophil responsiveness correlates with tolerated sting challenge. Furthermore, the persistent decline in IgE levels and, by monitoring the cytokine profiles, a shift from a Th2 to Th1 immune response, can be observed. In addition, the generation of regulatory T and B cells has proven to be essential for inducing allergen tolerance. Most studies on the mechanisms and effectiveness data have been obtained during venom immunotherapy (VIT). Despite the high success rate of VIT, allergen tolerance may not persist for a prolonged time. There is not much known about immune mechanisms that assure longterm tolerance post-therapy.
Keywords: allergy and immunology, hypersensitivity, immunotherapy, immune tolerance, venoms, Hymenoptera, Hymenoptera venom, short-term protection, long-term tolerance
Published in DiRROS: 16.08.2021; Views: 863; Downloads: 277
URL Link to file

Search done in 0.32 sec.
Back to top