Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (Quercus sp) .

11 - 20 / 47
First pagePrevious page12345Next pageLast page
11.
Turkey oak (Quercus cerris L.) is more drought tolerant and better reflects climate variations compared to pedunculate oak (Quercus robur L.) in lowland mixed forests in northwestern Serbia : ǂa ǂstable carbon isotope ratio (δ13C) and radial growth approach
Saša Kostić, Tom Levanič, Saša Orlović, Bratislav Matović, Dejan Stojanović, 2022, original scientific article

Abstract: Tree-ring width (TRW), stable carbon isotope ratio (δ13C) and intrinsic water use efficiency (iWUE) data set chronologies were built for the period 1961–2000 for two oak species (pedunculate oak – Quercus robur L. and Turkey oak – Quercus cerris L.) in northwestern Serbia (Vojvodina province). We focused on the response of the two oak species to measured meteorological data (temperature, precipitation and cloud cover), drought events expressed by six meteorological drought indices, and river water level to better understand their drought tolerance and stress and to assess the reliability of the species response to climate and drought indices when using TRW or δ13C. Turkey oak exhibited better drought tolerance (and less drought stress) compared to pedunculate oak, as manifested, respectively, by less negative δ13C and lower iWUE values. Based on a generalised additive mixed model (GAMM) among the six drought indices studied, the standardised precipitation evapotranspiration index and the standardised precipitation index showed the best fit with both TRW and δ13C, while the Palmer drought severity index exerted a strong influence only on TRW. It was thus concluded that δ13C responds more strongly and rapidly to climate variations than TRW.
Keywords: dendrochronology, stable carbon isotope, tree ring, Quercus robur, Quercus cerris, drought, climate change
Published in DiRROS: 04.08.2022; Views: 620; Downloads: 463
.pdf Full text (5,19 MB)
This document has many files! More...

12.
13.
14.
15.
16.
17.
18.
19.
20.
Contrasting resource dynamics in mast years for European Beech and Oak - a continental scale analysis
Anita Nussbaumer, Arthur Gessler, Sue Benham, B. De Cinti, Sophia Etzold, Morten Ingerslev, Frank Jacob, François Lebourgeois, Tom Levanič, Hrvoje Marjanović, 2021, original scientific article

Abstract: Resource allocation to different plant tissues is likely to be affected by high investment into fruit production during mast years. However, there is a large knowledge gap concerning species-specific differences in resource dynamics. We investigated the influence of mast years on stem growth, leaf production, and leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations and contents in Fagus sylvatica, Quercus petraea, and Q. robur at continental and climate region scales using long-term data from the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) and similar datasets. We discussed the results in the light of opposing resource dynamics hypotheses: (i) resource accumulation before mast years and exhaustion after mast years (resource storage hypothesis), (ii) shifting resources from vegetative to generative compartments (resource switching hypothesis), and (iii) investing resources concurrently in both vegetative and generative compartments (resource matching hypothesis). Linear mixed-effects modelling (LMM) showed that both stem growth and leaf production were negatively influenced by weather conditions which simultaneously lead to high fruit production. Thus, the impact of generative on vegetative growth is intermixed with effects of environmental factors. Superposed epoch analyses and LMM showed that for mast behaviour in F. sylvatica, there are indicators supporting the resource storage and the resource switching hypotheses. Before mast years, resources were accumulated, while during mast years resources switched from vegetative to generative tissues with reduced stem and leaf growth. For the Quercus species, stem growth was reduced after mast years, which supports the resource storage hypothesis. LMM showed that leaf C concentrations did not change with increasing fruit production in neither species. Leaf N and P concentrations increased in F. sylvatica, but not in Quercus species. Leaf N and P contents decreased with increasing fruit production in all species, as did leaf C content in F. sylvatica. Overall, our findings suggest different resource dynamics strategies in F. sylvatica and Quercus species, which might lead to differences in their adaptive capacity to a changing climate.
Keywords: climate change, Fagus sylvatica, long-term monitoring, mast fruiting, Quercus petraea, Quercus robur, resource dynamics
Published in DiRROS: 15.07.2021; Views: 872; Downloads: 642
.pdf Full text (7,63 MB)
This document has many files! More...

Search done in 0.26 sec.
Back to top