POŠKODOVANOST IN RAST SMREKOVEGA GORSKEGA GOZDA NA POKLIJUŠKO-JELOVIŠKI PLANOTI

Milan HOČEVAR

Izvleček

Na dveh izbranih raziskovalnih profilih s skupno površino 2770 ha so bili s kombiniranim površinskim snemanjem poškodovanosti dreves na CIR acroposnetkih in z vzročnim terenskim snemanjem dendrometrijskih kazalnikov na permanentnih ploskvah na terenu zajeti kazalniki zdravstvenega stanja in rasti gorskih smrekovih gozdov na območju Jelovica in Pokljuke. Gozdovi so le razmeroma ohranjeni, saj je le 10% drevesa na Jelovici in 35% na Pokljuki očitno poškodovanega. Stari sestaji so močno poškodovani kot mladi, vendar se slednji trajajo najmanjše poroke, odzivajo se zelo občutljivo z zmanjšanim prinijem in socialnim sostenom. Analiza prostorske razmernost poškodo ne kaže prostorskega trenda. Z raziskovanjem osnovi se debelinski prinjak znaša pri vseh drevesnih vrstah, vendar ne pomeni, da se znaša tudi sestojni prinjak. Ta je v zadnjem obdobju celo višji, kot je bil v prejšnjem.

Ključne besede: prepadanje gozda, prinjak, fotointerpretacija, kontrolna vzročna metoda, smrek.

DECLINE AND GROWTH OF MONTANE FORESTS OF NORWAY SPRUCE ON THE POKLIJUKA-JELOVICA PLATEAU

Milan HOČEVAR

Abstract

Two profiles encompassing the area of 2,770 hectares in total were selected to study factors concerning the condition and growth of montane forests of Norway spruce on the Pokljuha Jelovica plateau (Slovenia) with an area survey of damaged trees with infrared color aerial photographs and a sample field survey of dendrometric factors in permanent plots in the field. The forests under consideration were found to be still in a relatively good condition since only 10% of trees in Jelovica and 35% of trees in Pokljuha were found to be evidently damaged. It was also observed that old-growth stands had deteriorated to a greater extent than stands of young growth though the latter were found to be very susceptible even to minor damages of crowns, which in turn result in increment decrease and social degradation. An analysis of spatial distribution of damages indicates no spatial trend. An increase in needle loss leads to a decrease in diameter increment in all tree species. Stand growth, however, does not decrease as well; to the contrary, it has recently been even higher than in the past.

Key words: forest decline, tree and stand growth, aerial photographs, CFI, spruce.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UVOD</td>
<td>29</td>
</tr>
<tr>
<td>1.1</td>
<td>Problematika ovrednotenja propadanja gozdov</td>
<td>29</td>
</tr>
<tr>
<td>1.2</td>
<td>Celostni fototerestrični monitoring propadanja gozdov</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>ZASNOVA RAZISKAVE POŠKODOVANOSTI IN RASTI SMREKOVEGA GORSKEGA GOZDA NA POKLIJUŠKO-JELOVIŠKI PLANOTI</td>
<td>32</td>
</tr>
<tr>
<td>2.1</td>
<td>Opis objekta</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Cilj</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Metode zajemanja podatkov</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Terensko snemanje</td>
<td>35</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Aerosnemanje in fotointerpretacija</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Obdelava in ovrednotenje podatkov</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>IZSLEDKI</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Poškodovanost dreves in sestojev</td>
<td>38</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Izvira metode ocenjevanja poškodovanosti</td>
<td>38</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Poškodovanost dreves</td>
<td>41</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Poškodovanost sestojev</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Poškodovanost in rast</td>
<td>48</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Osutost in debelinski prirastek</td>
<td>48</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Časovni trend debelinskega prirastka</td>
<td>54</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Poškodovanost in izgube sestojnega volumenskega prirastika</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>RAZPRAVLJANJE O UGOTOVITVAH RAZISKAV</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>ZUSAMMENFASSUNG</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>REFERENCE</td>
<td>66</td>
</tr>
</tbody>
</table>
1 UVOD

1.1 Problematika ovrednotenja propadanja gozlov

Propadanje gozlov je celovit pojav, ki ogroža vse bistvene funkcije gozda. V vrstnem redu kot se poškodbe stopnjujejo takole: osip listja in iglic, pešanje rasti in reprodukcijskih sposobnosti, odmiranje posameznih dreves, presvetljevanje sestojev do končnega odmiranja celih sestojev in izginotja gozda. Tudi teža posledic propadanja se prelaga od lesne proizvodnje na varstvene, okolj stubne in socialne funkcije gozda. Za zdaj je propadanje gozlov le redkoke je doseglj razvidinalne površinske razsežnosti, vendar nam vse pogosteja katastrofalna hudourniška razdejanja in vse močnejše erozijske škode v alpskem prostoru v zadnjih letih dajejo sluiti, da je stabilnost varovalnih gozdov mnogokrje že tudi površinsko načeta. Obstaja resna nevarnost, da z nadaljnjim slabšanjem zdravstvenega stanja ne bo prizadeto le gozdarstvo, temveč tudi mnoge druge gospodarske veje, ki na prvi pogled nimajo mnogo skupnega z njim, kot so npr.: turizem, promet, vodno gozdarstvo pa tudi kmetijstvo. Gleda na takšen morebitni razvoj škod je nujno začeti organizirano celostno periodično nadzirati (monitoring), stanje gozov. Nadzor mora biti še posebno intenziven v ogroženih gozdovih in v gozdovih s poudarjenim splošnim pomenom.

Propadanje gozlov kot posledica degradacije in onesnaženja okolja je večplasten pojav z multifunkcionalnimi učinki in ga zato ni mogoče opisati z eno samo oznako, kot je to na primer osutost krošenj. Ne zadovoljuje tudi sinteza več posameznih ocen in meritve (osutost, porumenost, delež suhih vej, oblika vrha, itn.) v eno oznako vitalnosti ali ogroženosti (Šolar, 1986). Tak prijem ni vprašljev le zaradi povsem subjektivnega načina ovrednotenja pomena posameznih dejavnikov, temveč predvsem, ker ne upošteva prostorske razsežnosti in razmestitve pojava, ki pa je odločilnega pomena za oceno degradacije, predvsem neproizvodnih funkcij gozda.

Za učinkovit večnamenski nadzor nad stanjem in razvojem gozlov zato na VTOZD za gozdarstvo Biotehniške fakultete v Ljubljani razvijamo nov, celostni prijem snemanja in analize pojava umiranja gozlov tako, da na treh funkcionalno opredeljenih ravneh določamo polifunkcionalno diagnozo, kot jo poznamo iz medicine. Te so:

1. Analiza funkcionalnih motenj na ravni drevesa, ki se kažejo kot:

— motnje v rasti koreninskega in nadzemskega dela, ki so posledice negativnih fizioloških sprememb v teh organih. Te motnje posredno ugotavljamo ponavadi z ocenjevanjem osutosti, kloroze; redkeje z dendrometrijskimi snemanji ali fiziološkimi analizami;
— motnje v konkurenčni sposobnosti: socialni sestop posameznih dreves, iz ginevanje posameznih drevesnih vrst;
— motnje v regeneracijski sposobnosti posameznih osebkov, provenienc in drevesnih vrst: nezadostna sementev in pomlađevanje;
— odmiranje poškodovanih osebkov (mortaliteta).

2. Analiza strukturnih spremešč na sestojni, površinski ravni. Te se kažejo kot:
— spremembe v sestavi sestojev glede na drevesne vrste in razvojne faze;
— presvetljanje sestojev.

3. Analiza motenj gozdnega ekosistema kot celote. Ta obsega:
— žarišča površinskega odmiranja delov gozda;
— spremembe v potoku gozdnega robe in porazdelitvi gozdnih in negozdnih površin (vzorec);
— degradacijo tal, pojav erozijskih površin.

Metoda je primerna za splošen opis propadanja gozdnov glede na vzroke. Tako so za propadanje troseh gozdnov motnje na ravnini dreves razmeroma aempomemne, katastrofalne pa so motnje na obeh naslednjih ravnih. Nasprotno so za propadanje gozdnov v zmenem pasu značilne motnje na ravnini drevesa, dogajanje na drugih ravnih pa je le logična posledica le-teh.

Opisani prijem omogoča smrtin nadzor nad vsemi bistvenimi funkcijami gozda in ovrednotenje pojava in posledic propadanja glede na drevesni, temveč tudi na ploskovni ravni. Temelji na uporabi metod terenskega in daljinskega zajemanja podatkov ter metod vzorčnega in polnega snemanja.

1.2 Celostni fototerestrični monitoring propadanja gozdnov

Ciljno gospodarjenje s propadajočim gozdom na lokalni ravni je mogoče le pri jasno postavljeni diagnostiki stanja in razvojnih tendenc sestojev, ki dosežno upošteva večnamensko vlogo gozda. Ker so informacije, ki jih daje terenski velikoprostorski popis propadanja gozdnov, v te namene presplešne, smo v Sloveniji za posebno ogrožene gozdo in gozdove nacionalnega pomena razvili kombinirano fototerestrično metodo, ta temelji na načelih, ki smo jih podali v uvodnem poglavju.

Metoda obsega sklop medsebojno usklajenih terestričnih in daljinskih snemanj in intenzivno statistično analizo podatkov.
Hočevar M.: Poškodovanost in rast smrekovega gorskega gozda...

Bistvene značilnosti metode so:

— Intenzivna snemanja na ravnih drevesa na vzorčnih ploskvah (permanentni vzorci, kontrolni sestoji), ki obsegajo meritev dendrometrijskih znakov (prsi premer, debelinski priрастek, višina dreves) in oceno intenzitete poškodb. Snemanja na tej ravni so osredotočena na spremljanje lesnoproizvodne funkcije s terestričnimi metodami. Na tej ravni se opravljajo tudi potrebne fiziološke raziskave in posebni popisi (npr.: vzrokov poškodb, popis lišajev, itd.), ki rabijo za preučevanje vzročno-posledičnega mehanizma propadanja gozdu.

— Snemanja na sestojnem ravnem rabijo za ugotavljanje in spremljanje stanja (ocena trendov) površinskih kazalnikov lesne proizvodnje (raven sestojnega hektarskega prirostka), poškodovanosti (stopnja sestojne poškodovanosti) in spremembo v strukturi sestojev (presvetljevanje sestojev, spremembe v sestavi po drevesnih vrstah in razvojnih fazah, žarišča mortalitete). Snemanja na tej ravni opravljamo na terenu (kontrolni sestoji) in na aeroposnetkih (ponavadi infrardeči barvni posnetki, polna snemanja ali raziskovalni profili) in imajo izraziti večfunkcionalni poudarek.

— Snemanja na ravnem gozdu kot ekosistema zajemajo gozdno in negozdno krajinino in rabijo predvsem za ugotavljanje stanja in nadzor neproizvodnjenih funkcij. Ker gre za izdelavo velikoprostorskih pregledov o porazdelitvi gozdnih in negozdnih površin, potek gozdnega roba, pojavu mortalitetnih žarišč in degradacijskih pojavov (erozijska žarišča), se uporabljajo razne metode daljinskega zaznavanja, kot so avio- pa tudi satelitska snemanja (črno-beli avio-posnetki v majhnem merilu, multispektralni satelitski posnetki).

Bistvo opisane metode je kombiniranje uporabe različnih snemalnih tehnik (teren, letalo, satelit) ter vzorčnega in površinskega zajemanja podatkov. Ti podatki so, poleg standardnih virov podatkov (digitalni model reliefa, geologija tal itd.), bistveni sestavni del prostorskega informacijskega sistema (GIS). Vezni člen med terenskim in daljinskim snemanjem so kontrolni sestoji, na katere so omejena terenska snemanja. Ti hkrati omogočajo zanesljivo kalibriranje daljinsko zajetih podatkov in ekstrapolacijo terenskih informacij (doublesampling). Zaradi njihove velikosti (ponavadi 5 do 20 ha) jih je mogoče zlahka razmestiti na posnetkih iz letala ali iz satelita. Intenziteta snemanj je največja pri terenskem zajemanju podatkov in obsega oceno poškodovanosti (drevo, sestoj) ter njenega vpliva na rast dreves in sestojev. Terenska snemanja dajejo v glavnom dendrometrijske podatke, ti pa so zaradi vzorčne tehnike zajemanja točkovne narave ter so omejeni na razmeroma majhen delež celotne površine. Nasprotno dajejo posnetki iz zraka velikopovršinski ploskovni pregled o intenziteti in prostorski razmestitvi poškod z eksaktnim potekom mej. Dajejo podroben vpogled v zgradbo sestojev in potek gozdnega roba ter obenem objektivno in brez napake dokumentirajo trenutno stanje sestojev in gozdnega ekosistema.
S smotranje povezavo obe tehnik zajemanja podatkov (doublesampling) in s periodičnim ponavljanjem snemanj je mogoče zanesljivo oceniti stanje in razvojne tendence gozda. Pri tem je poudarek terenskih snemanj na ugotavljanju vzročnih povezav in vrednotenju lesnoproizvodne funkcije, daljinsko raznavanje pa je osredotočeno na večinkovito spremljanje drugih funkcij gozda.

Predstavljena metoda daje optimalne izsledke predvsem tam, kjer je terensko fazo mogoče povezati z redno inventarizacijo gozov na kontrolnih vzorčnih ploskovah (Hočevar, 1990). Informacijska vsebina in zanesljivost ocen naraščata progresivno s številom ponovitev snemanj.

2 ZASNOVA RAZISKAVE POŠKODOVANOSTI IN RASTI SMREKOVEGA GORSKEGA GOZDA NA POKLJUŠKO-JELOVIŠKI PLANOTI

2.1 Opis objekta

Za praktično preskušanje uvodoma predstavljene metode se je ponudila ugodna priložnost pri raziskavah gorskega smrekovega gozda na območju Pokljuka in Jelovice. Pokljuka in Jelovica sta območje nacionalnega pomena, ki je deloma včlenjeno v Triglavski narodni park. Zaradi neposredne bližine turističnih središč in pomembnih prometnic je za gozdove značilen, poleg zelo pomembne lesne proizvodnje, tudi izreden pomen vseh drugih funkcij gozda. Prva poročila o pospešenem propadanju tudi teh gozov so bila tako poved za raziskavo, ki jo predstavljamo. Raziskava je modelne narave in bo v končni fazi (satelitska interpretacija) zajela celotno območje Jelovice in Pokljuke z neposredno okolico (več kot 45.000 ha). Za zdaj je opravljen del raziskav, ki obsega terenska snemanja in fotointerpretacijo infrardečih barvnih posnetkov na dveh izbranih raziskovalnih profilih s skupno površino 2770 ha (Slika 1, preglednica 1).

Preglednica 1: Opis metod snemanja podatkov

<table>
<thead>
<tr>
<th>Tabelle 1:</th>
<th>Eingesetzte Verfahren und Datenaufnahmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aerosnemanje</td>
<td></td>
</tr>
<tr>
<td>Površina območja Pokljuka-Jelovica(^1)</td>
<td>45.000 ha</td>
</tr>
<tr>
<td>Površina CIR-aerosnemanja(^2)</td>
<td>2.770 ha</td>
</tr>
<tr>
<td>2. Terensko snemanje</td>
<td></td>
</tr>
<tr>
<td>Število kontrolnih sestojev</td>
<td>12</td>
</tr>
<tr>
<td>Površina kontrolnih sestojev</td>
<td>399 ha</td>
</tr>
<tr>
<td>Število stalnih vzorcev</td>
<td>209</td>
</tr>
</tbody>
</table>

\(^1\) predvidene površinsko prekrivanje s satelitskimi posnetki
\(^2\) 2 snemalna redova
Slika 1: Pregledna karta območja raziskav na Pokljuki in Jelovici z vrisanimi raziskovalnimi profilami in kontrolnimi sestoji

Bild 1: Uebersichtskarte des Versuchsgebietes mit eingezeichneten Forschungsprofilen und Kontrollbestaenden
2.2 Cilj

Cilj raziskave je ocena stanja in razvojnih tendenc sestojev na Pokljuki in Jelovici ob opuštevanju njihove večfunkcionalne narave. Pri tem so v ospredju:

1. Obseg, stopnja in prostorska razporeditev poškodovanosti dreves in sestojev.

2. Poškodovanost in rast dreves ter sestojev.

3. Periodična primerjava ravn priraščanja gozdnih sestojev različnih stopenj poškodovanosti.

4. Stanje in spremembe v strukturi sestojev in gozda.

Iz navedene problematike so za zdaj nadrobno obdelana prva tri vprašanja. Ker zadnje zahteva ponovitveno snemanje, bo obdelano kasneje. Njihovi izidi bodo prikazani v nadaljevanju.

2.3 Metode zajemanja podatkov

Raziskava temelji na povezavi podatkov redne inventure, dopolnjene z nekaterimi posebnimi snemanji, z velikoprostorskim daljinskim zajemanjem kakovostnih podatkov. Zasnovana je večfazno in kot permanentni monitoring. Smiselno kombinira terensko zajemanje dendrometrijskih podatkov in oceno poškodovanosti dreves v sklopu inventure na permanentnih vzorčnih ploskvah, s površinsko oceno strukturnih značilnosti in poškodovanosti sestojev na posnetkih iz zraka. Stične točke obeh podatkovnih ravni so kontrolni sestoji, za katere obstajajo parne ocene na obeh ravneh. Polno informacijsko vsebino in vrednost bo tako dobila šele s ponovnim merjenjem.

V začetni fazi je raziskava omejena na dva raziskovalna profila, eden je na Pokljuki in drugi na Jelovici, skupna površina pa znaša 2770 ha (slika 1). Območje je bilo iz zraka površinsko posneto z infrardečim barvnim filmom. Vzdolž profilov so bili za podrobnja terenska snemanja sistematično izbrani kontrolni sestoji (skupaj 12). Sama snemanja v teh sestojih so potekala na permanentnih vzorčnih ploskvah običajne inventurne mreže Gozdnega gospodarstva Bled.

Strogo statistično vzeto, seveda profila za celoten prostor nista reprezentativna zaradi razmeroma velike površine in raznolikosti, ki jo zajemata, pa vendar kažeta vse bistvene značilnosti in probleme visokogorskega smrekovega gozda. V nadaljevanju prikazani izsledki so tako zanimivi kot ocene za posamezne tipe gozda (stratume), ne
smemo pa jih razumeti kot povprečne ocene za celo območje (razlike v stratusni strukturi med profili in celotno populacijo).

2.3.1 Terensko snemanje

Terensko snemanje je potekalo v dveh stopnjah:

— 1. stopnja: Sistemično izločanje kontrolnih sestojev vzdolž raziskovalnih profilov
— 2. stopnja: Snemanje dendrometrijskih podatkov in ocena osutosti na permanentnih vzorčnih ploskvah

Snemanja so bila opravljena na stalnih ploskvah, ki so jih na GG Bled zaklicili za redno inventarizacijo gozov že v sedemdesetih letih (kontrolna vzorčna metoda). V okviru raziskave smo opravili vse običajne in nekatere posebne dendrometrijske meritve, poleg tega pa smo za vsako drevo ocenili tudi osutost krošenj na 10 % natančno s pomočjo uporabe referenčnih fotografij (EAFV, 1986). Nadroben pregled obsega snemanj je razviden iz preglednice 2.

Preglednica 2: Značilnosti terenskega snemanja in podatkovna struktura

Tabelle 2: Eigenschaften der Gelaendeaufnahmen und die Datenstruktur

<table>
<thead>
<tr>
<th>Površina vzorčne ploskve</th>
<th>4 ari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzorčna mreža:</td>
<td>100 x 200 m</td>
</tr>
</tbody>
</table>

Podatki:

- Opis vzorca: lokacija, opis sestoja, opis rastišča
- Izmera dreves: prsni premer v cm, socialni položaj, osutost (10 % stopnje), dolžina krošnje
- Izbrana drevesa: dominantna višina v m

Dodatna snemanja:

- samo Jelovica: utesnjecnost krošnje (vsako drevo)
 gozdnojhitvena funkcija (vsako drevo)

Terenska dela so opravili sodelavci VTOZD za gozdarstvo, ki so kasneje sodelovali tudi pri fotointerpretaciji.
Bistvene značilnosti kontrolnih sestojev so razvidne iz preglednice 3.

Preglednica 3: Zgradba, zdravstveno stanje in dendrometrijski znaki kontrolnih sestojev

Tabelle 3: *Struktur, Gesundheitszustand und dendrometrische Daten der Kontrollbestande*

<table>
<thead>
<tr>
<th>Kontr. sestoj</th>
<th>št. odd.</th>
<th>tip</th>
<th>N vzorcev</th>
<th>peškovodnost</th>
<th>Dg</th>
<th>G/ha m²</th>
<th>V/ha m³</th>
<th>L/ha m³</th>
<th>Čas v m³</th>
<th>čr. let</th>
<th>Si: sm. bu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pokljuka</td>
<td></td>
<td></td>
<td>120</td>
<td>22,2</td>
<td>35,3</td>
<td>34,6</td>
<td>40</td>
<td>510</td>
<td>11,1</td>
<td>5,5</td>
<td>-</td>
</tr>
<tr>
<td>P 37,38</td>
<td>33</td>
<td>st. deb</td>
<td>33</td>
<td>30,9</td>
<td>58,3</td>
<td>50</td>
<td>46</td>
<td>678</td>
<td>12,4</td>
<td>8,1</td>
<td>140</td>
</tr>
<tr>
<td>P 54,55,59</td>
<td>27</td>
<td>ml. drog</td>
<td>19</td>
<td>16,4</td>
<td>12,4</td>
<td>19</td>
<td>33</td>
<td>330</td>
<td>11,2</td>
<td>1,7</td>
<td>50</td>
</tr>
<tr>
<td>P 60/79</td>
<td>17</td>
<td>st. drog</td>
<td>21</td>
<td>16,4</td>
<td>14,2</td>
<td>21</td>
<td>42</td>
<td>450</td>
<td>12,8</td>
<td>1,8</td>
<td>75</td>
</tr>
<tr>
<td>P 485</td>
<td>28</td>
<td>st. deb</td>
<td>42</td>
<td>26,1</td>
<td>42,9</td>
<td>42</td>
<td>41</td>
<td>590</td>
<td>11,0</td>
<td>6,9</td>
<td>175</td>
</tr>
<tr>
<td>P 104</td>
<td>15</td>
<td>raznodober</td>
<td>30</td>
<td>23,5</td>
<td>35,5</td>
<td>30</td>
<td>36</td>
<td>382</td>
<td>5,7</td>
<td>7,9</td>
<td>120</td>
</tr>
<tr>
<td>Jelovica</td>
<td>89</td>
<td></td>
<td>14,9</td>
<td>10,5</td>
<td>32,2</td>
<td>36</td>
<td>443</td>
<td>7,8</td>
<td>10,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>J 112</td>
<td>28</td>
<td>st. deb</td>
<td>47</td>
<td>17,0</td>
<td>15,4</td>
<td>47</td>
<td>28</td>
<td>415</td>
<td>6,2</td>
<td>17,1</td>
<td>160</td>
</tr>
<tr>
<td>J 18,23</td>
<td>10</td>
<td>ml. deb</td>
<td>24</td>
<td>15,5</td>
<td>11,9</td>
<td>24</td>
<td>52</td>
<td>625</td>
<td>11,8</td>
<td>0,5</td>
<td>100</td>
</tr>
<tr>
<td>J 342</td>
<td>11</td>
<td>st. drog</td>
<td>21</td>
<td>13,4</td>
<td>6,0</td>
<td>21</td>
<td>44</td>
<td>544</td>
<td>12,1</td>
<td>5,8</td>
<td>80</td>
</tr>
<tr>
<td>J 54</td>
<td>12</td>
<td>ml. deb</td>
<td>30</td>
<td>13,7</td>
<td>8,6</td>
<td>30</td>
<td>39</td>
<td>497</td>
<td>7,8</td>
<td>22,2</td>
<td>100</td>
</tr>
<tr>
<td>J 63</td>
<td>10</td>
<td>ml. deb</td>
<td>22</td>
<td>14,1</td>
<td>8,9</td>
<td>22</td>
<td>35</td>
<td>375</td>
<td>7,4</td>
<td>2,6</td>
<td>100</td>
</tr>
<tr>
<td>J 83,85</td>
<td>8</td>
<td>st. deb</td>
<td>26</td>
<td>16,3</td>
<td>12,7</td>
<td>26</td>
<td>33</td>
<td>341</td>
<td>5,7</td>
<td>4,0</td>
<td>140</td>
</tr>
<tr>
<td>J 788</td>
<td>10</td>
<td>st. deb</td>
<td>29</td>
<td>12,4</td>
<td>5,3</td>
<td>29</td>
<td>30</td>
<td>311</td>
<td>5,6</td>
<td>6,4</td>
<td>120</td>
</tr>
</tbody>
</table>

1) Prirastek m³/ha/leto: Pokljuka 1976-1987, Jelovica 1982-1988

SI: site indeks za smrcko/bukev

2.3.2 Aerosnemanje in fotointerpretacija

Z našo raziskavo smo zajeli po en snemalni red na Jelovici in Pokljuki. Teknični podatki aerosnemanja so vidni iz preglednice 4.
Preglednica 4: Tehnične značilnosti infrardečega barvnega aerosnemanja na Pokljuki in Jelovici

Tabelle 4: Technische Daten der Infrarot-Farbaufnahmen auf Pokljuka – Jelovica

Izvajalec:	Geodetski zavod Slovenije, Ljubljana
Kamera:	Zeiss-Jena, LMK s kompenzacijo ponika objektiv f: 305,33 mm
Filter:	minus modri (propustnost > 550 nm)
Film:	Kodak IRC 2443
Merilo:	1 : 5000
Preklop:	65 % v redu
Redov:	2
Št. slik:	21 + 21

Fotointerpretacija je potekala s stereoskopom INTERPRETOSKOP B Zeiss-Jena pri 8- do 12- kratni povečavi neposredno na izvirnih diapozitivih. Fotointerpreterator, inž. gozdarstva D. Hladnik¹, je ves čas sodeloval tudi pri terenskih delih, in to je omogočilo zaoesljivo oceno osutosti.

2.3.3 Obdelava in ovrednotenje podatkov

Snemanja so zajela približno 4500 dreves na terenu in več kot 50 000 iz zraka; to je zahtevalo zelo smotreno obdelavo podatkov. S posebej za to raziskavo razvitimi računalniškimi programi v FORTRAN-u smo oblikovali dve ločeni datoteki: datoteko znakov dreves (meritve in izvedene vrednosti) in datoteko ploskovnih vrednosti vzorčnih ploskev (lesna zaloga/ha, sprotni volumenski prirastek/ha itn.). Nadaljnja računalniška obdelava je ločeno za obe skupine obsegala izračun srednjih vrednosti, ustreznih statističnih parametrov in testnih vrednosti s standardnimi statističnimi programi. Statistični kazalniki imajo deloma le orientacijsko vrednost, ker podatkovno gradivo, strogo vzeto, ni zmeraj zadoščalo načelom matematično – statistične teorije.
3 Izsledki

3.1 Poškodovanost dreves in sestojev

3.1.1 Izbira metode ocenjevanja poškodovanosti

3.1.1.1 Optimiranje metode ocene sestojne poškodovanosti

Poškodovanost gozda, sestaja ali ploskve ponavadi opisujemo z razvrstitvijo dreves po stopnjah poškodovanosti. Izraz je za nadaljnjo računalniško obdelavo in analizo medsebojnih odvisnosti različnih dejavnikov zelo neprimeren, zelo malo pa pove tudi o prostorski koncentraciji poškodb. Izhod je v določitvi prostorskega indeksa poškodovanosti.

Določitev ceh kazalnikov temelji na poprečnji oceni stopnje osutosti za posamezna drevesa. Kljub znanim pomanjkljivostim takšega ocenjevanja (subjektivnost, nespecifičnost slike) smo uporabili metodo, ki je v navadi pri vseh evropskih pcpisih umiranja gozlov. V primerjavi s prejšnjimi raziskavami smo jo izboljšali toliko, da smo uporabljali referenčne fotografije osutosti krošenj (s tem smo zagotovili ponovljivost ocenjevanja) in vpeljali ocenjevanje po 10-odstopnih stopnjah osutosti. Izkazalo se je, da je popolno lestvičenje osutosti z enakimi presledki nujno za nadaljnjo matematično statistično obdelavo.

Prostorske kazalnike sestojnih poškodb smo za posamezne ploskve (sestoji, vzorčne ploskve) izračunali po obrazcih:

\[
\text{povprečna osutost (POS) v } \%: \text{ POS = } \frac{\sum OS_i}{n} \times 100
\]

OSi: osutost drevesa i v ploskvi
n: število dreves v ploskvi

indeks osutosti (IND): \(\text{IND = delež dreves z osutostjo več kot 25 } \% \)
(Schlaepfer in Haemmerli, 1990) pri prikazu izidov popisov umiranja gozdn drugod v Evropi.

Ocene sestojne poškodovanosti (POS, IND) ni mogoče dobiti z neposredno okularno oceno, čeprav obstajajo tudi taki poskusi (Schwarzenbach in dr., 1986), temveč le s polnim ali vzorčnim snemanjem osutosti posameznih dreves na terenu ali na aeroposnetkih. Za obsežnejša snemanja je primerno le vzorčno snemanje. Pri tem se postavlja vprašanje, kolikšna velikost vzorca je smotrna za zanesljivo in racionalno oceno sestojne poškodovanosti.

To vprašanje smo proučili v posebnih študij na 49 vzorcih terenske meritev v kontrolnih sestojih 1 in 4 na Pokljuki (izbrani so bili vzorci z vsaj 10 dreves). S posebnim simulacijskim programom smo nato spreminjali velikost vzorca od 1, 3, 6 do 10 dreves in preučevali gibanje variance in standardne napake sestojne ocene za oba prostorska kazalnika. Poleg izvirnih vrednosti (POS, IND) smo v račun upoštevali tudi transformirane. Preučili smo te transformacije:

\[
\text{POST} = \arcsin \left(\frac{\text{POS}}{100} \right)
\]

\[
\text{INDT} = \sqrt{n' + 38}
\]

\[
\text{n'} = \text{delež dreves z OS > 25%}
\]

Bistveni izidi so vidni na sliki 2, ki prikazuje za posamezne kazalnike gibanje koeficienta varijacije v odvisnostih od števila dreves v vzorcu. Iz tega je nato mogoče zlahka določiti potrebno število vzorcev za zahtevano natančnost ocene. Iz študije sledi, da je smotrna velikost vzorca za določitev POS približno pet dreves. Za zanesljivo oceno sestojne poškodovanosti zadostuje v tem primeru že 10 do 15 vzorcev. Za določitev indeksa osutosti ploskve potrebujemo več dreves v vzorcu (vsaj 10) in več vzorcev. Študija kaže tudi, da je enodrevesni vzorec neuznanljet in neprimeren celo za delo z aeroposnetki.
3.1.1.2 Primernost različnih kazalnikov poškodovanosti sestojev

Predstavljena sestojna kazalnika imata zelo različno informacijsko vsebino.

Povprečna osušnost (POS) je razmeroma stabilna srednja vrednost z nizkim koeficientom variacije, zelo malo pa pove o sami porazdelitvi dreva po različnih stopnjah osušnosti. Izračun povprečne osušnosti je skoraj brez vrednosti, če stopnje osušnosti niso enako široki; to je bilo še do nedavnega pravilo pri snemanjih propaganja gozdov. Določitev povprečne osušnosti zahteva natančno oceno osušnosti vsakega drevesa.

Bistveno drugačne so lastnosti indeksa osušnosti (IND), ki upošteva predvsem drevo s srednjo in visoko osuščeno. Bistvena prednost kazalnika je, da ga je mogoče preprosto določiti tudi med rednimi inventurami. Zadostuje namreč enostavno štetje očitno poškodovanih dreves (primerjava s katalogom referenčnih dreves).

V naši raziskavi smo izračunali obe kazalnika za vse ploskve in ju primerjali uporabili v različnih izračunih. Praviloma smo z vključevanjem spremenljivke POS dobivali nekaj boljše rezultate, kot pa če smo isti izračun opravili s kazalnikom IND, razlike pa so bile razmeroma majhne. Da sta obe kazalnika dobro povezana (r = 0,918), vidimo tudi iz slike 3.
Slika 3: Povezava med povprečno osutostjo in indeksom osutosti (Pokljuka: 120 ploskev)

Bild 3: Zusammenhang zwischen mittlerem Nadelverlust und Schadenindex (Pokljuka, 120 Flächenwerte)

3.1.1.3 Primerjava terestrične in fotointerpretacijske ocene osutosti

V kontrolnih sestojih smo snemali osutost terestrično in fotointerpretacijsko. Rezultati obeh metod snemanja so v obliki frekvenčne porazdelite drevja po stopnjah osutosti za Pokljuko prikazani na sliki 4. Vidimo, da se ocene razmeroma dobro ujemajo, kersmo, kolikor je bilo največ mogoče to metodično zagotoviti s tem, da je fotointerpretator sodeloval ves čas tudi pri terenskem ocenjevanju.

Razlike so nekoliko opazne pri drevju z nizko stopnjo osutosti, in to opažajo tudi drugi avtorji (Rochle, 1987). Zaradi boljšega vpogleda v vrh krošenj na aeropensetkih in s tem prepoznavanja anomalij, ki se pri terenskem ogledu ne opazijo, je delč nepoškodovanega drevja pri fotointerpretacijski metodi nekaj manjši. Nekatera neskladja so seveda normalna, saj ne gre za opazovanja na istem drevu, različno pa je tudi število opazovanj. Terestrična ocena temelji na snemanju 3.200 dreves, fotointerpretacijska pa kar 16.100.

3.1.2 Poškodovanost dreves

Kljub nekaterim zelo pesimističnim ocenam v gozdarski praksi je drevje na celotnem raziskovalnem območju še razmerom malo poškodovano.

Kako je s smreko na Pokljuki, kaže slika 5. Na večini drevja (59.8 %) ni videti poškodb, drevja z očitnimi poškodbami (osutost > 25 %) je samo 16.8 %. Povprečna osutost drevja znaša 22.2 %. Pemembne pa so razlike v stanju mladih in starih sestojev: mladi
Sestoji so bistveno manj poškodovani kot stari - v teh prevladuje drevje z osutostjo med 16 do 35 %.

Slika 4: Primerjava ocen osutosti drevja s fotointerpretacijo in terenskim snemanjem (Pokljuka; kontrolni sestoji, brez podstojnih dreves)

Bild 4: Vergleich der Resultate der Nadelverlustschatzungen mit der Fotoine terpretation und Gelaendeaufnahmen (Pokljuka; Kontrollbestaende, ohne un terdruenkte Baeume)

Slika 5: Osutost smrtev na Pokljuki v mladih in starih sestojih (kontrolni sestoji)

Bild 5: Verteilung der Fichte nach Schadklassen (Pokljuka-Kontrollbestaende)
Zaradi zelo majhnega deleža drugih drevesnih vrst v gozdvih na Pokljuki zanje skorajda ni mogoče podati ocene. Od 56 jelk (kontrolni sestoji) jih je večina uvrščena v stopnje od 45 % do 75 % (v enakih deležih), in nobena pod 25 % osutosti.

Nekoliko boljše kot na Pokljuki je na Jelovici, kjer znaša povprečna osutost iglavcev 11.1 % in listavcev 11.2 %. Stanje poškodovanosti za posamezne drevesne vrste kaže preglednica 5 (stolpec: skupaj).

Preglednica 5: Primerjava osutosti nosilcev funkcij in drugega drevja (Jelovica – kontrolni sestoji)

<table>
<thead>
<tr>
<th>Tabelle 5: Vergleich der Schaeden an Austese – und Nebenbestandbaumen (Jelovica – Kontroll-bestaende)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopnja osutosti</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td><15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>>90</td>
</tr>
<tr>
<td>Povprečna osutost</td>
</tr>
</tbody>
</table>

Na Jelovici je zdravstveno stanje torej ugodnejše pri vseh drevesnih vrstah. Pri smreki samo 10,7 % drevja presega prag poškodovanosti, pa tudi pri jelki je s 45,6 % stanje še razmeroma ugodno. Očitno poškodovanih listavcev skoraj ni, saj je njihov delež manjši od 2 %. Ker starost vseh analiziranih sestojev na Jelovici presega 80 let, analiza po starosti sestojev ni bila opravljena.

Iz sumarnih krivulj na sliki 5 ni mogoče razbrati nitičesar o gospodarski in gojitveni vrednosti bolj ali manj poškodovanega drevja. Zato je zanimiva primerjalna analiza
poškodovanosti nosilcev funkcij in drugega drevja na Jelovici, ki jo dodatno vsebuje preglednica 5.

Primerjava za Jelovico kaže, da je zdravstveno stanje nosilcev funkcij še bistveno boljše kot pa drugega drevja.

Na Pokljuki nosilci funkcij pri snemanju niso bili določeni, zato smo drevje različnih stopnjen poškodovanosti nadrobnjene opredelili s pomočjo njihovih strukturnih in dendrometrijskih znakov. Rezultati so prikazani v preglednici v prilogi.

Iz preglednice sledi, da se drevje mladih sestojev (drogovnjaki do 60 let) mnogo močneje odziva na poškodbe asimilacijskega aparata kot drevje starih sestojev; pri tem je zelo pomembna socialna pripadnost. Ugotavljamo:

— Ne glede na starost sestojev velja, da v sloju nadraslega drevja ni drevja z visokimi stopnjami osutosti, to lepo potrjuje tudi slika 10. V obeh drugih socialnih slojih najdemo drevje vseh stopnjen osutosti.

— Naraščanje premera pri drevju z nizko in srednjo osutostjo je le navidezno in izvira iz tega, da najdemo nepoškodovano drevje predvsem v mladih sestojeh (nižki premeri na 1. stopnji osutosti). Očitno je, da se premer pri visokih stopnjah osutosti zmanjša (stolpec: skupaj); to kaže na povezavo med prirastkom in osutostjo in da poškodbe, vsaj pri tem drevju, trajajo že dalj časa (glej tudi slikt 9 in 11c). Zadnjo ugotovitev potrjuje tudi analiza kazalnika soc2 (nekakšen indeksiran premer: relativna vrednost premera drevesa glede na srednji premer ploskve). Vse nadraslo in ne preveč poškodovano soraslo drevje ima nadpovprečne premere (soc2 > 100). Ta ugotovitev ne velja za podraslo drevje.

— Pomembni sklepi o gojitvi so mogoči na podlagi analize kazalnika soc2y1, ki je merilo za socialni vzpon (vrednosti > 1) ali sestop (vrednost < 1) dreves med dvema snemanjema (10 let). Preslojevanje je intenzivno predvsem v mladih sestojeh, pri tem so poleg osutosti pomembni še drugi dejavniki, kot sta socialna pripadnost in "fiziološka vitalnost" (osutosti ne moremo enačiti z vitalnostjo). Vzpenjalce najdemo samo še pri drevju obeh gornjih slojev. V sloju nadraslega drevja opažamo sicer signifikanten vpliv osutosti na intenzivnost preslojevanja, vendar osutosti do 45 % ne zadoščajo, da bi sprožile sestop dreves. Vzroki za tako
opazanje so lahko zelo različni: poškodbe trajajo šele kratek čas, učinek osutosti prerkrivajo drugi, močnejše vitalnostni dejavniki. Očitno sta socialni vzpon in sestop v odvisnosti od osutosti pri drevu soraslega sloja. Nikakršnih možnosti za socialni vzpon nima podraslo drevje ne glede na osutost.

Drevje v starih sestojih se na poškodbe krošenj ne odziva več s preslojevanjem, čeprav je pri močno poškodovanem drevju tako težnjo mogoče zaznati (nesignifikantno).

Analiza preslojevanja ima zaradi kratkega časovnega obdobja, ki ga zajema, za zdaj le omejeno vrednost. Vendar že ti rezultati kažejo na izjemno informacijsko vrednost kontrolne metode na stalnih vzorčnih ploskvaž, ki je ne dosega nobena druga klasična operativna inventurna metoda.

3.1.3 Poškodovanost sestojev

Za poglajšeno analizo zdravstvenega stanja gozda ne zadošča poznavanje deležev poškodovanega drevja. Poškodbe morajo biti razvrščene tudi prostorsko. Pri tem je sestoj kot temeljna načrtovalna enota vezni člen, ki omogoča včlenitev ocene poškodovanosti v sistem gozdogospodarskega načrtovanja in s tem tudi učinkovito ciljno ukrepanje.

Kot smo že omenjili v prejšnjem poglavju, smo v raziskavi za oceno poškodovanosti sestojev uporabljali dva kazalnika: povprečno osutost in indeks osutosti. Za posamezne kontrolne sestoe sta podana v preglednici 1, ki omogoča sočasno tudi primerjavo z drugimi sestojnimi kazalniki. Zopet lahko ugotovimo, da je stanje na Jeloviči nekoliko boljše kot na Pokljuki. Iz preglednice 1 je očitno tudi povezava med starostjo in poškodovanostjo sestojev; to navzore potrjuje tudi slika 6, ki predoča stanje na celotnem raziskovalnem profilu na Pokljuki.

Iz slike 6 vidimo, da je povprečna osutost v sestojih mlajših razvojnih faz nižja kot v starejših (sig.: 0,0001), obenem pa je manjši tudi delež poškodovanih drev. Ugotovitev je zelo pomembna z gozdno-gožitvenega stališča, saj pomeni, da je normalna nega mladih sestojev še zmeraj mogoče.

Razdalje na X-osi na sliki 6 so nanesene sorazmerno z velikostjo posameznih sestojnih tipov, tako da je mogoče oceniti tudi površinske razsežnosti poškod različne intenzitete. Vidimo, da prevladujejo starejši debeljaki, ki so soočasno tudi najbolj poškodovani.

Za ponazoritev prostorske razmesitve poškodb je bila na podlagi fotointerpretacije IRC aeroposnetkov izdelana karta poškodovanosti. Za Pokljuko je prikazana na sliki 7, na njej sta druga ob drugi predstavljeni sestojna karta in karta poškodovanosti.
Poškodovanost sestrojov je ponazorjena z indeksom poškodovanosti. Primerjava obeh kart potrjuje veliko odvisnost višine poškodb od razvojne faze.

Slika 6: Poškodovanost sestrojov na Pokljuki (fotointerpretacija 1 118 ha brez podstojnega drevja)

Bild 6: **Waldschäden in Bestaenden verschieden Entwicklungphasen** (Luftbilauswertung 1 118 ha – ohne unterdrucke Baeume)

Preglednica 7: Statistična analiza povprečne osutosti smreke v kontrolnih sestrojih vzdož snemalnega profila na Pokljuki (ANOVA)

Tabelle 7: Statistische Analyse (ANOVA) der Bestandes- schadwerte von Kontrollbestaenden (Fichte) auf dem Aufnahmeprofil Pokljuka (Fichte)

<table>
<thead>
<tr>
<th>Kontrolni sestoj odd.</th>
<th>St. vzorcev</th>
<th>Realno stanje</th>
<th>s popravkom na isti Dg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>POS 95 %-meje zaupanja</td>
<td>POS 95 %-meje zaupanja</td>
</tr>
<tr>
<td>37/38</td>
<td>33</td>
<td>49,64</td>
<td>27,4</td>
</tr>
<tr>
<td>54/55/59</td>
<td>27</td>
<td>19,18</td>
<td>16,5</td>
</tr>
<tr>
<td>60/79</td>
<td>17</td>
<td>20,76</td>
<td>16,4</td>
</tr>
<tr>
<td>85</td>
<td>28</td>
<td>42,43</td>
<td>24,3</td>
</tr>
<tr>
<td>104</td>
<td>15</td>
<td>30,33</td>
<td>23,6</td>
</tr>
<tr>
<td>Skupaj</td>
<td>120</td>
<td>34,33</td>
<td>22,2</td>
</tr>
</tbody>
</table>
Slika 7: Prikaz stanja gozlov na izbranem območju na Pokljuki. Primerjava sestojne karte s karto poškodovanosti kaže na medsebojne povezave med intenzivnostjo osutosti in starostjo (razvojno fazo) sestojev.

Bild 7: Schadenkarte und Bestandesstruktur auf Pokljuka (Luft-bilddarstellung). Der Ausschnitt zeigt auf enge Abhaengigkeit zwischen dem Schadindex und dem Bestandesalter (Entwicklungsphase) hin.
Raziskovalni profil na Pokljudi poteka od roba planote, ki je razmeroma izpostavljen vplivom industrijskega, širšega okolja proti notranjosti, kjer je planota razmeroma zavarnovana. Zato nas je zanimalo, če se to kaže tudi v prostorskem trendu poškodb vzdolž profila. Za analizo smo uporabili terestrične ocene poškodovanosti na vzorčnih ploskvah; te je bilo treba najprej očititi vpliva starosti sestojev in izbrati primerne kovariabli. Da bi postopek poenostavili, smo kot kovariablo uporabili kar temeljno srednji premer dreves na vzorčnih ploskvah. IZsledke analize podaja preglednica 7.

Iz preglede 7 razberemo, da po preračunu vrednosti povprečne osutnosti na isto razvojno fazo (isti Dg) ni bilo mogoče ugotoviti kakršnega koli prostorskega trenda.

3.2 Poškodovanost in rast

Zdravstvenega stanja dreves in sestojev ni mogoče meriti neposredno, temveč je oceniti s pomočjo pomožnih znamenj, kot so: osutost, kloroza itd. Med temi znamenji in zdravstvenim stanjem (vitalnost, poškodovanost) – to se dolgoročno kaže rasti in mortaliteti osebkov – mora (če so opažanja za oceno pojava relevantna) biti povezava, ta pa je podlaga za oblikovanje fiziološko pomembnih stopnj poškodovanosti. S podebnimi problemi ima opravka humana medicina, ki tudi postavlja nadrobno diagnozo na podlagi cele vrste posameznih preiskav (zanimivo je, da jih skupaj preračunavati na en sami kazalnik), zdravstvene statistike pa končno upoštevajo le starost in mortaliteto kot izraz zdravstvenega stanja neke populacije.

Ocena osutnosti je torej prava, če lahko dokažemo njeno povezavo z rastjo in mortaliteto dreves in sestojev. Pri tem je treba razločevati med rastjo (priprastkom) drevesa v debelino in ploskovnim priprastkom sestojev. Metoda kontrolnega snemanja na stalnih ploskvah, ki je bila podlaga našega terenskega snemanja, se je izkazala zelo primerna za tovrstne raziskave. Za obračune, ki jih bomo predstavili v naslednjih poglavjih, smo imeli na voljo 4995 posameznih (Id mm/l) in 209 ploskovnih (Ir m³/ha) vrednosti. Pomembna metodična prednost izbranega postopka je tudi v tem, da izpadi letnic ne morejo popačiti izmerjenega periodočnega priprastka.

3.2.1 Osutost in debelinski priprastek

Debelinski priprastek (Id) za posamezno drevo (i) je pri kontrolni metodi zelo preprosto izračunati, in sicer tako kot razlike v premeru dreves pri končni (d2i) in začetni meritvi (d1i):

\[Id_i = d_{2i} - d_{1i} \]
Hočevar M.: Poškodovanost in rast smrekega gorskega gozda...

Metoda določanja s parnimi razlikami premerov daje zanesljive rezultate; to je pokazala tudi primerjava z metodo vrtanj, ki so bila na Pokljuki primerjano opravljena na 248 drevesih različne stopnje osutosti (preglednica 8). Ocene debelinskega prirastka so skoraj enake (razlike niso signifikantne). Obenem rezultat računa kaže tudi na to, da izpada prirastka za zdaj na Pokljuki ni.

Preglednica 8: Statistična primerjava ocen debelinskega prirastka z metodo razlik premerov in vrtanja (test parnih primerjav)

Tabelle 8: Statistischer Vergleich der Durchmesserzuwachs schatzungen durch Bohrungen und Durchmesserdifferenzen (Test: Paarvergleiche)

<table>
<thead>
<tr>
<th>Razlika premerov</th>
<th>Vrtanje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesserdiff.</td>
<td>Bohrung</td>
</tr>
<tr>
<td>D mm/l</td>
<td>Id mm/l</td>
</tr>
</tbody>
</table>

n	248
sred.vrednost	3.40
stand. odkl.:s	1.87
s %	55
razlika	-0.048
Test razlika	p = 0.74 n.s.

Za oceno odnosov med debelinskim prirastkom in osutostjo je bila za obe rastišči in različne drevesne vrste opravljena najprej enovariantna analiza. Izledki so prikazani na slikah 8a do 8d.

Prikazi na slikah 8a do 8d podajajo absolutne vrednosti prirastkov za posamezne stopnje osutosti (10% stopnje). Za vsako vrednost je vršen tudi statistični interval zaupanja (p = 0.95), tako da je mogoče presoditi katere razlike med vrednostmi so značilne in katere ne.

Debelinski prirastki smreke na Pokljuki in Jelovicu so približno enaki in razmeroma skromni (3 mm) tudi pri neprizadetem drevju stopnje 1 (sl. 8a, 8b). Upad prirastka z naraščajočo osutostjo je opazen kot temeljni trend, na Jelovicu je izrazitejši kot Pokljuki. Jasnejši postajajo odnosi s porazdelitvijo drevja na mlade (mlajši in starejši drogovnjački) in stare sestoje (debeljaki).

Izrazit in značilen je upad prirastka jelke in listavcev na Jelovicu (sl. 8c, 8d). Z značilnim zmanjšanjem prirastka se odziva drevje že pri malenkosti presvetlitiv
krošnje. Iz gospodarskega zornega kota je pomemben podatek, da je nepoškodovana jelka s 4 mm debelinskega prirastka najmočneje priraščajoča drevesna vrsta na območju.

Bild 8: Zusammenhang zwischen Durchmesserwachstum und Nadelverlust fuer verschiedene Baumarten auf Pokljiuka und Jelovica (Kontrollbestaende, alle Entwick-lungsstufen zusammen)

Navedeni prikazi upoštevajo le enovariantne povezave med obema parametroma Id in osutstjo, ne pa mnogih interakcij z drugimi dendrometrijskimi znamenji. Da so
te pomembne, kaže že omenjena preglednica 6, ki čeprav težko berljiva, omogoča sočasno analizo vpliva še dodatnih dejavnikov, kot so: socialni položaj (soc2), razvojna težnja (soc21), premer (d) in starost drevja.

Zelo pomemben dodatni dejavnik, ki interakcijsko vpliva na odnos med debelinskim prirastkom in osutostjo, je starost drevja. Iz slik 9a in 9b (glej tudi sliko 13) se za smreko lepo vidi, da je reakcija mladega in starega drevja na presvetljevanje krošenj (osutost) zelo različna. Kot bomo za izbrane sestoje še nadrobneje videli, so predvsem zelo občutljivi mladi sestoji.

Slika 9: Vpliv starosti sestojev na povezavo med debelinskim prirastkom in osutostjo pri smreki na Pokljuki (a) in Jelovici (b).

Bild 9: *Einfluss des Bestandesalters auf die Beziehung zwischen Durchmesserwachstum und Nadelabfall auf Pokljuka (a) und Jelovica (b).*
Zanimiv vpogled v celostno rastno ravnanje mladih smrekovih sestojev daje za spremenljive prirasteke, osutost in socialni položaj (socialni indeks: socz) tudi slika 10: z rastčim socialnim indeksom prirastek strmo linearno narašča in pada razmeroma počasi z naraščajočo osutostjo (počasneje pri podstojnem drevoju). Iz slike razberemo tudi značilno upadanje deleža močno poškodovanega dreva z naraščajočim socialnim indeksom; to kaže na odločilen pomen nepoškodovane krošnje za socialno preslojevanje. V mladih sestojeh z velikim dinamičnim preslojevanjem že malekostne izgube prirastka zaradi poškodb krošenj vodijo k socialnemu sestopu (glej tudi slika 11b).

Slika 10: Vpliv osutosti in socialnega položaja drevoja na debelinsko rast pri smreki (Pokljuka – mladi sesoje)

Bild 10: *Einfluss des Nadelabfalls und Socialindexes auf Durchmesserwachstum bei Fichte (Pokljuka – Jungbestände)*

Za razumevanje odziva drevoja različnih starosti na naraščajočo presvetljevanje krošenj so zelo poučni izsledki analize debelinskega prirastka v dveh različno starih, homogenih smrekovih sestojeh na Pokljuki (kontrolni sestoj 1: debeljak, 130 let, kontrolni sestoj 2: drogovnjak, 50 let; skupaj: 985 dreves), ki so prikazani na slikah 11a do 11c. Bistvene izsledke, ki jih podaja analiza, lahko strnemo v tele ugotovitve:

— Debelinski prirastek starega sestaja je še razmeroma visok (slika 11a) in višji kot v mladem sestoju (svetlitveni učinek). Osutost na prirasteke starega sestaja v širokih mejah nima vpliva (razlike niso sig.). Nasprotno se odzva mlado drevoje že na majhne izgube igle z zmanjšanjem prirastka (sig.). Zanesljivost ocen prirastka za obe skupine drevoja je na sliki 11a označena z intervalom zaupanja.
— Znak soc2/1 ponazarja trend preslojevanja drevja v odvisnosti od osutosti od prve do druge meritve (10 let). Ugotovimo lahko, da se staro drevje kljub dobremu priraščanju v širokih mejah ne odziva s preslojevanjem. Nasprotno najdemo v mladem sestoju vzpenjalcje le pri drevju s neprizadetimi krošnjami (11b).

— Izgube debelinskega prirastka se pri poškodovanem drevju kažejo tudi v nižjih prsnih premerih (11c) pri drugi meritvi. Za obe skupine drevja je močnejši upad opazen šele pri osutostih, ki presegajo 45 %. Krivulja soc2 označuje socialno pripadnost pri zadnji meritvi. Ugotovimo lahko, da spada drevje z več kot 45-odstotno osutostjo predvsem k podstojnem drevju.

![Graph showing Osutost %](image1)

a) Osutost in debelinska rast
Nadelverlust und Durchmesserwachstum

![Graph showing socind’s ratio](image2)

b) Socialni vzpon in sestop drevja različnih stopanj osutosti
Umsetzen und Nadelabfall
c) Razmerja med osutostjo, prinim premerom in socialnim poležanjem drevja
Beziehungen zwischen Nadelverlust, Brusthöheendurchmesser und Sozialindex

Slika 11: Povezava med osutostjo in nekaterimi dendrometrijskimi znaki v sestojih različnih starostih (Pokljuka, kontrolne sestoj: odd. 54, 55, 59 in odd. 37, 38)
Bild 11: Beziehung zwischen Nadelverlust und dendrometrischen Parametern in Bestandenden verschiedenen Alters (Pokljuka, Kontrolbestände: Abt.: 54, 55, 59 und Abt.: 37, 38)

Poleg omenjenih dejavnikov, vplivajo na prirastek še mnoga druga znamenja, ki pa jih dozdatno analizino ne upoštevajmo. Da bi lahko ocenili tisti vpliv osutosti na debelinski prirastek, ki je oddeljen od drugih dejavnikov, smo za posamezne kontrolne sestoje (enotna starost, boniteta rastišča) opravili multivariabno regresijsko analizo po temelju vzorce:

\[\text{Id}(\text{mm}) = f(d(\text{cm}), \text{soc}_2, \text{osutost} \cdot \%), \text{Dg}, \text{SDI}) \]

Id: debelinski prirastek mm/eto;
d: premer drevosa cm;
soc: socialni indeks;
osutost: ocena v %;
Dg: temeljično srednji premer ploskve;
SDI: kazalnik relativne gostote sestova na ploskvi.

Izidi take analize so potrdili prej podane ugotovitve. Vpliv spremenljive osutost je bil značilen le v mladih kontrolnih sestojih. Na podlagi izračunanih parcialnih regresijskih koefficientov se prirastek v teh sestojih zmanjšuje za vsako stopnjo osutosti (10% stopnje) za 4-7%.

3.2.2 Časovni trend debelinskega prirastka
Na vprašanje, ali zaradi propadanja gozdov lahko govorimo tudi o upadanju prirastka, bomo najprej skušali odgovoriti na temelju analize vrtanju prirastka, ki smo jih opravili
na Pokljuki na 248 drevesih, in periodičnih merjenj premerov na Jelovici. Obakrat smo imeli na voljo podatke o debelinskem prirastku za dve obdobji.

Časovni trend debelinskega prirastka dreves različnih stopenj poškodovanosti (ocena poškodovanosti na koncu obdobja!) je za smreko na Pokljuki viden iz slike 12. Trend je prikazan kot prirastni indeks (ld82/76), to je kot količnik med debelinskem prirastkom v zadnem obdobju (ld1982-87) in debelinskim prirastkom v prejšnjem (ld1976-1982). Vrednosti čez 1.0 pomenijo boljšo rast v zadnjem obdobju, pod 1.0 pa pojemanje prirastka. Analiza je zopet narejena ločeno za mlade in stare sestoje. Iz slike 12 lahko razberemo tole:

— Rast drevja nizkih stopenj osutosti je v zadnjem obdobju boljša kot v preteklem. Ker je njihov delež še razmeroma visok, ugotavljamo, da je povprečni debelinski prirastek v zadnjem obdobju signifikantno, za 10 %, višji (glej tudi sliko 13) kot v prejšnjem (debeljaki: +12.8 %, drogovnjaki: +5.4 %).

— Drevje v starih sestojih se skoraj ne odziva na naraščajoče presvetlitev krošnje (vpliv ni signifikanten, p<0.09) v primerjavi z mladimi sestoji pa je raven njegovega priraščanja razmeroma visoka. Nasprotno se odziva mlado drevje na naraščajoče osustot zelo signifikantno (p<0.00001) z negativnim rastnim trendom.

![Prirastni indeks ld82/ld76](image)

Te ugotovitve nazorno dopolnjujejo izidi parnih analiz absolutnega debelinskega prirastka na sliki 13, ki podaja za oba tipa sestojev in ves gozd trend priraščanja neposredno v odvisnosti od stopnje osutosti in za poprečje populacije. Čeprav je splošni trend priraščanja pozitiven, nara nadrobna analiza trendov kaže (pozitivni trend ugotavljamo v mladih sestojih le pri drešju s polnimi krošnjami in v starih sestojih do osutosti 35%), da je stanje zelo labilno, saj bo poslabšanju zdravstvenega stanja gozda nujno sledil tudi pad prirastka.

Slika 13: Periodična primerjava debelinskega prirastka dreva različnih razvojnih faz in stopnje osutosti (smreka, Pokljuka: analiza izvrtkov)

Bild 13: Zuwachsniveau der Fichtenbaume verschiedener Nadelabfallklassen in Alt- und Jungbestanden (Pokljuka: Bohrungen an ausgewählten Frohebaumen)

Dozdajšnji izsledki kažejo, da so med osutostjo in prirastkom na območju Pokljuke-Jelovice obstajajo značilne odvisnosti. To spoznanje lahko uporabimo pri iskanju odgovora na vprašanje o začetku pojava poškodb. Na sliki 14a in 14b je za obe obdobji zopet prikazan debelinski prirastek glede na osutost. Primerjava obeh slik kaže, da je odvisnost med prirastkom in osutostjo izrazita v zadnjem obdobju (14a, sig. p = 0.002), v prejšnjem pa ni.

Bild 14: Zusammenhang zwischen Dickenwachstum und Nadelverlust im Zeit
ergleich (Pokljuka: Fichte, alle Bestaende)
Iz tega lahko torej sklepamo, da se poškodbe na Pokljuki pojavile šele v osemdesetih letih.

Izidi podobne analize prirastnih trendov na Jelovici potrjujejo gornje ugotovitve le deloma. V povprečju kažejo le listavci v zadnjem obdobju višji prirastek kot v prejšnjem (sig.p = 0.013), pri jelki pa je ta v obeh obdobjih približno enak (n.s.). Prirastek smreke se zmanjšuje (sig.). Nekoliko bolj diferencirano sliko dobimo, če analizo opravimo ob upoštevanju osutosti dreves, kot je podana na slikah 15a do 15c. Tudi tu lahko za vse drevesne vrste ugotovimo izboljšano rast pri nepoškodovanem drevju. Že malenkostna osutost pa hitro vodi do upadanja rasti. Negativen trend je značilen za smreko, pri obeh drugih vrstah pa je le nakazan.

a) smrcka

b) jelka

c) listavci

Slika 15: Trend debelinskega prirastka in osutost (Jelovica-kontrolni sestoji; prirastni indeks = \(I_{83-88} : I_{72-83} \))

Bild 15: Zusammenhang zwischen dem Zuwachstrend und Nadelverlust (Jelovica Kontrollbestaende; \(I_{83-88} : I_{72-83} \))

3.2.3 Poškodovanost in izgube sestojnega volumenskega prirastka

Upadanje debelinskega prirastka posameznih dreves z osutostjo ne pomeni nujno tudi padajočih trendov sestojnega prirastka, ki je prava lesnoproizvodna mera. O izgubah govorimo namreč lahko šele, če ugotovimo upad ravni sestojnega prirastka (na površino preračunani volumenski prirastek: \(l_v \) v m\(^3\)/ha) v primerjavi s prejšnjim obdobjem ali z nepoškodovanim gozdom.

Odična priložnost za poglubljeno tovrstno analizo se je ponudila v naši raziskavi, saj smo imeli podatke kontrolnih meritev na 205 stalnih vzorčnih ploskvah. Datoteka je obsegala za vsako ploskev vrednost ploskovnega priraska (lv/ha), oceno povprečne
osutosti (POS) in indeks osutosti (IND) ter vrsto kazalnikov sestojnih in rastiščnih značilnosti; to je omogočilo zelo poglobljeno analizo medsebojnih odvisnosti.

Najprej smo opravili multivariantno regresijsko analizo odvisnosti med sestojnim prirastkom in sestojnimi in rastiščnimi kazalniki za celotno pokljuško-jelovsko območje. Razmeroma pomembne razlike v stanju in rasti sestojev na obema območjih, so se pokazale v razmeroma visoki preostali varianci (doseženi $R^2 = 0.76$), so nas končno prisilile, da smo morali obravnavati območji ločeno. Značilen vpliv obega kazalnikov poškodb (POS, IND) na sestojni prirastek smo ugotovili na Pokljuki. Izidi regresijske analize za indeks osutosti so podani v preglednici 9. Vidimo, da je vpliv indeksa osutosti visoko značilen in da skupaj z drugimi sestojnimi kazalniki pojasnjuje 82.7% celotne variabilnosti sestojnega prirastka. Enaka analiza je bila opravljena tudi s spremenljivko povprečna osutost (POS), ki je dala malenkostno boljši rezultat ($R^2 = 0.83$). Bistveno boljšo izračun smo končno dosegli z upoštevanjem logaritemskih parametrov ($R^2 = 0.88$). Zaradi preprostosti bomo v nadaljevanju nadrobneje predstavili rezultate najprej omenjenega izračuna (preglednica 9).

Preglednica 9: Regresijska ocena sestojnega prirastka na Pokljuki na podlagi sestojnih in rastiščnih kazalcev (Pokljuka-kontrolni sestoj)

<table>
<thead>
<tr>
<th>variabla</th>
<th>Koeficient</th>
<th>SE</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>-134,5920</td>
<td>28,399496</td>
<td>0.00001</td>
</tr>
<tr>
<td>IND</td>
<td>-0,0215</td>
<td>0,008184</td>
<td>0.00950</td>
</tr>
<tr>
<td>SI</td>
<td>-2,8421</td>
<td>0,735967</td>
<td>0.0002</td>
</tr>
<tr>
<td>LN-SI</td>
<td>64,3640</td>
<td>14,445811</td>
<td>0.00001</td>
</tr>
<tr>
<td>(G/ha)/(STAR)</td>
<td>2,8693</td>
<td>1,233784</td>
<td>0.0218</td>
</tr>
<tr>
<td>G/ha</td>
<td>0,2403</td>
<td>0,016696</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

$R^2 = 0,8201$ SE ocena = 2,01 m³/ha

n = 120
spremenljivka:
y = lv m³/ha
SI = sita indeks, smreka
G/ha = temeljnica m³/ha
STAR = starost sestaja v letih
IND = indeks poškodovanosti v %

Zanesljivost ocene prirastka na podlagi predstavljenega vzorca je tako raz meroma visoka, kot to kaže tudi slika 16.
Slika 16: Zanesljivost regresijske ocene sestojnega prirastka (Pokljuka)

Bild 16: Treffsicherheit der Regressionsschätzung für die Berechnung des Bestandeszuwachses (Pokljuka)

Vpliv poškodovanosti sestoj (indeksa) na raven sestojnega prirastka, potem ko je bil računsko odstranjen vpliv drugih dejavnikov, prikazuje slika 17. Iz nje je mogoče razbrati, da je na hektar preračunani volumenski prirasteč v sestojh brez poškodb (brez dreves z IND > 25 %) za približno 1 m³/ha višji, v povsem poškodovanih sestojih (IND = 100 %) pa za 2 m³/ha nižji od povprečja (10.35 m³/ha). S podrobnimi, da sestoji z IND = 0 predstavlja razprasto spobnost drugega gozda, znašajo trenutno izgube sestojnih prirastkov na Pokljuki glede na nepoškodovan gozd približno 1 m³/ha ali 10 %.

Slika 17: Vpliv sestojnega indeksa poškodovanosti na raven sestojnega prirastka (Pokljuka: osnova regresija v pregled. 9)

Bild 17: Komponenteneffekt von Beschädigungsindex auf Bestandeswachstum (Pokljuka: Grundlage Regression in Tab. 9)

Podobno analizo smo opravili tudi na Jelovici. Regresijski model, ki smo ga dobili, je sicer pojasnil 77.88 % nihanja sestojnega prirastka, vendar ni zajel nobenega od
obeh kazalnikov poškodovanosti. Razlog temu so razmeroma nizke vrednosti poškodb in večja raznотorost podatkov. Trend sestojnega prirastka na Pokljuki lahko presodimo na podlagi periodične primerjave analize izvrtkov, kot smo to že nakazali v prejšnjem poglavju. Ugotavljamo, da je na Pokljuki sestojno volumenski prirastek v zadnjem obdobju za približno 10 % višji kot v prejšnjem, to povišanje bi bilo kar 20-odstotno, če ne bi obenem nastale prirastne izgube na drevju z močnejše osutimi krošnjami.

Na Jelovici lahko ocenimo trend sestojnega prirastka neposredno s periodično primerjavo ploskovnih in volumenskih prirastkov (parne primerjave) obeh zaporednih obdobij. Za razliko od Pokljuke ugotavljamo na Jelovici povprečno precejšen upad sestojnega prirastka, ki znaša 8.6 %, če upoštevamo vse vzorce profila (na 5 vzorcih je bil opravljen končni posek, n = 89 vzorcev), če pa upoštevamo le vzorce z lesno zalogo, pa še vedno 4.34 %. Razlogi zato so različni, pomembni pa so negativni starostni trend in razmeroma močna redčenja v starih sestojih (izidi regresijske analize). Negativen vpliv sestojnih poškodb je bil očiten v močnejše poškodovanih sestojih (preglednica 10).

Preglednica 10: Periodična primerjava višine sestojnega volumenskega prirastka na Jelovici za sestoje z različno intenziteto poškodb (kontrolni sestoji: parne primerjave)

| Tabelle 10: Periodenvergleich des flächenbezogenen Massenzuwachses auf Jelovica fuer Bestaende unterschiedlicher Schadgrade (Kontrollbestaende: Paarvergleiche) |
|---|---|---|---|---|
| Indeks osutosti | n | I_{72-83} m^3/ha | I_{83-98} m^3/ha | Razlika m^3/ha | sig. p = 95 % |
| IND < 10 % | 50 | 7.60 | 7.21 | -0.38 | n.s. |
| IND > 10 % | 34 | 9.04 | 6.75 | -2.30 | 0.016 |

Nadrobnejše je trend upadanja sestojnega prirastka v odvisnosti od poškodovanosti sestojev prikazan na sliki 18; na njej so poleg srednjih vrednosti podane tudi standardne napake. Slika razmeroma jasno nakazuje negativno povezavo med trendom sestojnega prirastka (I_{v2}/I_{v1}) in sestojnimi poškodbami, vendar tega zaradi premaghega števila vzorcev v posameznih razredih in razmeroma visoke spremenljivosti, ni bilo mogoče tudi statistično potrditi.

Kot vidimo iz slike 18, tudi na Jelovici sestoji brez poškodb in malo poškodovani sestoji v zadnjem obdobju boljše priraščajo kot v prejšnjem; to vsaj nekoliko potrjuje naše ugotovitve na Pokljuki.
IZSLEDKI NAŠIH RAZISKAV SMREKOVIH GORSKIH GOZDOV NA POKLJUŠKO-JELOVIŠKI PLANOTI

K zdravstvenemu stanju tamkajšnjih gozlov ni tako dramatično, kot so napovedovali nekateri. Razmeroma ohranjeni so gozdi na Jelovici, saj delež očitno poškodovanega drevja (IND = > 25%) ne presega 10.5% (smreka: 10.7%); to je bistveno ugodnejše, kot je ugotovil Šolar (Šolar 1990) za vso Slovenijo (stanje 1987; iglavci, IND: 42.65, smreka, IND: 39.3). Stanje na Pokljuki je nekoliko manj ugodno (iglavci, IND: 35.3%), vendar še zmeraj pod slovenskim povprečjem. To velja tudi za primerjave s tujišč, čeprav ocene niso povsem primerljive (npr. z Avstrijo). Ker smo pri našem ocenjevanju uporabljali švicarski referenčni atlas krošenj (EAFV, 1986), je zanimiva ugotovitev, da je delež očitno poškodovanih smerek v Švicari približno na jelovški ravni (IND: 11%, Schlaepfer in Haemmerli 1990). V zvezi s tem je pomembna ugotovitev, da je delež očitno poškodovanih dreves najnižji v pogojno najpomembnejšem sestojnem sloju nosilcev funkcij in dominante.

Navedene številke so samo povprečja, ki ne povedo ničesar o bistvenih razlikah med posameznimi drevesnimi vrstami, sestojnimi tipi in razvojnim fazami ter o vplivu socialnega statusa drevja. Kot kažejo izsledki naših raziskav, so med temi kazalniki, in osutnostji signifikantne korrelacijske povezave. Bistvene ugotovitve so, da je drevje v starih sestojih bolj osuto kot v mladih in da je jelka najbolj ogrožena drevesna vrsta; sledi ji smrek in z močnim zaostankom še bukev. Tudi te ugotovitve se skladajo s izsledki drugih slovenskih raziskav (Šolar 1990) pa tudi tujih (Schlaepfer in Haemmerli 1990). Vpliv starosti je tako močan, da lahko prekrije vse druge vzroke. Zato je treba pri vseh prostorskih raziskavah jo upoštevati. Na Pokljuki smo tako
pokazali, da prostorski vzorec pri upoštevanju starosti ni signifikanten, iz tega sklepamo, da za poškodbe niso krivi krajevi povzročitelji.

Raziskave sestojnega, na hektar preračunancega volumenskega prirastka so pokazale, da je za zdrave sestojne splošni pozitivni trend naraščanja prirastka v zadnjih letih za približno 5 do 20 %, to ustreza tudi ugotovitvam v tujini (Kenk 1989). Kot morebitni vzrok te pospešene rasti navaja Kenk spodbujevalni učinek povečevanja deleža CO₂ v atmosferi in gnojenja z atmosferskim dušikom ter ugodnih podnebnih razmer. S sestojnimi poškodbami se prirastek zmanjšuje, in to je bilo na Jelovici dokazano za sestajo z indeksom osutnosti nad 10 %. Na Pokljuki je v zadnjem obdobju raven sestojnega prirastka za približno 10 % višja kot v prejšnjem, na podlagi izsledkov regresijske analize pa menimo, da bi bila ta lahko še za 10 % višja (skupaj 20 %), če se ne bi sočasno zmanjševal prirastek zaradi sestojnih poškodb. Podobne raziskave v svetu so še zelo redke in se povečni skladajo z našimi ugotovitvami (Kramer in Athari 1984; Schmidt-Haas 1990; Utschig 1989) saj kažejo, da so lahko izgube prirastka celo nekaj večje kot v našem primeru.

Naje raziskave zelo jasno povedo, da je propadanje gozdov celosten, večštenjen problem, ki zahteva celočlen in obenem po stratumih diferenciran način obravnavo. Na gozdni ekosistem deluje hkrati množica pozitivnih in negativnih dejavnikov,
rezultante r, pa ni mogoče oceniti na podlagi snemanj na posameznih drevesih ali modelnih raziskovah na homogeniziranih prirode blastedih ploskvah. Preučevanje dodatno otežuje to, da se posledice negativnih vplivov okolja praviloma pojavljajo s precejšno časovno zanudo. Zanesljive izid so zaradi tega mogoče le na podlagi periodičnih snemanj. Raziskave je treba prenesti z opisa odziva drevesa na studij ploskovnih sestojnih kazalnikov. Naše izkušnje kažejo, da je za take raziskave raciona in dovij natančni kombiniran način s terenskimi snemanji dendrometrijskih kazalnikov na kontrolnih vzorčnih ploskvah v sklopu redne gozdnine inventure in kakovostnih znamenj (poškodovanost, struktura sestojev in krajine) na posnetkih iz zraka.

5 ZUSAMMENFASSUNG

Priloga/Anhang

Strukturalni in dendrometriični znaki dreves različnih stopnjen poškodovanosti (Pokljuka, smreka – kontrolni sestoji).

Struktur- und Messparameter der Baeume unterschiedlichen Schadstufen (Pokljuka, Fichte – Kontrollbestande)

<table>
<thead>
<tr>
<th>Osebnost</th>
<th>Nadrast 1</th>
<th>Sorast 2</th>
<th>Podrast 3</th>
<th>Skupaj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n i d mm</td>
<td>d1,3 cm</td>
<td>soc 2</td>
<td>soc 2/1</td>
</tr>
<tr>
<td><15 %</td>
<td>153</td>
<td>14,45</td>
<td>74,99</td>
<td>0,95</td>
</tr>
<tr>
<td>15</td>
<td>153</td>
<td>14,45</td>
<td>74,99</td>
<td>0,95</td>
</tr>
<tr>
<td>30</td>
<td>153</td>
<td>14,45</td>
<td>74,99</td>
<td>0,95</td>
</tr>
<tr>
<td>60</td>
<td>153</td>
<td>14,45</td>
<td>74,99</td>
<td>0,95</td>
</tr>
<tr>
<td>85</td>
<td>153</td>
<td>14,45</td>
<td>74,99</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupa</th>
<th>n i d mm</th>
<th>d1,3 cm</th>
<th>soc 2</th>
<th>soc 2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>366</td>
<td>1,15</td>
<td>14,62</td>
<td>71,83</td>
</tr>
<tr>
<td><15 %</td>
<td>129</td>
<td>3,51</td>
<td>37,38</td>
<td>106,55</td>
</tr>
<tr>
<td>15</td>
<td>129</td>
<td>3,51</td>
<td>37,38</td>
<td>106,55</td>
</tr>
<tr>
<td>30</td>
<td>129</td>
<td>3,51</td>
<td>37,38</td>
<td>106,55</td>
</tr>
<tr>
<td>60</td>
<td>129</td>
<td>3,51</td>
<td>37,38</td>
<td>106,55</td>
</tr>
<tr>
<td>85</td>
<td>129</td>
<td>3,51</td>
<td>37,38</td>
<td>106,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupa</th>
<th>n i d mm</th>
<th>d1,3 cm</th>
<th>soc 2</th>
<th>soc 2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>141</td>
<td>4,65</td>
<td>37,33</td>
<td>147,03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stari sestoji >60 let</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupa</th>
<th>n i d mm</th>
<th>d1,3 cm</th>
<th>soc 2</th>
<th>soc 2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>357</td>
<td>3,35</td>
<td>37,91</td>
<td>101,86</td>
</tr>
<tr>
<td>30</td>
<td>357</td>
<td>3,35</td>
<td>37,91</td>
<td>101,86</td>
</tr>
<tr>
<td>60</td>
<td>357</td>
<td>3,35</td>
<td>37,91</td>
<td>101,86</td>
</tr>
<tr>
<td>85</td>
<td>357</td>
<td>3,35</td>
<td>37,91</td>
<td>101,86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupa</th>
<th>n i d mm</th>
<th>d1,3 cm</th>
<th>soc 2</th>
<th>soc 2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>4,65 / 37,33/ 147,03/ 1,06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Va sestoji</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupa</th>
<th>n i d mm</th>
<th>d1,3 cm</th>
<th>soc 2</th>
<th>soc 2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>4,65 / 37,33/ 147,03/ 1,06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skupaj</th>
<th>n i d mm</th>
<th>d1,3 cm</th>
<th>soc 2</th>
<th>soc 2/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>4,65 / 37,33/ 147,03/ 1,06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 REFERENCE

FERLIN, F., 1990: Vpliv onesnaženja ozračja na rastno zmogljivost odraslih smrekovih sestojev. VTOZD za gozdarstvo, Ljubljana, magistrsko delo 141 s.

HOČEVAR, M., 1990: Ugotavljanje stanja in razvoja gozdov s kontrolno vzorčno metodo. VTOZD za gozdarstvo, Biotehniška fakulteta Ljubljana, 45 s.

KALAFADŽIČ, Z. IN KUŠAN, V., 1990: Opadanje prirasta jele (Abies alba L.) kao posljedica novonastalih oštećenja šuma u Gorskom Kotaru. Šum. list, 113, 9/10: 415-422

Hočevar M.: Poškodovanost v rast smržkovega gorskega gozda...

