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Human motor adaptation in whole 
body motion
Jan Babič1,*, Erhan Oztop2,* & Mitsuo Kawato3

The main role of the sensorimotor system of an organism is to increase the survival of the species. 
Therefore, to understand the adaptation and optimality mechanisms of motor control, it is necessary 
to study the sensorimotor system in terms of ecological fitness. We designed an experimental paradigm 
that exposed sensorimotor system to risk of injury. We studied human subjects performing uncon- 
strained squat-to-stand movements that were systematically subjected to non-trivial perturbation. We 
found that subjects adapted by actively compensating the perturbations, converging to movements 
that were different from their normal unperturbed squat-to-stand movements. Furthermore, the 
adapted movements had clear intrinsic inter-subject differences which could be explained by different 
adapta- tion strategies employed by the subjects. These results suggest that classical optimality 
measures of physical energy and task satisfaction should be seen as part of a hierarchical organization 
of optimality with safety being at the highest level. Therefore, in addition to physical energy and task 
fulfillment, the risk of injury and other possible costs such as neural computational overhead have to be 
considered when analyzing human movement.

The most important function of the sensorimotor system of an organism is to help to increase the chances for 
the survival of the species. It is therefore necessary to understand the sensorimotor system in terms of ecological 
fitness. The mechanisms of sensorimotor adaptation and optimality in motor control1 need to be explainable 
through such understanding. The models of sensorimotor mechanisms derived from the theories that disregard 
this utterly important aspect would be myopic and hence likely to be suboptimal when considered in the realms 
of brain, body and environment interaction. The adaptability of the sensorimotor system on top of the evolu-
tionary optimization that putatively has taken place indicates further refinement in movement policy during the 
lifetime of the organism. This could be achieved by so called Reinforcement Learning (RL) to maximize a fitness 
measure that captures parameters such as neural and muscle energy costs, and danger of bodily injury. Indeed, 
there is scientific evidence showing the RL is one of the key learning mechanisms of the brain2,3. The previous 
studies that addressed internal model acquisition4, adaptation5, and minimization of control outputs6–9 can be 
seen as processes contributing to the optimization in the appropriate manifold of the ‘true’ fitness function, which 
is determined by the context (i.e. the experimental paradigm). For example, the control engineering framework 
of minimizing total force or torque generated by the musculoskeletal system disregards neural computation cost 
and injury risk. A richer framework is necessary to detect the tradeoff mechanisms between neural and muscle 
energy cost and allow us to develop theories on how the brain copes with this problem by reverting to appar-
ently suboptimal, memory based strategies. Previous computational motor control studies generally focused on 
arm-reaching, probably due to the very successful and fruitful experimental paradigm introduced for visually 
guided arm-reaching and the force field adaptations10–12. Most experiments for the arm-reaching studies involve 
only the motion of the arm while the rest of the body is usually constrained and has no effect on the task of the 
experiment. This confined approach which takes into account only the motion of an isolated part of the body 
disregards the most important determinants of the ecological fitness, such as the risk of injury and neural com-
putational energy.

There are several motor control studies that, either directly or indirectly, examined arm-reaching and sub-
sequent postural compensations. Most notably, a study investigating how dynamic learning of arm-reaching 
transfers across posture13 found a support for the existence of separate mappings for posture and movement, 
which adapt independently but encode similar dynamics. In a study where human subjects had to perform dis-
tant arm-reaching motions while using their other hand to maintain postural balance during external perturba-
tions14, it was shown that postural control precedes and predicts volitional motor control. It was also shown that 
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center-of-mass is the primary stabilized reference for posture and movement coordination during the whole-body 
reaching15.

In spite of the success of the use of arm-reaching to study human control, it is time to test these computa-
tional ideas with movements that involve other critical issues, such as injury risk and computational cost. With 
this motivation, we designed an experimental paradigm that exposes sensorimotor control mechanisms and the 
adaptations to danger of falling and injury. We studied an unconstrained whole body motion where the human 
subjects performed squat-to-stand movements that were methodologically subjected to non-trivial perturba-
tions. The squat-to-stand motion in our study can be considered as a whole body equivalent to the well-studied 
arm-reaching motion with the same level of complexity, yet it inherently involves the danger of falling and injury. 
Through this novel paradigm, we hope to position computational motor control in a broader hierarchical learning 
framework, where reinforcement learning drives the adaptation and learning within the lifetime of the organism. 
Only through such an ecologically valid perspective, we can start talking about the effects of injury avoidance and 
neural energy on movement strategies such as memory dependence16, cheap and approximate solutions17, which 
have a direct effect on fitness maximization.

Results
The experimental setup involved a 6 degrees-of-freedom Stewart platform on which human subjects stood and 
performed squat-to-stand movements (Fig. 1A). The vertical velocity of the approximate center-of-mass (COM) 
of the subjects was used to generate (or not, depending on the condition) perturbations in the anteroposterior 

Figure 1. (A) Experimental setup. The subjects were performing squat-to-stand movements standing on the 
6 degrees-of-freedom Stewart platform. A visual feedback-loop in the form of a LCD was showing the subjects 
their current center-of-mass position (COM) in the sagittal plane together with the allowed circular areas of the 
fully squatted and fully extended COM positions. The vertical velocity of the subject’s COM was acquired by 
the motion capture system in real time and was used to generate perturbations in the form of a linear motion 
of the platform in the posterior direction. During the catch trials, the perturbation was turned off without the 
knowledge of the subjects. (B) Experimental protocol. The experimental protocol was made up of eight blocks 
of trials, each consisting of 30 squat-to-stand motions. Subjects proceeded through the experiment by first 
making unperturbed motions (block 1). The perturbations were then introduced in the six following blocks 
(2, 3, 4, 5, 6, 7). Finally, subjects again performed unperturbed motions (block 8). Catch trials were randomly 
occurring in the last two perturbation blocks.
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direction; the upward motion caused a posterior displacement of the platform whereas the downward motion 
caused no displacement of the platform. A representative set of motion trajectories, velocity profiles, and accelera-
tion profiles is shown on Supplementary Fig. S1 and are very similar to those found in sit-to-stand task18 as well as 
those found in point-to-point multi-joint arm reaching task. The subjects performed squat-to-stand movements 
(called trials) in three types of conditions: perturbed (P), unperturbed (U) and catch (C). In the unperturbed 
condition, the platform remained still while in the perturbed condition the platform induced perturbations. The 
catch condition was almost the same as the perturbed case. However, for some randomly selected squat-to-stand 
trials, the perturbation was turned off without the knowledge of the subjects. Perturbation condition aimed to 
investigate learning and adaptation; whereas the catch condition aimed to uncover the mechanism of the adap-
tation employed by the subjects. The effect of perturbation and learning on a given COM trajectory was assessed 
by the deviation of this trajectory from the straight line between the start and end COM position of the subject 
under consideration, where the position of the COM was measured with respect to the platform. The deviation 
was quantified as the unsigned area between the actual COM trajectory and the straight line.

The experiment was organized in blocks consisting of a set of squat-to-stand movements as shown in Fig. 1B. 
Corresponding to the experimental conditions, there were three types of blocks, unperturbed blocks (U blocks), 
perturbed block (P blocks), and catch trial block (C blocks). Subjects proceeded through the experiment by first 
making unperturbed motions (block 1). The perturbations were then introduced in the six following blocks (2, 3, 
4, 5, 6, 7). Finally, subjects again performed unperturbed motions (block 8) to check whether the perturbations 
had any effect on unperturbed motion of the subjects. Catch trials were randomly occurring in the last two per-
turbation blocks.

Adaptation to perturbations. The squat-to-stand trials without perturbation (U block) showed a 
near-straight COM trajectories across all subjects. These trials were quite consistent, and had a slight curvature 
in the posterior direction (leftwards in the trajectory figures and downwards in the statistical figure). Their aver-
age duration was 0.90 ±  0.078(SD) s. The first perturbed block (P block) for each subject reflected the expected 
COM trajectory perturbation: the trajectories became curved towards the anterior direction (rightwards in the 
trajectory figures and upwards in the statistical figure). This was expected as the perturbation towards the pos-
terior direction caused the feet to be carried posteriorly with respect to the subject’s COM (assuming no foot 
slip), hence the subject’s COM moved in the anterior direction with regard to the feet and the platform. A typical 
displacement of the platform in the posterior direction was approximately 8 cm and was always much larger than 
the maximal COM displacement in the anterior direction. Thus, the COM motion was not a physically trivial 
counteraction to the platform motion. In the following P blocks the deviation from the unperturbed trajectories 
visibly reduced (Fig. 2). The average duration of perturbation trials was 0.96 ±  0.059(SD) s which is not signifi-
cantly different from the duration of unperturbed trials.

Analysis of variance showed significant adaptation effect of squat-to-stand repetitions with perturbations in 
reducing the deviation of the COM trajectory from the unperturbed trajectories, F(3, 21) =  5.96, p =  .004, 
η = .46partial

2 . Subjects rapidly adapted to platform-induced perturbations reducing the deviation of the COM 
trajectory (Fig. 3A). Post-hoc analyses showed that the reduction was significant from P blocks 2 to 4, t(7) =  3.75, 
p =  .007. Trend analysis revealed a significant linear trend, F(1, 7) =  6.36, p =  .04, η = .47partial

2 , indicating that 
adaptation happened in the first three P blocks. Besides, there was also a significant quadratic trend, F(1, 7) =  8.71, 
p =  .021, η = .55partial

2 , reflecting that the adaptation settled at the last two P blocks. In spite of significant reduc-
tion of the trajectory area (TA) during adaptation (* on Fig. 3A), the trajectories retained the curvature in the 
anterior direction and stayed significantly different from the unperturbed trajectories, t(7) =  3.71, p =  .008. There 
was no statistically significant difference between the COM trajectories of the first and the last unperturbed 
blocks (blocks 1 and 8), t(7) =  1.486, p = .181, which indicates that the experimental procedure had no influence 
on the unperturbed motion of the subjects.

Adaptations for individual subjects are shown in Fig. 4. To model individual evolution of adaptations to per-
turbations, exponential decay curves were fitted to the trajectory area of the trials using robust least-squares 
regression with bisquare weight method.

Besides recording successful squat-to-stand trials we also registered instances when the subjects failed to prop-
erly perform the motion. The criterion for a failed trial was defined as a time window in which the subject had to 
move the COM from the starting area to the target area. Either a too fast motion or inability of the subject to reach 
the target area in time (e.g. loss of balance manifested as stepping motion, reach-to-grasp reaction or unnatural 
motion) were considered as failed trials. The diagram on Fig. 3B shows the average number of failed trials during 
adaptation to perturbation. We found that the average number of failed trials follows a Power law function 
(r =  .738, = .F(1, 10) 28 12, p <  .000) and corresponds well with the adaptation process (Fig. 3A). This finding 
indicates that the failed trials might have reinforced the adaptation process through reinforcement learning.

Adaptation Mechanism. We used catch trials in C blocks to check the deviation of the COM trajectory (after-
effect) when the perturbation was unexpectedly turned off. The catch trials were introduced after the adaptation 
stabilized to uncover the adaptation mechanism adopted by the subjects. The C blocks trials had COM trajectories 
that were curved in the opposite direction to those of the P block (Fig. 5). Furthermore, the C blocks COM trajec-
tories lie well beyond the U block COM trajectories. Their average duration was 1.06 ±  0.106(SD) s which is not 
significantly different from the duration of neither unperturbed nor perturbed trials. Statistical analysis confirmed 
that these trajectories are significantly different from the U block trajectories, t(7) =  6.50, p <  .000 (Supplementary 
Fig. S2). This rules out a naive explanation that during the catch trials subjects simply moved as when they were 
moving on the still platform (U block) and suggests that the subjects actively compensated the perturbation.
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Inter-subject variability. Although all subjects stabilized their adaptation to perturbation and there were 
no significant differences between their adapted trajectories quantified by the given area measure (TA), there were 

Figure 2. Adaptations to perturbation for each individual subject. Pink lines show the mean center-of-mass 
(COM) trajectories of the squat-to-stand motions without perturbation (U block) while the grey-shaded lines 
show the COM trajectories during induced perturbation (P blocks). The lightest grey lines show the mean COM 
trajectories of the first perturbed block, the darkest grey lines show the mean COM trajectories of the third 
perturbed block when the subjects already adapted to the perturbation, and the medium grey line represent the 
block in-between. The shades represent the 95% confidence interval.

Figure 3. (A) Overall adaptation to perturbation. Bars show the mean trajectory area (TA) calculated as 
the total deviation of the center-of-mass (COM) trajectory with respect to the straight line between the start 
and end COM positions. The pink bars represent the unperturbed blocks; the first block of the experimental 
procedure (block 1) which served as the baseline and the last concluding block that shows that the experimental 
procedure did not alter the unperturbed motion of the subjects. The grey bars show that the subjects adapted 
to the perturbation in the first three perturbed blocks. The insignificant difference between the last two 
perturbed blocks shows that the adaptation stabilized and can be considered as settled. In spite of the settled 
adaptation, the COM trajectories stayed significantly different from the unperturbed trajectories. The error 
bars indicate standard error. Significant differences are indicated (*p <  .05). (B) Average number of failed trials 
during adaptation to perturbation. The average number of failed trials decreased significantly during first two 
perturbed blocks 2 and 3 and stabilized during the subsequent blocks 4 and 5. The decrease followed a Power 
law function depicted as a red curve. The error bars indicate standard deviation.
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clear inter-subject differences between the aftereffects (AF) measured in the C blocks. Since the aftereffects show 
that the subjects predictively compensated the perturbation we focused on the predictive mechanisms involved 
in the generation of motion.

Hence we introduced the predictive component measure (PC) that describes the motion of the COM with 
respect to the perturbation 20 ms after the start of the motion and well before the feedback mechanisms could 
alter the motion. By determining the PC for squat-to-stand movements during the adaptation process, we found 
that subjects used different policies to predictively counteract the perturbations and that there is a strong relation 
between PC and the extent of the aftereffects (Fig. 6). Statistical analysis showed that the magnitude of the after-
effect obtained by catch trials was significantly related to PC determined during perturbed trials, r =  .845, 95% 
BCa CI [.698, .975], p =  .008. This indicates that the predictive component is a strong predictor of the aftereffect. 
The subjects with positive PC adapted their trajectories in a way that made their COM to move in the same direc-
tion as the perturbation. As a result, when the platform did not move during the catch trials they displayed large 
aftereffects. On the other hand, the movement of the subjects with negative PC produced COM motion in the 
direction opposite to the perturbation. This allowed them to behave similarly to a passive inverted pendulum in 
the perturbed conditions. Smaller aftereffects were generated in the catch trials as a consequence.

To investigate the evolution of the strategies used by the subjects over the perturbed trials, we computed PC 
also for the trials in the first two P blocks where the adaptation was not yet stabilized. We found that subjects did 
not significantly alter their predictive policy throughout their adaptation to perturbation (subjects’ PC remain in 
a small region as shown in Fig. 6).

Simulation of catch trials. Due to the fact that the predictive component measure (PC) describes the 
motion of the COM well before the feedback mechanisms could alter the motion we can assume a rough rela-
tionship between the PC and the feedforward mechanisms of motor control processes (see Section Measures 
and Statistical analyses for more details). Since there is a strong relation between the PC and the aftereffects we 
further hypothesize that the inter-subject variability is due to the differences in the feedforward mechanisms of 
the individuals. To test this experimental hypothesis and further elucidate the experimental findings we adopted 
a basic control theoretical point of view of movement generation, where control is established by feedforward and 
feedback modules that make the system perform a target movement19.

We modeled the experimental system that describes a human standing on the parallel platform capable of 
performing the perturbations as seen in the experimental study (Fig. 7). Input into the simulation were the exper-
imentally obtained trajectories of the center-of-mass for each subject after they adapted to the perturbations. 
The feedforward module was described by an inverse dynamic model of the movement system (human and plat-
form dynamics) in the perturbed condition. The feedback module was modeled by a PD controller. As such, the 

Figure 4. Individual evolution of adaptations to perturbations. Data points show trajectory area (TA) of the 
trials calculated as the total deviation of the center-of-mass (COM) trajectory with respect to the straight line 
for each individual subject. The leftmost pink points represent the first unperturbed block while the rightmost 
pink points represent the last unperturbed block to show that the experimental procedure did not alter the 
unperturbed motion of the individual subject. The grey points represent the trials during the perturbation 
blocks 2, 3, 4, and 5. The superimposed exponential decay curves with the corresponding r values model 
individual adaptations to perturbations as functions of trial number.
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feedforward and the feedback modules are able to faithfully control the dynamic model of the movement system 
to follow the desired inputs.

Moreover, since the feedforward controller in our model was an ideal inverse dynamic model of the move-
ment system in the perturbed condition and represented the ideal internal model built during the adaptation 
to perturbation, the error signal into the feedback controller is zero and hence not needed for simulating the 
perturbed trials.

However, the aim of our computational study was to simulate catch trials and not perturbed trials. To do so, 
a binary switch was implemented in the dynamic model by which we were able to disable the induced pertur-
bations. Consequently, the feedforward controller is not the ideal inverse model of the plant any more. In this 

Figure 5. Catch trial trajectories of individual subjects. Pink lines show the mean center-of-mass (COM) 
trajectories of the squat-to-stand motions without perturbation (U block), grey lines show the mean COM 
trajectories during induced perturbation (P block), and the green lines show the mean COM trajectories during 
the catch trails (C blocks). The catch trial trajectories of all subjects are curved in the opposite direction to the 
perturbed trajectories. Besides, the catch trial trajectories lie well beyond the unperturbed trajectories. This 
suggests that all subjects actively compensated the perturbations and not merely moved as when they were 
moving on the still platform. The shades represent the 95% confidence interval.

Figure 6. Inter-subject differences in adaptation mechanism. The diagram shows the relation between 
the aftereffects (mean trajectory area of the catch trials) and the predictive component (PC) (velocity of the 
center-of-mass with respect to the force, delivered by the platform, 20 ms after the start of the motion) for each 
individual subject. Groups of three connected dots show the given relation of each individual subject for whom 
PC was determined at the first perturbation block (the smallest dots), at the second perturbation block (the 
medium dots) and at the third perturbation block (the largest dots).
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case the feedforward controller alone is not sufficient to bring the modeled human body from the squatted to the 
extended posture and the feedback controller is needed. While the parameters of the feedforward controller were 
fixed to reflect the stabilized adaptation to the perturbations, the feedback controller had two adjustable control 
parameters; P gain and D gain representing the proportional and differential parts of the feedback controller, 
respectively.

Using the least square method, we determined a single set of the feedback controller parameters (P and D 
gains) that best fit the simulated catch trial trajectories with the experimentally obtained catch trials trajectories 
of all subjects (Fig. 8). We found out that a single set of feedback control parameters is sufficient to reproduce the 
catch trial trajectories of all the subjects to a high precision, except one outlier (subject 5). Allowing individual 
setting of the feedback control parameters even further improves the individual fit of the simulated catch trajecto-
ries with the experimentally determined catch trials trajectories of the individual subjects (Fig. 9).

Figure 7. Simulation of the catch trials. Dynamic model of the movement system describes a subject standing 
on the moving parallel platform. Perturbation switch is used to induce simulated catch trials. Feedback controller 
has two adjustable parameters representing the proportional and differential gains. Input into the simulation is 
the adapted center-of-mass trajectory obtained in the experiments while the output is the simulated catch trial 
that corresponds to the parameters of the feedback controller.

Figure 8. Catch trial simulations with a single-set of feedback controller parameters. Green broken line 
represent simulated catch trials for individual subjects. Apart from one obvious outlier (subject 5), a single set of 
feedback control parameters is sufficient to reproduce the trajectories of all the subjects to a high precision.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:32868 | DOI: 10.1038/srep32868

The simulation study provide a strong computational support that the individual differences in the full 
body adaptation that we experimentally observed and quantified using the predictive component measure, are  
predominantly due to the differences in the feedforward mechanisms of motor control processes.

Discussion
The experiments showed that subjects adapted their squat-to-stand motion in response to perturbations delivered 
by the platform they stood on; in contrast to the near straight COM trajectories in the unperturbed condition, 
the trajectories became curved towards the anterior direction. This difference was reduced over the subsequent 
perturbation trials eventually reaching a stable level. To uncover the adaptation mechanism, the perturbation was 
randomly turned off in the catch blocks that followed the stabilization of the adaptation. In these trials, the COM 
trajectories became curved in the opposite direction. These trajectories lie beyond the unperturbed trajectories 
indicating that subjects actively compensated the perturbation rather than simply moving as on the still platform. 
Although all the subjects stabilized their movements, there were inter-subject differences between the COM 
trajectories observed in the catch trials (aftereffects). The movement of the subjects in response to the force, deliv-
ered by the platform in the first 20 ms (predictive response), was found to explain the inter-subject differences. 
According to the predictive response measure, subjects were clearly clustered in two groups. Furthermore the 
predictive response was a determinant of the aftereffects obtained in the catch trials. This indicates that subjects 
adopted two different strategies for compensating the platform perturbations. These two strategies appear to be 
intrinsic and do not change during the adaptation. Computer simulations indicate that different strategies are due 
to the differences in the movements reached by the subjects’ adaptation to the perturbations.

Human CNS may use several strategies to cope with external instabilities of the environment. Arm-reaching 
movements has been widely used to study computational aspects of human motor control. The initial results 
indicated that the observed smooth trajectories could be explained with several optimality criteria, such as min-
imum jerk6, minimum commanded torque change9, minimum variance7, task optimization in the presence of 
signal-dependent noise8 models. Further insights into the control of arm-reaching was obtained via force field 
studies5, in which the subjects hold a manipulandum that can exert a specified force based on hand position and 
velocity, or no force at all (null field). The task of subjects in general was to reach the given targets from a starting 
location in a limited time. When reaching the targets in the null field conditions, human subjects produced almost 
straight trajectories. When faced with the force field, initial subjects’ trajectory deviated from the straight line; 
but by practice, trajectories became almost straight again, regardless of the type of the force field. The classical 
explanation for this is the ability of the central nervous system (CNS) to learn the dynamic perturbations of the 
environment with an internal model and subsequently use it to cancel the perturbations. In recent years, a closer 
look at the trajectories that straighten up after practice appears to indicate that the trajectories do not completely 
return to their initial straight paths but rather retain some of the curvedness20. Similarly, in this study we found 
out that whole body adaptation does not bring back the COM trajectories to their original shapes. However, the 

Figure 9. Catch trial simulations with personalized feedback controller parameters. Individual setting of 
the feedback control parameters even further improves the matching between the simulated and experimentally 
determined catch trials trajectories.
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difference between the adapted and original trajectories in whole body case is much more pronounced compared 
to that of arm-reaching. Moreover, the new trajectories in whole body adaption show significant inter-subject 
variability, which is absent in arm-reaching adaptation.

Another difference appears to be the speed of adaptation. For the whole body motion, the adaption is appar-
ent in several tens of trials whereas for arm-reaching several hundreds of trials are usually necessary to stabi-
lize learning. On the other hand, rapid learning of anticipatory postural adjustments were reported by studies 
that examined motion during common or well-practiced tasks such as object lifting tasks21–24, during motion 
with added weights on the limbs25,26 and during reaching in microgravity25,27,28. Interestingly, a study examining 
arm-reaching in combination with postural control13 reported that the CNS can anticipate the effect of learned 
movement dynamics on a novel whole-body posture in the very first trial.

Even though squat-to-stand movement can be considered a whole body equivalent to the arm-reaching move-
ments, the results of our experiments are different to those of obtained in arm-reaching studies. One of the 
big differences in squat-to-stand movements is the role of gravity. The gravity not only creates an extra energy 
requirement for the body, but it also creates postural instability whereas in arm-reaching gravity is perpendicular 
to the plane of motion, hence has no negative effect on the stability of the arm. When the postural stability is not 
maintained, the consequences may be injurious and even fatal. It is accepted that CNS generates movement opti-
mally with respect to a cost function29. Due to danger created by the instability, CNS must employ different opti-
mality criteria for arm-reaching and squat-to-stand movements. In particular, the probability of injury must be 
included in the optimality criterion. One possible reason that our experiment yielded individual differences could 
be due to the probability of injury estimate of subjects30. The other possibility is that the subjects did not explore 
for the optimal movement and settled to suboptimal movements as long as the task of maintaining postural sta-
bility was satisfied. This may explain why the adaption in squat-to-stand movements appears to be faster than in 
arm-reaching movements. It is viable that human subjects obtain a set of stable postural solutions, probably via 
reinforcement learning, over their life span and store them. As the squat-to-stand movement is an ecologically 
valid movement, the solutions obtained over the life span can readily provide near-solutions to the squat-to-stand 
task leading to fast adaptations that we observed. This memory based view can be also plausible when the often 
neglected neural cost is considered. Full optimization may require substantial neural energy, thereby making a 
sub-optimal solution a better one for the organism. This in turn translates into a composite cost function that 
includes physical energy, neural energy, task completion and danger of falling for an external observer.

Previous computational motor control studies focused on energy minimization and disregarded the role of 
other possible factors in movement generation. We believe that the optimality concept in computational motor 
control must be redefined from an ecological viewpoint where fitness plays the key role in generating movements, 
integrating risk of injury and neural computational cost in addition to physical energy cost.

Methods
Subjects and experimental procedure. Ten male subjects (age 26.5 ±  2.72(SD) years; height 1.81 ±  0.06(SD)  
m; mass 80.2 ±  5.47(SD) kg) participated in the study. Prior to their participation, an informed consent approved 
by the National Medical Ethics Committee Slovenia (NO. 112/06/13) was obtained from all subjects. All exper-
imental protocols were approved by the National Medical Ethics Committee Slovenia (NO. 112/06/13) and the 
methods were carried out in acordance with the relevant guidelines.

The subjects were performing a series of squat-to-stand motions standing on a 6 DOF parallel platform that 
could move in the anteroposterior direction depending on the vertical velocity of the subject’s center-of-mass 
(COM). For an able-bodied adult in upright standing, the COM lies in the mid-line of the body at an approximate 
height from the ground corresponding to about 55% of the person’s height, at a position just anterior to the sec-
ond sacral vertebra31. During the squatting motion the relative position of the COM raises higher on the vertebral 
column32. To compensate this effect, the subject’s COM during the squat-to-stand motion was approximated 
by the real-time motion tracking of a marker placed on a vertebral prominence of the fourth lumbar vertebra. 
The experiments consisted of eight blocks of experiments which were further divided into three sessions of ten 
extending motions. Between the sessions there were ten minutes resting periods. Between the blocks, the subjects 
were given at least two hours resting period. Figure 1B shows the organization of the experiments. Before each 
session, the subjects were instructed to perform ten squat-to-stand motions starting from a fully squatted posture.

Even though the fully squatted and upright positions are very well defined postures for an individual subject, 
the position of COM in these postures may still vary through the experimentation process. To narrow down the 
area of the possible positions of the subject’s COM in the starting posture when the subject is fully squatted and 
in the target posture when the subject is upright, we implemented a visual feedback-loop in the form of a LCD 
that showed the subjects their current COM position in the sagittal plane together with the allowed circular area 
of the base COM position in the starting posture when the subject is fully squatted and the allowed circular area 
of the target COM position that the subject had to reach. The positions of the base and the target COM areas were 
determined individually for each subject prior to each of the sessions. The diameters of the allowed circular areas 
were 4 cm. A successful trial was followed by an “OK” message and the COM trajectory data was recorded while 
a failed trial produced an error message and the COM trajectory data was discarded. Each subject had to success-
fully complete ten trials in order to finish the current session.

During the sessions that included perturbations, the platform beneath the subject’s feet was displaced with 
regard to the upward velocity of the subject’s COM. The desired displacement of the platform can be written as

= ⋅ x K y (1)pert COM

where xpert is the displacement of the platform in the posterior direction and 
yCOM is the velocity of the subject’s 

COM in the upward direction. The parameter K had a constant value of 0.04 s. A typical value of the maximal 
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upward velocity of the subject’s COM during the extending motion was about 2 m/s which caused the platform to 
displace in the posterior direction for approximately 8 cm. When the subject was moving downwards to the start-
ing position, the platform remained still.

Experiments in the sixth and seventh blocks included randomly occurring catch trials when the platform 
remained still during the upward motion of the subject’s COM. To avoid the anticipation of the catch trials by 
the subjects, the number of catch trials for each session was randomly determined and varied between one to five 
catch trials per session.

The trial trajectories were stored at a sampling rate of 50 hertz. The trials where the subject lost balance and 
performed recovery movements were not included in the analysis. These cases were detected by checking for 
excessive vertical speed (maximum allowed speed had to be less than 12 m/s) and excessive trajectory curvature 
(maximum allowed curvature had to be less than 17 m−1 defined by

=
−

c t
p t p t p t p t

p t
( )

( ) ( ) ( ( ) ( ))
( ) (2)

T2 2 2

3

where p t( ) represents the position of the center-of-mass33,34. We confirmed that these cases corresponded to 
movements where subjects failed to perform a normal squat-to-stand movement.

Due to the different anthropometric parameters of individual subjects and due to the fact that individual trials 
had slightly different starting and ending points in spite of the visual feedback and the COM target specification, 
the trials were translated to start from the common origin of (0, 0), and rotated and scaled so that each trial’s 
end-point coincided with the designated end point of (0, 1). Specifically, the translation was to correct the vari-
ance in the positional offset when the subjects moved between the trials whereas the scaling and rotation was to 
normalize the trajectories with respect to the differences in the anthropometric parameters between the subjects. 
The translation and rotation pre-processing was for the computational convenience and did not affect the results 
due to the fact that the deviation of the trajectory was quantified based on the area which is independent of the 
rotation and translation. Instead of pre-processing we could equally well define the deviation of a trajectory based 
on the horizontal distance of the COM positions to the line connecting the start and the end positions of a trial. 
These data points were fitted with splines Tk(x(t), y(t)) and resampled giving a set of data points to be used in the 
analysis.

Measures and Statistical analyses. To quantify motor control processes we used two measures: trajectory 
area (TA) and predictive component measure (PC).

The effect of perturbation was quantified using the trajectory area which represents the total deviation of the 
COM trajectory with respect to the straight line between the start and end COM positions of the subject under 
consideration. The trajectory area of a given perturbed trajectory Tk ~ (x(t), y(t)) is defined as the time integral of 
the distance of the trajectory points to the straight line in the sagittal plane:

∫ ∫=






TA e x sign x t y t dt x t y t dt( ( ) ) ( ) ( ) ( ) ( ) ,

(3)0

1

0

1

where ∫ | |sign x t y t dt( ( ) ( ) )
0

1  represents the direction of the overall displacement of the COM trajectory. A positive 
sign represents the anterior direction while a negative sign represents the posterior direction. To model individual 
adaptations to perturbations as a function of trial number, exponential decay curves

= + ⋅ − ⋅T̂A e k k e( ) (4)x
k x

0 1
2

were fitted to the trajectory area of the trials using robust least-squares regression with bisquare weight method. 
For analyzing learning over blocks we combined all the trajectory areas of all the subjects. To assess the learn-
ing process and to compare the trajectories between the blocks, statistical analysis was performed using 1-way 
repeated measures ANOVA with post hoc Tukey-Kramer multiple comparison procedure. Statistical analysis was 
performed using Matlab software and p <  .05 was considered to be statistically significant. We carried out a pilot 
study (n =  4), calculated power related parameters (al pha =  .05, power =  .80) and based on that a sample of 8 
subjects or more turned out to be sufficient.

To exclude the feedback mechanisms and hence focus on the feedforward mechanisms of motor control we 
introduced a predictive component measure (PC) that describes the motion of the COM with respect to the 
perturbation 20 ms after the start of the motion and well before the feedback mechanisms could alter the motion:

=
=



PC X t
F t

( )
( ) (5)

COM

t ms20 ,

where X t( )COM  is the velocity of COM and F(t) is the perturbation force delivered by the platform, both in anter-
oposterior directions.

While the trajectory area is a measure that quantifies the overall motor control process including trajectory 
planning, feedforward mechanisms and feedback mechanisms; the predictive component measure excludes the 
feedback mechanism due to the fact that it quantifies the motion of COM before the feedback mechanism could 
alter the motion. Figure 10 shows the relation between the time of the motion, motor control processes and the 
measures used.
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Computational study. Simulations of catch trials were performed in the simulation environment Simulink/
Matlab. Dynamic model of movement system was modeled by Lagrange mechanics using Hamilton’s principle 
of stationary action. The human body was modeled as a planar articulated rigid body model, composed of four 
segments representing feet, shanks, thighs and body. The model has 4 rotational degrees-of-freedom whose axes 
of rotations are perpendicular to the sagittal plane of the body; hip joint, knee joint, ankle joint, and metatarso-
phalangeal joint. Segmental anthropometric parameters, such as masses, moments of inertia about the transverse 
axes, lengths and locations of the centers of gravity (COG), were estimated individually for each subject using 
regression equations35. The feedforward controller was taken as the inverse dynamic model of the movement sys-
tem and represents the fully adapted feedforward control processes of the CNS. Feedback controller was modeled 
by a PD controller with added inertia matrix that linearizes the feedback. The I component of the controller was 
not used to avoid the integrator wind-up effect that could cause undesired large overshoots and could slow down 
the control of the plant36. The inputs into the simulation diagram were joint trajectories obtained from the exper-
imentally determined COM trajectories by means of the inverse kinematic model (K−1). Similarly, the simulated 
COM trajectory at the output from the simulation was derived from the simulated joint trajectories using the 
direct kinematic model (K).
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