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Motivated by the success of domination games and by a variation of the coloring game 
called the indicated coloring game, we introduce a version of domination games called the 
indicated domination game. It is played on an arbitrary graph G by two players, Dominator 
and Staller, where Dominator wants to finish the game in as few rounds as possible while 
Staller wants just the opposite. In each round, Dominator indicates a vertex u of G that 
has not been dominated by previous selections of Staller, which, by the rules of the game, 
forces Staller to select a vertex in the closed neighborhood of u. The game is finished 
when all vertices of G become dominated by the vertices selected by Staller. Assuming 
that both players are playing optimally according to their goals, the number of selected 
vertices during the game is the indicated domination number, γi(G), of G .
We prove several bounds on the indicated domination number expressed in terms of 
other graph invariants. In particular, we find a place of the new graph invariant in the 
well-known domination chain, by showing that γi(G) ≥ �(G) for all graphs G , and by 
showing that the indicated domination number is incomparable with the game domination 
number and also with the upper irredundance number. In connection with the trivial 
upper bound γi(G) ≤ n(G) − δ(G), we characterize the class of graphs G attaining the 
bound provided that n(G) ≥ 2δ(G) + 2. We prove that in trees, split graphs and grids the 
indicated domination number equals the independence number. We also find a formula 
for the indicated domination number of powers of paths, from which we derive that 
there exist graphs in which the indicated domination number is arbitrarily larger than 
the upper irredundance number. We provide some partial results supporting the statement 
that γi(G) = n(G)/2 if G is a cubic bipartite graph, and leave this as an open question.
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1. Introduction

The coloring game was introduced independently in [15] and [3]. Unlike combinatorial games in which a winner is 
decided, the result of the coloring game gives a graph invariant, which is based on the assumption that both players 
are playing optimally according to their goals. A number of variants of the original game have been introduced, see e.g. 
[2,4,22,23]. The following version was proposed by Grytczuk and defined by Grzesik [17].

The indicated coloring game is played on a simple graph G by two players, and a fixed set C of colors. In each round 
of the game Ann indicates an uncolored vertex, and Ben colors it using a color from C , obeying just the proper coloring 
rule. The goal of Ann is to achieve a proper coloring of the whole graph, while Ben is trying to prevent this. The minimum 
cardinality of the set of colors C for which Ann has a winning strategy is called the indicated chromatic number, χi(G), of a 
graph G .

The domination game, as introduced in [6], is played on a graph G by two players: Dominator and Staller. They alternate 
taking moves in which they select a vertex of G . A move is legal if the selected vertex dominates at least one vertex which 
is not already dominated by previously played vertices. The game ends when there are no legal moves, so when the set 
of played vertices is a dominating set of G . The goal of Dominator is to finish the game with the minimum number of 
moves, while the aim of Staller is to maximize the number of moves. If both players play optimally, then the number of 
moves played on G is an invariant (see [8,9]). Therefore, as defined in [6], the game domination number γg(G) is the number 
of moves on G if Dominator starts the game. Many variants of the domination game have been introduced; see a recent 
monograph [8] and for example papers [5,9–12,14,16,19,24,25]. Having in mind the indicated coloring game, we propose 
the following variant of the domination game.

The indicated domination game is played on a graph G by two players, Dominator and Staller, who take turns making 
a move. In each of his moves, Dominator indicates a vertex v of the graph that has not been dominated in the previous 
moves, and Staller chooses (or selects) any vertex from the closed neighborhood of v , and adds it to a set D that is being 
built during the game. The game ends when there is no undominated vertex left, that is, when D is a dominating set. The 
goal of Dominator is to minimize the size of D , while Staller wants just the opposite. Provided that both players are playing 
optimally with respect to their goals, the size of the resulting set D is the indicated domination number of G , and is denoted 
by γi(G).

In the following section, we establish the notation and present basic definitions, while in Section 3 we give some prelim-
inary results. In particular, we prove that �(G) ≤ γi(G) ≤ γgr(G), where �(G) is the upper domination number and γgr(G)

is the Grundy domination number of a graph G . In Section 4, we prove that for a graph G with minimum degree δ and 
order n, where n ≥ 2δ + 2, we have γi(G) = n − δ if and only if G contains a spanning subgraph Kδ,n−δ with an additional 
property that the part of the bipartition of size n − δ is an independent set in G . In Section 5, we prove that in several 
families of graphs (namely trees, split graphs, grids, and connected bipartite cubic graphs with at most 12 vertices) the 
indicated domination number equals the independence number. On the other hand, the indicated domination number can 
be arbitrarily larger than the upper irredundance number (and thus also the independence number), which is established in 
Section 6. This is derived from the formula for the indicated domination number of the k-th power of the path Pn , which 
is roughly γi(Pk

n) = �
(

log k
k n

)
as n → ∞. In Section 7, we propose several open questions.

2. Notation

Let G be a graph. We denote the number of vertices of G by n(G). If S ⊆ V (G), then the subgraph induced by S
is denoted by G[S]. For a vertex v ∈ V (G), the (open) neighborhood N(v) is the set of neighbors of v , and the closed 
neighborhood is N[v] = N(v) ∪ {v}. If S ⊆ V (G), then N[S] = ⋃

v∈S N[v].
For a vertex x ∈ S , every vertex in N[S] − N[S − {x}] is called a private neighbor of x with respect to S .1 A set S ⊆ V (G) is 

an irredundant set if every vertex in S has a private neighbor with respect to S . The smallest and largest cardinalities of a 
maximal irredundant set of G are denoted by ir(G) and IR(G), respectively.

A set S ⊆ V (G) is an independent set in a graph G if the vertices in S are pairwise nonadjacent. The maximum size of an 
independent set of G is denoted by α(G). An edge cover of G is a set F ⊆ E(G) such that every vertex of G is incident to 
some edge in F . We denote the minimum size of an edge cover of G by ρ(G). Note that notation β ′(G) is also used in the 
literature. Recall that combining König’s and Gallai’s Theorems gives α(G) = ρ(G) for a bipartite graph G without isolated 
vertices.

A vertex v ∈ V (G) dominates itself and its neighbors. A subset of vertices D ⊆ V (G) is a dominating set of G if it domi-
nates all vertices of G , i.e. N[D] = V (G). This means that every vertex from V (G) − D has a neighbor in D . The minimum 
cardinality of a dominating set of G is the domination number, γ (G), of G .

A dominating set D in G is a minimal dominating set if no proper subset of D is a dominating set. That is, D is a minimal 
dominating set if and only if every x ∈ D has a private neighbor with respect to D . The maximum cardinality of a minimal 
dominating set is the upper domination number, �(G), of G . We recall the following results.

1 Observe that every vertex isolated in G[S] is viewed as a private neighbor of itself by definition.
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Theorem 2.1 ([13, Theorem 5]). If G is a bipartite graph, then α(G) = �(G) = IR(G).

Theorem 2.2 ([20, Theorem 9]). If G is a chordal graph, then α(G) = �(G) = IR(G).

Given a graph G , a sequence S = (v1, . . . , vk) of vertices of G is a dominating sequence if for each i

N[vi] − ∪i−1
j=1N[v j] �= ∅ (1)

and the set of vertices from S dominates G . We call the length k of the longest such sequence S the Grundy domination 
number, γgr(G), of G . Clearly, γ (G) ≤ γgr(G).

3. Preliminary results

A well known domination chain [18] was extended with the Grundy domination number in [7]:

ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G) ≤ γgr(G) .

The following proposition explains where indicated domination number fits in this chain.

Proposition 3.1. If G is a graph, then

�(G) ≤ γi(G) ≤ γgr(G) .

In addition, γi is incomparable with both γg and IR.

Proof. Note that the definition of the indicated domination game implies that the sequence of vertices selected by Staller 
is a dominating sequence, so γi(G) ≤ γgr(G).

Let D be a minimal dominating set of cardinality �(G). We provide a strategy for Staller that will prove that �(G) ≤
γi(G). The basic ingredient of this strategy is for her to always select a vertex from D . She can do so regardless of which 
vertex Dominator indicates. Unless all vertices from D have been selected, there exists an undominated vertex (a private 
neighbor of an unselected vertex from D). This shows that �(G) ≤ γi(G).

In the rest of the proof we present infinite families of graphs showing that γi is incomparable with both γg and IR. 
Stars K1,n show that γi can be arbitrarily larger than γg, since γi(K1,n) = n and γg(K1,n) = 1. Second powers of paths (see 
Corollary 6.3) show that γi can be arbitrarily larger than IR.

To see that IR can be arbitrarily larger than γi , we consider the following family of graphs. Let Hn be the graph obtained 
from two disjoint copies of Kn with vertices u1, . . . , un and v1, . . . , vn by adding edges ui vi for all i ∈ {2, . . . , n}. Notice 
that Hn is isomorphic to the graph Kn � K2 with one edge removed. It is easy to see that IR(Hn) = n − 1 (it is attained for 
example by the maximal irredundant set {u2, . . . , un}). On the other hand, we have γi(Hn) ≥ γ (Hn) = 2, and if Dominator 
first indicates u1 and then v1, we get γi(Hn) = 2. Note that this also shows that in general γi(G) and γi(G − e) can be 
arbitrarily far apart since γi(Kn � K2) ≥ �(Kn � K2) = n.

Last, we present a family of graphs for which γg is arbitrarily larger than γi . Let D1 be a graph obtained from a cycle C9
with vertices x1, . . . , x9 and naturally defined edges between them by adding edges x1x3, x4x6 and x7x9. Since Dominator 
can in turn indicate vertices x2, x5 and x8, he has a strategy that ensures γi(D1) ≤ 3. Since γi(D1) ≥ γ (D1) = 3, we have 
γi(D1) = 3. On the other hand, it is easy to see that γg(D1) = 4. Let Dn be a disjoint union of n copies of the graph D1. Since 
γi(Dn) ≥ γ (Dn) = 3n and Dominator can in turn indicate vertices of degree two, we have γi(Dn) = 3n. But since Staller’s 
strategy in the domination game on Dn can be to reply in the same copy of D1 as Dominator played, we get γg(Dn) ≥ 4n
(because under that strategy, in each copy the game ends after an even number, four, of moves). Thus γg(Dn) − γi(Dn) ≥ n. 
Alternatively, we can consider a connected graph En obtained from C3n by adding edges x1x3, x4x6, . . . , x3n−2x3n . In this 
case, γi(En) = n, while γg(En) ≥ n + n

10 (the last follows by an argument similar as in [21, Theorem 4.1]). �
The diagram in Fig. 1 shows the relations between the parameters from Proposition 3.1.
There are several classes of graphs with a transparent structure where the parameters discussed in Proposition 3.1

coincide. For example, the graphs G below all have the property �(G) = γgr(G) as listed in [1]: hypercubes; complete 
multipartite graphs, G = Kn1,...,nk , such that n1 ≥ · · · ≥ nk , k ≥ 2, and nk−1 ≥ 2; prisms over complete graphs, G = Kn � K2, 
for n ≥ 2; large families of Kneser graphs; the class of (twin-free, connected) cographs. It is also proved in [1] that the join 
operation preserves that property. By Proposition 3.1 all the graphs from the above families have the indicated domination 
number equal to their upper domination number. By Theorem 2.1 this in turn implies that the bipartite graphs among the 
above families have their indicated domination number equal to their independence number.

However, the difference between the indicated domination number and the independence number can be arbitrarily 
large. For example, α(Kn � K2) = 2 and γi(Kn � K2) = n. Similarly, the difference between the Grundy domination number 
and the indicated domination number can be arbitrarily large. For example, γgr(Pn) = n − 1 and γi(Pn) = ⌈ n

2

⌉
as will be 

proven in Corollary 5.3.
3
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Fig. 1. Relations between the domination and independence invariants.

4. Upper bound on γi and extremal graphs

Using a bound from Proposition 3.1 combined with [7, Proposition 2.1] we obtain:

γi(G) ≤ γgr(G) ≤ n(G) − δ(G). (2)

In the following theorem we characterize the graphs G that attain the bound γi(G) = n(G) − δ(G) under the assumption 
that n(G) ≥ 2δ(G) + 2.

Theorem 4.1. A graph G with minimum degree δ and order n, where n ≥ 2δ + 2, has γi(G) = n − δ if and only if it contains a spanning 
subgraph Kδ,n−δ with an additional property that the part of the bipartition of size n − δ is an independent set in G.

Proof. Let G be a graph, which has a spanning subgraph Kδ,n−δ and the only edges of G that are not in Kδ,n−δ , if any, are 
between two vertices in the part of size δ. Let the indicated domination game be played on G . Regardless of which vertex 
is indicated by Dominator in his first move, Staller selects a vertex from the part of size n − δ. In this way, all vertices in the 
part of size δ become dominated after the first selection of Staller. Therefore, Dominator will in his subsequent moves need 
to indicate only vertices in the part of size n −δ, and Staller’s strategy is simply to select the vertex that Dominator indicated 
in his move. In this way, Staller ensures that at least n − δ vertices will be chosen. Thus, γi(G) ≥ n − δ, and combining this 
with (2) we get γi(G) = n − δ.

For the converse, let G be a graph on n vertices, where n ≥ 2δ + 2, such that γi(G) = n − δ. Let the indicated domination 
game be played on G . If after the first selection of Staller more than δ + 1 vertices were dominated, then at most n − δ − 1
vertices will be chosen by Staller when the indicated domination game ends on G , a contradiction. Therefore, Staller needs 
to select a vertex of degree δ in her first move. For the same reason, since γi(G) = n − δ, in all of her subsequent moves 
Staller needs to select a vertex that dominates only one vertex that was not dominated earlier. Let x be the vertex selected 
in the first move of Staller, and let NG (x) = {u1, . . . , uδ}. Let R = V (G) − NG [x]. If there existed a vertex v ∈ R such that 
v had no neighbors in NG (x), then Dominator’s next move would be to indicate v , and after Staller selected a vertex that 
dominates v , at least two new vertices would become dominated, a contradiction. Therefore, every vertex in R has at least 
one neighbor in NG (x).

Now, suppose that there exists a vertex in R , say w0, that has a neighbor in R , and let w1, . . . , wk be the neighbors of 
w0 from R . For every vertex wi , where i ∈ {0, . . . , k}, there exists a vertex u ji ∈ NG(x) such that wi is the only neighbor of 
u ji in R . Indeed, if for some wi such a vertex u ji would not exist, then Dominator could indicate wi in his second move, 
and regardless of which vertex Staller would select in her second move to dominate wi at least two new vertices would 
become dominated in that move, which is a contradiction. Since deg(w0) ≥ δ, we infer that w0 has (at least) δ−k neighbors 
in NG(x). Clearly, all of the neighbors of w0 in NG(x) are distinct from vertices u ji , where i ∈ [k], which implies that w0 has 
exactly δ − k neighbors in NG (x). In addition, k ≤ δ − 1, since all vertices u ji , where i ∈ {0, 1, . . . , k}, are pairwise distinct. 
Therefore, since n > 2δ + 1 ≥ |NG [x]| + k + 1, we infer that there exists a vertex z ∈ R − {w0, . . . , wk}. If z has a neighbor 
in R , then, by the same reason as earlier, there exists a vertex u′ in NG(x) such that z is the only neighbor of u′ from R . 
However, every vertex in NG(x) has a neighbor in {w0, . . . , wk}, therefore z cannot be adjacent to any vertex in R . Since 
deg(z) ≥ δ, we infer NG (z) = NG(x), which is again a contradiction, since each u ji ∈ NG(x) has only one neighbor in R . The 
assumption that there exists an edge between two vertices in R led us to a contradiction, therefore R ∪ {x} is independent, 
and Kδ,n−δ is a spanning subgraph of G with the part of the bipartition of size n − δ being independent. �
4
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Note that a graph G with minimum degree δ and order n, where n ≥ 2δ + 2 and γi(G) = n − δ, can equivalently be 
described as being the join of an independent set of size n − δ and any graph of order δ.

5. Graphs with γi = α

In this section, we present several classes of graphs whose indicated domination number equals their independence 
number. Naturally, due to Proposition 3.1, the independence number of any of these graphs is equal to the upper domination 
number.

Recall that a graph is split if its vertex set can be partitioned into a clique and an independent set. A split partition of a 
split graph G is a pair (K , I) such that K is a clique, I is an independent set, K ∪ I = V (G) and K ∩ I = ∅. It was proven 
in [7] that if G is a split graph with split partition (K , I), then

γgr(G) =
{

α(G), if every two vertices in K have a common neighbor in I;
α(G) + 1, otherwise.

We next show that the second line in the above equation never appears if γgr is replaced with γi .

Proposition 5.1. If G is a split graph, then γi(G) = α(G).

Proof. Let (K , I) be the split partition of G . We can assume that I is a maximum independent set, and thus every vertex 
in K has a neighbor in I . Dominator’s strategy in each of his moves is to indicate a vertex x from I that has not been 
dominated by the vertices previously chosen by Staller. After all vertices from I have been dominated by Staller’s selected 
vertices, the vertices in K have also been dominated since K is a clique and each vertex from K has a neighbor in I . Hence 
at most |I| = α(G) vertices were chosen by Staller, and we infer that γi(G) ≤ α(G). The reverse inequality follows from 
Proposition 3.1. �

To see that trees enjoy the equality considered in this section is a bit less straightforward.

Theorem 5.2. If T is a tree, then γi(T ) = α(T ).

Proof. Let F be a minimum edge cover of the tree T . Since T is bipartite, |F | = ρ(G) = α(T ). Choose a leaf r of T and 
consider T as a rooted tree with r as its root, by which the notions of parent and child can be used in T . Let an indicated 
domination game be played in T . We will present a strategy of Dominator, which ensures that at most α(T ) vertices will 
be selected during the game.

In the first move, Dominator indicates vertex r, which forces Staller to dominate both r and its child s. Note that rs ∈ F , 
and that after the first move of Staller both endvertices of this edge from F become dominated. We will say that an edge 
f ∈ F is saturated if both of its endvertices are dominated. We claim that Dominator can ensure that after every move of 
Staller, a new edge from F becomes saturated. In other words, after the ith move of Staller, Dominator can ensure that at 
least i edges from F are saturated. This is clearly true after the first move of Staller. In the subsequent moves, as long as 
there are still some undominated vertices left, Dominator considers the vertex of T which is the closest to r among all 
undominated vertices. Let this vertex be denoted by u, and let uv ∈ F for a neighbor v of u. Now, we consider several 
possibilities that need to be reflected in Dominator’s strategy. With this, Dominator will achieve that a new edge of F
becomes saturated after every move of Staller, and, in addition, that the set of dominated vertices induces a connected 
subgraph of T (there is one exception case to this property, in which case Dominator can achieve that after the subsequent 
move of Staller the set of dominated vertices again induces a connected subgraph of T ).

If v is the parent of u, then it is clear, by how u is defined, that v has been dominated in some of the previous 
moves. In this case, the strategy of Dominator is to indicate u. In this way, u will become dominated after the following 
move of Staller, and so the edge uv becomes saturated, by which the number of saturated edges from F increases by one. 
Additionally, the set of dominated vertices still induces a connected subgraph. Next, assume that u is the parent of v . It 
may happen that v is already dominated. (This is the case when the set of dominated vertices does not induce a tree, and 
how this happens will be explained in the next case.) If this is indeed so, then Dominator indicates u, and in the following 
move of Staller, u will become dominated and uv ∈ F will thus become saturated. The remaining possibility is that v is not 
dominated. By the strategy of Dominator, we can argue that all children of v are undominated at this point. Dominator’s 
strategy in this case is to indicate v . If v or u is selected by Staller in the next move, then uv ∈ F becomes saturated and 
the set of dominated vertices is connected, as desired. Otherwise, a child x of v is selected by Staller, and let xy be the edge 
of F , which covers x. Note that either y = v or y is a child of x. In either case, the edge xy ∈ F becomes saturated. In this 
case (that is, when a child x of v is selected by Staller), we are in the situation when the set of dominated vertices is not 
connected, but, as explained earlier, Dominator’s next move is to indicate u. In this way, u becomes dominated, and since 
v was dominated in the preceding move, the edge uv ∈ F becomes saturated. Thus, after these two consecutive moves, the 
set of vertices in D that are dominated induces a connected subgraph again.

Since after each move of Staller, the number of saturated edges from F increased, we infer that at most |F | = α(T )

vertices are chosen by Staller when the game ends. Since γi(T ) ≥ α(T ) by Proposition 3.1, the stated equality is proved. �

5
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Corollary 5.3. If n ≥ 1, then γi(Pn) = ⌈ n
2

⌉
.

In the next result, we prove for yet another family of graphs, namely the grids, that their indicated domination number 
equals the independence number.

Theorem 5.4. If m, n ≥ 1, then γi(Pm � Pn) = α(Pm � Pn) = ⌈mn
2

⌉
.

Proof. Let V (Pm) = {x1, . . . , xm} and V (Pn) = {y1, . . . , yn}. We divide the proof into two cases, depending on whether both 
m and n are odd or not.

First, assume that at least one of m and n is an even integer, and, by symmetry, we may assume with no loss of generality 
that m is even. Consider the partition of V (Pm � Pn) into pairs of adjacent columns. Namely, let Ci = {x2i−1, x2i} × V (Pn), for 
all i ∈ [m/2]. The strategy of Dominator, to achieve his goal that at most mn/2 vertices will be selected during the indicated 
domination game on Pm � Pn , is divided into two phases. In the first phase, he deals with each of the sets Ci , proceeding 
in their natural order, while in the process some of the vertices of Ci , for all i ∈ [m/2], may be left undominated. In the 
second phase, he indicates the vertices that were left undominated in the first phase one by one.

Let us first present the strategy of Dominator in C1. Whenever Dominator indicates a vertex of C1, that vertex is in the 
column {x2} × V (Pn). Dominator can start by indicating an arbitrary vertex of that column, say (x2, y1), and then proceeds 
by indicating vertices of that column by obeying only one rule, which we explain next. At a given point in the game we say 
that the pair {(x2i−1, y j), (x2i, y j)}, where i ∈ [m/2] and j ∈ [n], is empty if neither vertex in the pair has been dominated 
up to that point in the game. The strategy of Dominator while dealing with the set C1 in the first phase is to find an 
arbitrary empty pair {(x1, y j), (x2, y j)}, if it exists, and indicate (x2, y j), as long as there exists an empty pair in C1. Thus, 
in her next move, Staller has to dominate (x2, y j). She can do this by choosing either (x2, y j) or one of its neighbors. 
In either case, the pair {(x1, y j), (x2, y j)} is no longer empty after her move. Clearly, if the move of Staller is to choose 
(x1, y j), (x2, y j−1), (x2, y j) or (x2, y j+1), then it may happen that additional pairs of C1 become non-empty. In this case, 
regardless of which of the vertices (x1, y j), (x2, y j−1), (x2, y j) or (x2, y j+1) is chosen by Staller, the chosen vertex is the 
first vertex of its corresponding pair that was chosen during the game, and since its neighboring pairs have become non-
empty (if they were not already non-empty before that move), the other vertex of the pair in which the chosen vertex 
lies will never be selected by Staller during the first phase of the game. It is also possible, that Staller chooses (x3, y j) to 
dominate (x2, y j). In this case, (x2, y j) becomes dominated and the pair {(x1, y j), (x2, y j)} becomes non-empty, yet the 
move of Staller choosing (x3, y j) will be considered when dealing with C2. The first step of the game in the first phase, 
dealing with C1, ends when all pairs of C1 have become non-empty. Note that by the strategy of Dominator, in each pair 
{(x1, y j), (x2, y j)} at most one of the vertices has been chosen by Staller, and since all pairs in C1 have become non-empty, 
at most one of the vertices in each pair remains undominated. Clearly, if a vertex from a pair was chosen, then in the 
corresponding pair both vertices have been dominated. We summarize these observations as follows: after dealing with C1
in the first phase, 
1 vertices of C1 have been chosen, and at most n − 
1 vertices from C1 have been left undominated.

Dominator proceeds by dealing with C2, and the only difference from the initial case when dealing with C1 is that 
some vertices (x3, y j) may have already been chosen by Staller. More generally, when Dominator starts to deal with Ci , 
where 2 ≤ i ≤ m/2, some vertices (x2i−1, y j) may have already been chosen by Staller while dealing with Ci−1. This also 
implies that the corresponding pairs {(x2i−1, y j), (x2i, y j)}, and their eventual neighboring pairs, {(x2i−1, y j−1), (x2i, y j−1)}
and {(x2i−1, y j+1), (x2i, y j+1)}, are already non-empty when Dominator starts to deal with Ci . The strategy of Dominator is 
the same as when dealing with C1. Notably, Dominator finds an arbitrary empty pair {(x2i−1, y j), (x2i, y j)}, if it exists, and 
indicates (x2i, y j), as long as there exists an empty pair in Ci . By using the same arguments as in the previous paragraph, 
Dominator can ensure that after dealing with Ci in the first phase, 
i vertices of Ci have been chosen, and at most n − 
i

vertices from Ci have been left undominated. The first phase is over after Dominator deals with Cm/2. By that time, Staller 
has chosen 

∑m/2
i=1 
i vertices, while at most

m/2∑
i=1

(n − 
i) = mn

2
−

m/2∑
i=1


i

vertices of Pm � Pn have been left undominated. Now, the second phase begins, in which Dominator indicates the remaining 
undominated vertices one by one, in any order. Hence, Staller will additionally select at most mn

2 − ∑m/2
i=1 
i vertices, which 

together with vertices selected in the first phase contributes to at most mn
2 chosen vertices during the entire game. Hence, 

γi(Pm � Pn) ≤ mn
2 = α(Pm � Pn), which combined with Proposition 3.1 implies the stated result.

Second, consider the case when both m and n are odd. In this case, partition V (Pm � Pn) into m+1
2 sets, namely C0 =

{x1} × V (Pn) and Ci = {x2i, x2i+1} × V (Pn), where 1 ≤ i ≤ m−1
2 . The proof is similar to the proof of the previous case in 

which m was even; the only difference is in the first step, where Dominator deals with the first column C0 , which we 
explain next.

Dominator uses the following strategy when dealing with C0, which lasts as long as there is an undominated vertex left 
in C0. The strategy consists of two phases. In the first phase, Dominator starts by indicating (x1, y1), and then, in every 
6
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further step, he indicates the vertex (x1, yi+2) if i is the largest index such that (x1, yi) is dominated and i ≤ n − 2. By the 
choices of Staller, a vertex of C0 becomes dominated by itself or one of its neighbors (possibly it is dominated by a neighbor 
from C1, which will then be considered when dealing with C1). If Staller chose (x1, yi+3) in one of her moves, then after the 
first phase is over, vertex (x1, yi+1) remains undominated. Now, note that vertices chosen by Staller together with vertices 
that are not yet dominated after the first phase form an independent set of the path induced by the first column. In the 
second phase, Dominator selects vertices of C0 that have not been dominated in the first phase (if any) one by one, and in 
this way all vertices of C0 become dominated. By the previous observation, Staller has chosen at most α(Pn) = n+1

2 vertices 
in C0.

The rest of the strategy of Dominator is exactly the same as in the previous case. Hence we conclude that Dominator can 
ensure that at most (m−1)n

2 vertices will be selected to dominate the vertices in C1 ∪ · · · ∪ C m−1
2

. Together with the bound 
on the number of vertices from C0 selected in the first step of the game, we infer that at most

n + 1

2
+ (m − 1)n

2
= mn + 1

2
=

⌈mn

2

⌉

vertices will be selected during the game on Pm � Pn . We readily infer that γi(Pm � Pn) = ⌈mn
2

⌉
. �

The next family of graphs G for which we suspect that γi(G) = α(G) are cubic bipartite graphs. We checked by computer 
that the equality holds for all (cubic) bipartite graphs G with n(G) ≤ 10. Next, we extend this result to n(G) ≤ 12.

Proposition 5.5. If G is a connected, cubic bipartite graph of order at most 12, then γi(G) = n(G)
2 = α(G).

Proof. By the observations preceding the proposition, it remains to consider the case when n(G) = 12. Let A = {a1, . . . , a6}
and B = {b1, . . . , b6} be the partite sets of G . For j ≥ 1, we let s j denote the vertex chosen by Staller on her jth move 
and let S j = {s1, . . . , s j}. In addition, di will denote the vertex indicated by Dominator in his ith move, for i ≥ 2. We 
provide a strategy for Dominator that will ensure at most 6 vertices are chosen by Staller. Without loss of generality 
s1 = a1 and N(a1) = {b1, b2, b3}. Dominator indicates d2 = b4. If s2 = b4, then |N[S2]| = 8, which leaves four undominated 
vertices. At most four more vertices will be chosen by Staller. Otherwise, s2 ∈ N(b4) ∩ (A − {a1}). Reindexing if necessary 
we assume s2 = a2. If {b5, b6} ⊆ N(a2), then S2 dominates eight vertices and thus at most six vertices will be chosen by 
Staller. If a2 is adjacent to only one, say b5, of b5 or b6, then Dominator points to b6. Now, regardless of which vertex 
Staller chooses from {b6, a3, a4, a5, a6} it is easy to see that |N[S3]| ≥ 9, which implies that Staller will choose at most 6
vertices. Therefore, we may assume that N(s2) ∩ {b4, b5, b6} = {b4}, and this implies that |N(a2) ∩ {b1, b2, b3}| = 2. Note 
that we now have (N(b5) ∪ N(b6)) ⊆ {a3, a4, a5, a6}. Dominator then points to d3 = b5. If s3 = b5, then |N[S3]| = 10 which 
implies that Staller can choose at most five vertices when the game has ended. Thus, we may assume that Staller chooses 
s3 ∈ N(b5) ∩{a3, a4, a5, a6}. By reindexing if necessary we assume that s3 = a3. Similar to the above argument, if a3b6 ∈ E(G), 
then Staller can choose at most six vertices when the game has ended. Hence, we may assume that b6 /∈ N(a3). Dominator 
now indicates d4 = b6. Staller must choose s4 ∈ {b6, a4, a5, a6}, and it follows that |V (G) − N[S4]| ≤ 2. Therefore, γi(G) ≤ 6. 
The reverse inequality follows by Proposition 3.1. �

We could not extend the above reasoning to graphs of larger order. Thus it remains open whether γi(G) = n(G)
2 holds for 

all cubic bipartite graph G .

6. Graphs with γi larger than �

In this section, we present a class of graphs whose indicated domination numbers exceed their upper irredundance 
numbers (and therefore also the independence number) by an arbitrarily large amount.

Recall that the kth power Gk of a graph G has V (Gk) = V (G), and uv ∈ E(Gk) if and only if dG (u, v) ≤ k, where dG is the 
standard (shortest paths) distance in G .

Theorem 6.1. For every n ≥ k ≥ 2, the kth powers Pk
n of paths satisfy

γi(Pk
n) = �

( log k

k
n
)

as n → ∞. More explicitly,

(�log(k + 1)� + 1)
⌊ n

4k

⌋
≤ γi(Pk

n) ≤ �log(k + 1)� + 2

2k + 2
n + �log(k + 1)� + 2

where log means logarithm of base 2.
7
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Proof. For the lower bound we may assume without loss of generality that n is a multiple of 4k. We divide P k
n into n

4k
sections of 4k consecutive vertices. Staller’s strategy is to consider each section separately. Denote the vertices in one such 
section S by v1, . . . , v4k . Note that the “middle” subsection S− formed by the vertices vk+1, . . . , v3k can only be dominated 
by vertices within S . Let us also use the notation S ′ for the “left” half v1, . . . , v2k of S , and write S ′′ for its “right” half 
v2k+1, . . . , v4k .

The first time Dominator indicates a vertex in S , with no loss of generality it is one of the vertices from S ′ . Staller 
then selects vk . This selection dominates the entire S− ∩ S ′ , but leaves the k vertices of S− ∩ S ′′ undominated. More 
generally, no matter what happened during the game before this move, the set U of undominated vertices inside S is a 
set {vi, vi+1, . . . , v j} of consecutive vertices (or just a singleton {vi}), because only some vertices at the right end of S ′′
may possibly be dominated by a selection from the successor section of S . Here j > 3k may occur, but Staller’s strategy 
will handle this situation as if j ≤ 3k held. So, attention will be restricted to U ′ = {vi, vi+1, . . . , v j′ } where j′ = min( j, 3k); 
hence 2k + 1 ≤ i ≤ j′ ≤ 3k. The crucial point is:

(*) If |U ′| ≥ 2s , for an integer s ≥ 0, then Staller can achieve that at least s + 1 steps are needed to make the entire U ′
dominated during the rest of the game.

We prove this by induction on s, the case of s = 0 being trivial. Once (*) is proved, it follows that the S− subsection inside 
each of the n

4k sections S requires at least �log (k + 1)�+1 moves under a properly chosen strategy of Staller, hence implying 
the claimed lower bound.

In a general move of the game when at least one selection has already been made in S , assume that the set of undom-
inated vertices inside S is U ⊆ S ′′ (also allowing U �⊂ S− , but U ′ ⊂ S− will hold by definition), and let Dominator indicate 
vertex v
 from U .

(a) If 
 > 3k (i.e., v
 ∈ U \ U ′), then Staller imagines as if Dominator has indicated 
 = 3k and proceeds as in case (c) below.
(b) If 
 ≤ 3k and 
 − i < j − 
, then Staller selects v
−k .
(c) If 
 ≤ 3k and 
 − i ≥ j − 
, then Staller selects v
+k .

In either case, Staller’s selection is inside S , hence it has no influence on the middle subsection of any section other 
than S . Moreover, in case (a) the selected vertex is v4k , therefore it dominates v
 . Finally, the number of vertices in U ′ that 
become dominated by Staller’s selection is at most � 1

2 |U ′|�. Consequently, if |U ′| ≥ 2s , then at least 2s−1 vertices remain 
undominated inside S− after this move. This implies (*) by induction, and completes the proof of the lower bound.

As a preparation to the proof of the upper bound, we observe the following.

(**) If U = {vi, vi+1, . . . , v j} is a set of consecutive undominated vertices, and j − i +1 ≤ 2k +1, then Dominator can achieve 
in at most �log ( j − i + 2)� moves that the entire U becomes dominated.

The strategy is simple:

1. Indicate v
 , where 
 = � 1
2 (i + j)�.

2. Depending on Staller’s selection, update U to its part that remains undominated.
3. Return to step 1 as long as U is non-empty.

To verify that this strategy proves (**), it suffices to observe that the undominated vertices of U remain consecutive after 
each move—this is because j − i + 1 ≤ 2k + 1 has been assumed—and that their number gets halved in each move.

Now we provide a strategy for Dominator, who will proceed from left to right in P k
n . The situation before each move 

can be described with an alternating sequence of sections that we call “gaps” Ui , consisting of consecutive undominated 
vertices, and “intervals” Di , consisting of consecutive dominated vertices. At the beginning we have no intervals, and just 
one gap U1 = {v1, . . . , vn}. Let Dominator play according to the following rules.

1. While vn is undominated and the last gap has at least 2k + 2 vertices:
(a) Identify the first vertex v g of the gap that contains vn .
(b) Indicate the vertex v
 , where 
 = g + 2k + 1.
(c) Depending on Staller’s selection, update the alternating sequence U1, D1, U2, D2, . . . of gaps and intervals.

2. In each of the gaps U1, U2, . . . , apply the strategy described above for (**).

After the first phase, for the sake of a more transparent computation, we split the gap-interval vertex partition into 
blocks B1 = (U1, D1), B2 = (U2, D2), . . . , Bm = (Um, Dm). If vn remains undominated before the second phase, i.e. vn ∈ Um , 
we artificially define Dm as the emptyset. Observe that except for the last block Bm , each gap Ui has at least 1 and at most 
2k + 1 vertices, and each interval Di has exactly 2k + 1 vertices. In particular, also the first block begins with a gap, as v1
is undominated.
8
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Consider any Bi with i < m. If 2s ≤ |Ui | < 2s+1, (**) guarantees that Dominator can achieve that Ui becomes dominated 
within s + 1 ≤ �log (2k + 2)� moves (and, according to (*), that is the best he can do). Moreover, Di was dominated in just 
one step. Since |Ui ∪ Di | ≥ 2k + 1 + 2s ≥ 2k + 2 whenever i < m, the average number of moves required to dominate one 
vertex in Bi is

s + 2

|Ui| + |Di| ≤ �log (2k + 2)� + 1

2k + 2

because s is an integer and 2s ≤ |Ui | ≤ 2k + 1. This upper bound is valid for all vertices in the whole B1 ∪ · · · ∪ Bm−1.
To complete the proof of the theorem, it suffices to note that Um becomes dominated in at most �log (2k + 2)� =

�log (k + 1)� + 1 moves and Dm in just one move (or none if it is empty). �
Let us state the particular case k = 2 of the general lower bound separately, as it already has important consequences.

Corollary 6.2. If n ≥ 2, then γi(P 2
n) ≥ 3� n

8 �

Since all P 2
n are chordal graphs, we have IR(P 2

n) = �(P 2
n) = α(P 2

n) = ⌈ n
3

⌉ ≤ n+2
3 by Theorem 2.2. Together with Corol-

lary 6.2, noting also that 3� n
8 � ≥ 3

8 n − 21
8 , we get γi(P 2

n) − IR(P 2
n) ≥ n−79

24 , which can be arbitrarily large when n grows.

Corollary 6.3. There exist graphs G such that γi(G) − IR(G) is arbitrarily large.

The above corollary also implies that there exist graphs G such that γi(G) − �(G) is arbitrarily large.

7. Concluding remarks

In Section 4 we characterized the graphs G with minimum degree δ and order n ≥ 2δ + 2, that satisfy the extremal value 
γi(G) = n − δ. It would be interesting to extend the characterization to graphs of smaller order relative to δ.

Question 7.1. For which graphs G of order n and minimum degree δ such that n < 2δ + 2 does γi(G) = n − δ hold?

In Section 5, we proved for two important families of bipartite graphs (namely trees and grids) that the indicated 
domination number equals their independence number. In addition, computer check confirmed this to hold for all (bipartite) 
graphs of order at most 10. We could not find any bipartite graph that would not have this property, so we pose this as an 
open problem:

Question 7.2. Is it true that for every bipartite graph G we have γi(G) = α(G)?

In the same section we also proved that connected, cubic bipartite graphs G of order at most 12 satisfy γi(G) = n(G)
2 =

α(G). We think this result could be generalized to all connected, cubic bipartite graphs, but we were unable to prove it. 
Therefore we pose the following question.

Question 7.3. Is it true that γi(G) = n(G)
2 for any cubic bipartite graph G?

It would also be interesting to find whether there is an upper bound on the indicated domination number in the class 
of all connected cubic graphs. In particular, is there a constant C < 1 such that γi(G) ≤ C · n holds for all connected cubic 
graphs G? Note that C ≥ 1

2 due to the 3-cube and the Petersen graph, as checked by computer.
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B. Brešar, Cs. Bujtás, V. Iršič et al. Discrete Mathematics 347 (2024) 114060
Acknowledgements

This research was supported in part by the National Research, Development and Innovation Office, NKFIH Grants SNN 
129364 and FK 132060, by the Slovenian Research and Innovation Agency (ARIS) under the grants P1-0297, J1-2452, J1-
3002, J1-4008, N1-0285, N1-0218 and Z1-50003, and by the European Union (ERC, KARST, 101071836). The authors thank 
the Faculty of Natural Sciences and Mathematics of the University of Maribor for hosting the Workshop on Games on Graphs 
in June 2023.

References

[1] G. Bacsó, B. Brešar, K. Kuenzel, D.F. Rall, Graphs with equal Grundy domination and independence number, Discrete Optim. 48 (2023) 100777.
[2] T. Bartnicki, J. Grytczuk, H.A. Kierstead, X. Zhu, The map coloring game, Am. Math. Mon. 144 (2007) 793–803.
[3] H.L. Bodlaender, On the complexity of some coloring games, Int. J. Found. Comput. Sci. 2 (1991) 133–147.
[4] M. Borowiecki, E. Sidorowicz, Zs. Tuza, Game list colouring of graphs, Electron. J. Comb. 14 (2007) R26.
[5] M. Borowiecki, A. Fiedorowicz, E. Sidorowicz, Connected domination game, Appl. Anal. Discrete Math. 13 (2019) 261–289.
[6] B. Brešar, S. Klavžar, D.F. Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979–991.
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