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PROPER HOLOMORPHIC EMBEDDINGS

WITH SMALL LIMIT SETS
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Abstract. Let X be a Stein manifold of dimension n ≥ 1. Given a continuous
positive increasing function h on R+ = [0,∞) with limt→∞ h(t) = ∞, we
construct a proper holomorphic embedding f = (z,w) : X ↪→ Cn+1 × Cn

satisfying |w(x)| < h(|z(x)|) for all x ∈ X. In particular, f may be chosen
such that its limit set at infinity is a linearly embedded copy of CPn in CP

2n.

1. The main result

A theorem of Remmert [23], Narasimhan [21], and Bishop [4] states that every
Stein manifold X of dimension n ≥ 1 admits a proper holomorphic map to Cn+1,
a proper holomorphic immersion to C2n, and a proper holomorphic embedding in
C2n+1. (See also [18, Chap. VII.C].) We are interested in the question how much
space proper holomorphic embeddings or immersions X → C

N need, and how small
can their limit sets at infinity be.

By Remmert [22], the image A = f(X) ⊂ CN of a proper holomorphic map
f : X → CN is a closed complex subvariety of pure dimension n = dimX. Such an
A is algebraic if and only if it is contained, after a unitary change of coordinates
on CN , in a domain of the form

D = {(z, w) ∈ C
n × C

p = C
N : |w| < C(1 + |z|)}

for some C > 0 (see Chirka [5, Theorem 2, p. 77]). Equivalently, if H = CP
N \

CN ∼= CP
N−1 denotes the hyperplane at infinity and A∞ = A ∩H, where A is the

topological closure of A in CP
N , then A is algebraic if and only if there is a linear

subspace L ∼= CP
N−n−1 of H ∼= CP

N−1 such that L∩A∞ = ∅. If this holds then A
and A∞ are algebraic subvarieties of pure dimension n and n−1, respectively. If X
is not algebraic then the image of any proper holomorphic immersion f : X → CN

is not algebraic either, so its limit set f(X)∞ ⊂ CP
N−1 has a nonempty intersection

with every linear subspace CP
N−n−1 ∼= L ⊂ CP

N−1.
We construct proper holomorphic embeddings with images in small Hartogs do-

mains.

Theorem 1.1. Let X be a Stein manifold of dimension n ≥ 1. Given a contin-
uous increasing function h : [0,∞) → (0,∞) with limt→∞ h(t) = ∞ there exist a
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proper holomorphic embedding (z, w) : X ↪→ Cn+1 × Cn and a proper holomorphic
immersion (z, w) : X → Cn+1 × Cn−1 satisfying

(1.1) |w(x)| < h(|z(x)|) for all x ∈ X.

Furthermore, given a compact O(X)-convex set K in X, an open neighbourhood
U ⊂ X of K, and a holomorphic map f0 = (z0, w0) : U → Cn+1 × Cp satisfying
(1.1) for all x ∈ K, we can approximate f0 uniformly on K by a proper holomorphic
embedding f = (z, w) : X → Cn+1 × Cp if p ≥ n, resp. immersion if p = n − 1,
satisfying (1.1).

The function h in Theorem 1.1 can be chosen to grow arbitrarily slowly, and
hence the image f(X) may be arbitrarily close to the subspace Cn+1 × {0}p in the
Fubini–Study metric on CP

n+1+p. Choosing h such that limt→∞ h(t)/t = 0 gives
Corollary 1.2.

Corollary 1.2. Every Stein manifold X of dimension n ≥ 1 admits a proper
holomorphic embedding f : X ↪→ C

2n+1 whose limit set f(X)∞ = f(X) ∩ H is
a linearly embedded copy of CPn in H = CP

2n+1 \ C2n+1 ∼= CP
2n. In particular,

every open Riemann surface X admits a proper holomorphic embedding in C3 whose
limit set is a projective line CP

1 ⊂ CP
2. The analogous result holds for proper

holomorphic immersions X → C
2n.

By the preceding discussion, the limit set f(X)∞ intersects every projective

subspace L ⊂ CP
N−1 of dimension N − n− 1, unless f(X) is algebraic. Therefore,

the nonalgebraic embeddings given by Corollary 1.2 have the smallest possible limit
sets.

Given a nonalgebraic complex subvariety X of CN , its closure X ⊂ CP
N and

the limit set X∞ ⊂ CP
N−1 need not be analytic subvarieties, and for any pair of

integers 1 ≤ n < N there are n-dimensional closed complex submanifolds X ⊂ CN

with X∞ = CP
N−1. (This always holds if N = n + 1 and X is nonalgebraic.)

Indeed, if X is a closed complex subvariety of CN (N > 1) then for any closed
discrete set B = {bj}j∈N ⊂ CN there exist a domain Ω ⊂ CN containing X and
a biholomorphic map Φ : Ω → C

N such that B ⊂ Φ(X) (see [13, Theorem 6.1] or
[14, Theorem 4.17.1 (i)]). Note that X ′ = Φ(X) is a closed complex subvariety of

CN . Choosing B such that its closure in CP
N contains the hyperplane at infinity

implies X ′
∞ = CP

N−1. A characterization of the closed subsets of CPN−1 which
are limit sets of closed complex subvarieties of CN of a given dimension does not
seem to be known.

The corollary is especially interesting in dimension n = 1. A long-standing open
question (the Forster conjecture [11], also called the Bell–Narasimhan conjecture
[2, 3]) asks whether every open Riemann surface, X, admits a proper holomorphic
embedding in C2. Recent surveys of this subject can be found in [14, Secs. 9.10–
9.11] and the preprint [1] by Alarcón and López, where the authors constructed a
proper harmonic embedding of any open Riemann surface in C × R

2 ∼= C
2 with

a holomorphic first coordinate function. Note that if X → C2 is a proper holo-
morphic map with nonalgebraic image then f(X)∞ = CP

1. (There are algebraic
open Riemann surfaces which do not embed as smooth proper affine curves in C2.)
Corollary 1.2 gives proper holomorphic embeddings f : X ↪→ C

3 whose images are
arbitrarily close to the subspace C2 × {0} in the Fubini–Study metric on CP

3, and
f(X)∞ = CP

1.
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It was recently shown by Drinovec Drnovšek and Forstnerič [8, Theorem 1.3]
that, under a mild condition on an unbounded closed convex set E ⊂ CN , proper
holomorphic embeddings f : X ↪→ C

N from any Stein manifold X with 2 dimX <
N such that f(X) ⊂ Ω = CN \E are dense in the space O(X,Ω) of all holomorphic
maps X → Ω. A similar result holds for immersions if 2 dimX ≤ N . Their proof
relies on the fact, proved by Forstnerič and Wold [17], that such a domain Ω is an
Oka domain. (See [14, Definition 5.4.1 and Theorem 5.4.4] for the definition and
the main results concerning Oka manifolds.) Note that the domains in Theorem 1.1
are much smaller than those in [8, Theorem 1.3] when the codimension is at least 2.
On the other hand, Theorem 1.1 does not pertain to proper maps in codimension
1 (the case p = 0). We do not know whether a Hartogs domain of the form

(1.2) Ω = {(z, w) ∈ C
n+1 × C

p : |w| < h(|z|)}, n ≥ 1, p ≥ 1,

which appears in Theorem 1.1, is an Oka domain, except if p = 1, the function
h > 0 grows at least linearly at infinity, and log h(|z|) is plurisubharmonic on Cn+1

(see Forstnerič and Kusakabe [15, Proposition 3.1]). Our proof does not require
that Ω be an Oka domain.

We mention that a Stein manifold of dimension n ≥ 2 admits a proper holomor-
phic embedding X ↪→ CN with N =

[
3n
2

]
+1 and a proper holomorphic immersion

with N =
[
3n+1

2

]
; see Eliashberg and Gromov [10], Schürmann [24], and [14, The-

orem 9.3.1]. The proofs are very delicate and depend on Oka theory. We do not
know whether one can expect a similar control of the range of the embedding in
these dimensions.

2. Proof of Theorem 1.1

Our proof of Theorem 1.1 relies on the following technical result, which is a
special case of [9, Theorem 1.1] by Drinovec Drnovšek and Forstnerič. (See also
[16, Theorem 6], which is based on the same result.) Similar results were obtained
earlier by Dor [6, 7].

Theorem 2.1. Assume that X is a Stein manifold of dimension n ≥ 1, D is a
relatively compact, smoothly bounded, strongly pseudoconvex domain in X, K is
a compact set contained in D, t0 is a real number, σ : Cn+1 → R is a strongly
plurisubharmonic exhaustion function which has no critical points in the set {σ ≥
t0}, and g0 : D → Cn+1 is a continuous map that is holomorphic in D and satisfies

g0
(
D \K

)
⊂ {σ > t0}. Given numbers t1 > t0 and ε > 0, there is a holomorphic

map g : D → Cn+1 satisfying the following conditions:

(a) g(bD) ⊂ {σ > t1}.
(b) σ(g(x)) > σ(g0(x))− ε for all x ∈ D.
(c) |g(x)− g0(x)| < ε for all x ∈ K.

Note that if ε > 0 is small enough then condition (b) implies

g
(
D \K

)
⊂ {σ > t0}.

The analogous result holds much more generally, and we only stated the case that
will be used here. For condition (b), see [9, Lemma 5.3], which is the main inductive
step in [9, proof of Theorem 1.1]. We remark that a map from a compact set
in a complex manifold is said to be holomorphic if it is holomorphic in an open
neighbourhood of the said set.
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Proof of Theorem 1.1. We shall construct proper holomorphic embeddings X ↪→
CN with N ≥ 2n + 1 satisfying (1.1); the same arguments will yield immersions
when N = 2n.

Let Ω ⊂ CN be a domain of the form (1.2) with coordinates (z, w) ∈ Cn+1 ×Cp

where p ≥ n, N = n + 1 + p, and the function h : [0,∞) → (0,∞) is as in the
theorem. We shall use Theorem 2.1 with the exhaustion function σ(z) = |z| on
C

n+1; the nonsmooth point at the origin will not matter. We denote by B the open
unit ball in Cn+1.

Since the set K ⊂ X is compact and O(X)-convex, there exist a smooth strongly
plurisubharmonic Morse exhaustion function ρ : X → R+ and a sequence 0 < c0 <
c1 < · · · with limi→∞ ci = +∞ such that every ci is a regular value of ρ and, setting

Di = {x ∈ X : ρ(x) < ci} for i = 0, 1, 2, . . .,

we have that K ⊂ D0 ⊂ D̄0 ⊂ U , where U ⊂ X is a neighbourhood of K as in
the theorem (see [19, Theorem 5.1.6, p. 117]). We may assume that the given
holomorphic map f0 = (z0, w0) : U → Ω satisfies condition (1.1) for all x ∈ D̄0 and
z0(x) 
= 0 for all x ∈ bD0. (We shall use the subscript in zi and wi as an index
in the induction process; a notation for the components of these maps will not be
needed.) Pick a number t0 ∈ R with

0 < t0 < min
x∈bD0

|z0(x)|.

Choose a number t−1 with 0 < t−1 < t0 and close enough to t0 such that the
sublevel set D−1 = {ρ < t−1} satisfies K ⊂ D−1 ⊂ D̄−1 ⊂ D0 and

z0(D0 \D−1) ⊂ C
n+1 \ t0B.

Note that the set D̄i is O(X)-convex for every i = −1, 0, 1, . . ..
By the Oka–Weil theorem, we can approximate the map w0 : U → C

p uniformly
on D̄0 by a holomorphic map w1 : X → Cn such that (z0, w1)(D̄0) ⊂ Ω. We shall
now construct a holomorphic map z1 : D1 → C

n+1 such that the holomorphic map
f1 = (z1, w1) : D1 → Ω enjoys suitable properties to be explained. This will be the
first step of an induction procedure.

Pick a number t1 ≥ t0 + 1 so big that

(2.1) h(t1) > max{|w1(z)| : z ∈ D̄1}.
(Such a number exists since limt→∞ h(t) = +∞.) Fix ε > 0 whose precise value will
be determined later. Let z̃0 : D̄0 → C

n+1 be a holomorphic map given by Theorem
2.1 (with z̃0 = g in the notation of that theorem, applied to the map g0 = z0, the
compact set D̄−1 ⊂ D0, and the numbers ε and t0 < t1). Condition (b) in Theorem
2.1 gives

|z̃0(x)| > |z0(x)| − ε for all x ∈ D̄0.

Since the function h in (1.2) is continuous, it follows that if ε > 0 is small enough
then the map (z̃0, w1) : D̄0 → CN has range in Ω, and we have that

(2.2) z̃0(bD0) ⊂ C
n+1 \ t1B, z̃0(D0 \D−1) ⊂ C

n+1 \ t0B, |z̃0−z0| < ε on D̄−1.

We now use the fact that Cn+1 \ t1B is an Oka domain (see Kusakabe [20,
Corollary 1.3]). Hence, the main result of Oka theory gives a holomorphic map
z1 : D1 → Cn+1 satisfying

(2.3) z1(D1 \D0) ⊂ C
n+1 \ t1B and |z1 − z̃0| < ε on D̄0.
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(See [12, Theorem 1.3] for a precise statement of a more general result. In the
special case at hand, the existence of a map z1 satisfying (2.3) was proved by
a more involved argument in the paper [16] by Forstnerič and Ritter, predating
Kusakabe’s work [20].) If the number ε > 0 is chosen small enough, it follows from
(2.1)–(2.3) and the definition of Ω (1.2) that

(2.4) z1(D0 \D−1) ⊂ C
n+1 \ t0B and (z1, w1)(D1) ⊂ Ω.

Since the dimension of the target space CN is at least 2 dimX +1, we may assume
after a small perturbation that the map f1 = (z1, w1) : D1 ↪→ Ω is an embedding
satisfying the above conditions (see [14, Corollary 8.9.3]). Assuming as we may
that all approximations are close enough, we also have that |f1 − f0| < ε0 on D̄−1

for a given ε0 > 0.
Continuing inductively, we obtain an increasing sequence t0 < t1 < t2 < · · · with

limi→∞ ti = ∞, a decreasing sequence ε0 > ε1 > ε2 > · · · > 0 with limi→∞ εi = 0,
and a sequence of holomorphic embeddings fi = (zi, wi) : D̄i ↪→ C2n+1 satisfying
the following conditions for i = 1, 2, . . ..

(i) fi(Di) ⊂ Ω.

(ii) zi(Di \Di−1) ⊂ C
n+1 \ tiB.

(iii) zi(Di−1 \Di−2) ⊂ C
n+1 \ ti−1B.

(iv) |fi − fi−1| < εi−1 on D̄i−2.
(v) ti ≥ ti−1 + 1.
(vi) 0 < εi < εi−1/2.
(vii) Every holomorphic map f : D̄i → CN with |f − fi| < 2εi on Di−1 is an

embedding on D̄i−2 and satisfies f(D̄i−1) ⊂ Ω.

Note that conditions (i) and (ii) also holds for i = 0 by the assumptions on f0, and
conditions (i)–(v) hold for i = 1 by the construction of the map f1.

The inductive step is similar to the one from i = 0 to i = 1, which was explained
above. Assume inductively that conditions (i)–(v) hold for some i ∈ {1, 2, . . .}.
Pick a number εi satisfying conditions (vi) and (vii). Also, fix a number ε > 0
whose precise value will be determined during this induction step. By the Oka–
Weil theorem, there is a holomorphic map wi+1 : X → C

p with |wi+1 − wi| < ε on
D̄i. Choose a number ti+1 ≥ ti + 1 so big that

(2.5) h(ti+1) > max{|wi+1(x)| : x ∈ D̄i+1}.

If ε > 0 is chosen small enough then Theorem 2.1, applied to the map g0 = zi :
D̄i → Cn+1, the compact set D̄i−1 ⊂ Di, and the numbers ti < ti+1 furnishes a
holomorphic map z̃i : D̄i → C

n+1 such that the map (z̃i, wi+1) : D̄0 → C
N has

range in Ω and the following conditions hold:

z̃i(bDi) ⊂ C
n+1 \ ti+1B, z̃i(Di \Di−1) ⊂ C

n+1 \ tiB, |z̃i − zi| < ε on D̄i−1.

(For i = 0 these are conditions (2.2).) Since Cn+1 \ ti+1B is an Oka domain (see
[20, Corollary 1.3]), there is a holomorphic map zi+1 : D̄i+1 → Cn+1 satisfying

zi+1(Di+1 \Di) ⊂ C
n+1 \ ti+1B and |zi+1 − z̃i| < ε on D̄i.

(This is an analogue of condition (2.3).) Finally, we perturb the holomorphic map

fi+1 = (zi+1, wi+1) : D̄i+1 → C
N
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slightly to make it an embedding. If all approximations are close enough then fi+1

satisfies conditions (i)–(iv), and (v) holds by the choice of ti+1. This completes the
induction step.

Conditions (iv) and (vi) imply that the sequence fi converges to the limit map

f = (z, w) = lim
i→∞

fi : X → C
N

satisfying |f −fi| < 2εi on D̄i−1 for every i = 0, 1, . . .. (In particular, |f −f0| < 2ε0
on K.) Conditions (i), (vi), and (vii) then imply that f is a holomorphic embedding
with f(X) ⊂ Ω. Finally, conditions (ii)–(vi) imply that the map z : X → C

n+1 is
proper, and hence f is proper as map to CN . �
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[14] Franc Forstnerič, Stein manifolds and holomorphic mappings, 2nd ed., Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results
in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics],
vol. 56, Springer, Cham, 2017. The homotopy principle in complex analysis, DOI 10.1007/978-
3-319-61058-0. MR3700709

[15] F. Forstneric and Y. Kusakabe, Oka tubes in holomorphic line bundles, arXiv:2310.14871,
2023.
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