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ABSTRACT. Let X be a Stein manifold of dimension n > 1. Given a continuous
positive increasing function h on Ry = [0,00) with lim¢—o0 h(t) = oo, we
construct a proper holomorphic embedding f = (z,w) : X «— C*tl x C"
satisfying |w(z)| < h(]z(z)|) for all x € X. In particular, f may be chosen
such that its limit set at infinity is a linearly embedded copy of CP"™ in CP2",

1. THE MAIN RESULT

A theorem of Remmert [23], Narasimhan [21], and Bishop [4] states that every
Stein manifold X of dimension n > 1 admits a proper holomorphic map to C**1,
a proper holomorphic immersion to C?”, and a proper holomorphic embedding in
C?n+1. (See also [18, Chap. VII.C].) We are interested in the question how much
space proper holomorphic embeddings or immersions X — C" need, and how small
can their limit sets at infinity be.

By Remmert [22], the image A = f(X) C C¥ of a proper holomorphic map
f: X — C¥ is a closed complex subvariety of pure dimension n = dim X. Such an
A is algebraic if and only if it is contained, after a unitary change of coordinates
on CV, in a domain of the form

D ={(z,w) €C"x CP =CN : jw| < C(1+|2])}

for some C' > 0 (see Chirka [5, Theorem 2, p. 77]). Equivalently, if H = CP" \
CN =~ CPN ! denotes the hyperplane at infinity and Ao, = AN H, where 4 is the
topological closure of A in CPY, then A is algebraic if and only if there is a linear
subspace L = CPN "1 of H = CPN ! such that LN Ao = @. If this holds then A
and A, are algebraic subvarieties of pure dimension n and n — 1, respectively. If X
is not algebraic then the image of any proper holomorphic immersion f: X — CV
is not algebraic either, so its limit set f(X)o, C CPY 'hasa nonempty intersection
with every linear subspace CPY "1 >~ [ c CPN 1.

We construct proper holomorphic embeddings with images in small Hartogs do-
mains.

Theorem 1.1. Let X be a Stein manifold of dimension n > 1. Given a contin-
uous increasing function h : [0,00) — (0,00) with lim;_, o h(t) = oo there exist a
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proper holomorphic embedding (z,w) : X < C"*1 x C™ and a proper holomorphic
immersion (z,w) : X — C"T1 x C"~1 satisfying

(1.1) |lw(z)| < h(lz(x)]) foralze X.

Furthermore, given a compact O(X)-conver set K in X, an open neighbourhood
U C X of K, and a holomorphic map fo = (z0,wo) : U — C"*1 x CP satisfying
@) for allx € K, we can approzimate fo uniformly on K by a proper holomorphic
embedding f = (z,w) : X — C"™1 x CP if p > n, resp. immersion if p = n — 1,

satisfying (LI).

The function h in Theorem [[I] can be chosen to grow arbitrarily slowly, and
hence the image f(X) may be arbitrarily close to the subspace C"** x {0} in the
Fubini-Study metric on CP"***?. Choosing h such that lim;_, h(t)/t = 0 gives
Corollary

Corollary 1.2. Fvery Stein manifold X of dimension n > 1 admits a proper
holomorphic embedding f : X — C*"*! whose limit set f(X)s = f(X)N H is
a linearly embedded copy of CP™ in H = CP?"*!\ C?"*! =~ CP?*". In particular,
every open Riemann surface X admits a proper holomorphic embedding in C* whose
limit set is a projective line CP* ¢ CP?. The analogous result holds for proper
holomorphic immersions X — C?".

By the preceding discussion, the limit set f(X). intersects every projective
subspace L ¢ CPY ! of dimension N —n — 1, unless f (X) is algebraic. Therefore,
the nonalgebraic embeddings given by Corollary [L21have the smallest possible limit
sets.

Given a nonalgebraic complex subvariety X of CV, its closure X ¢ CPY and
the limit set Xoo € CPY ™! need not be analytic subvarieties, and for any pair of
integers 1 < n < N there are n-dimensional closed complex submanifolds X c CV
with X,, = CPY~!. (This always holds if N = n 4+ 1 and X is nonalgebraic.)
Indeed, if X is a closed complex subvariety of CN (N > 1) then for any closed
discrete set B = {b;}jen C CV there exist a domain @ C C containing X and
a biholomorphic map ® : Q@ — CV such that B C ®(X) (see [13, Theorem 6.1] or
[14, Theorem 4.17.1 (i)]). Note that X’ = ®(X) is a closed complex subvariety of
CN. Choosing B such that its closure in CP" contains the hyperplane at infinity
implies X/, = CPY~'. A characterization of the closed subsets of CPY ™" which
are limit sets of closed complex subvarieties of CV of a given dimension does not
seem to be known.

The corollary is especially interesting in dimension n = 1. A long-standing open
question (the Forster conjecture [I1], also called the Bell-Narasimhan conjecture
[2L3]) asks whether every open Riemann surface, X, admits a proper holomorphic
embedding in C2. Recent surveys of this subject can be found in [14, Secs. 9.10—
9.11] and the preprint [I] by Alarcén and Lépez, where the authors constructed a
proper harmonic embedding of any open Riemann surface in C x R? = C? with
a holomorphic first coordinate function. Note that if X — C? is a proper holo-
morphic map with nonalgebraic image then f(X), = CP'. (There are algebraic
open Riemann surfaces which do not embed as smooth proper affine curves in C2.)
Corollary gives proper holomorphic embeddings f : X < C3 whose images are
arbitrarily close to the subspace C2 x {0} in the Fubini-Study metric on CP*, and
f(X)oo = CP".
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It was recently shown by Drinovec Drnovsek and Forstneri¢ [8, Theorem 1.3]
that, under a mild condition on an unbounded closed convex set £ C CV, proper
holomorphic embeddings f : X < C¥ from any Stein manifold X with 2dim X <
N such that f(X) C Q = CN \ E are dense in the space €'(X, ) of all holomorphic
maps X — Q. A similar result holds for immersions if 2dim X < N. Their proof
relies on the fact, proved by Forstneri¢ and Wold [17], that such a domain Q is an
Oka domain. (See [14, Definition 5.4.1 and Theorem 5.4.4] for the definition and
the main results concerning Oka manifolds.) Note that the domains in Theorem [T]
are much smaller than those in [8 Theorem 1.3] when the codimension is at least 2.
On the other hand, Theorem [I.1] does not pertain to proper maps in codimension
1 (the case p = 0). We do not know whether a Hartogs domain of the form

(1.2) Q={(z,w) €C"™ xCP: |w| < h(]z])}, n>1,p>1,

which appears in Theorem [T} is an Oka domain, except if p = 1, the function
h > 0 grows at least linearly at infinity, and log h(|z|) is plurisubharmonic on C"**
(see Forstneri¢ and Kusakabe [15, Proposition 3.1]). Our proof does not require
that Q be an Oka domain.

We mention that a Stein manifold of dimension n > 2 admits a proper holomor-
phic embedding X — CV with N = [37”] + 1 and a proper holomorphic immersion
with N = [2%F1]; see Eliashberg and Gromov [10], Schiirmann [24], and [14], The-
orem 9.3.1]. The proofs are very delicate and depend on Oka theory. We do not
know whether one can expect a similar control of the range of the embedding in
these dimensions.

2. ProoF oF THEOREM [L.]]

Our proof of Theorem [L1] relies on the following technical result, which is a
special case of [9, Theorem 1.1] by Drinovec Drnovsek and Forstneric. (See also
[16, Theorem 6], which is based on the same result.) Similar results were obtained
earlier by Dor [61[7].

Theorem 2.1. Assume that X is a Stein manifold of dimension n > 1, D is a
relatively compact, smoothly bounded, strongly pseudoconver domain in X, K is
a compact set contained in D, ty is a real number, o : C"*1 — R is a strongly
plurisubharmonic exhaustion function which has no critical points in the set {o >
to}, and go : D — C™*1 is a continuous map that is holomorphic in D and satisfies
go(D\ K) C {o > to}. Given numbers t; >ty and € > 0, there is a holomorphic
map g : D — C"*1 satisfying the following conditions:

(a) g(bD) C {o > t1}. o

(b) o(g(z)) > o(go(z)) — € for all x € D.

(¢) lg(z) —go(z)| <€ for allz € K.

Note that if € > 0 is small enough then condition (b) implies
g(D\ K) C {o > to}.

The analogous result holds much more generally, and we only stated the case that
will be used here. For condition (b), see [9, Lemma 5.3], which is the main inductive
step in [0, proof of Theorem 1.1]. We remark that a map from a compact set
in a complex manifold is said to be holomorphic if it is holomorphic in an open
neighbourhood of the said set.
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Proof of Theorem [LIl We shall construct proper holomorphic embeddings X
CYN with N > 2n + 1 satisfying (II)); the same arguments will yield immersions
when N = 2n.

Let Q C CY be a domain of the form (LZ) with coordinates (z,w) € C**! x CP
where p > n, N = n+ 1+ p, and the function h : [0,00) — (0,00) is as in the
theorem. We shall use Theorem 2] with the exhaustion function o(z) = |z| on
C™*1; the nonsmooth point at the origin will not matter. We denote by B the open
unit ball in C™*1.

Since the set K C X is compact and &(X)-convex, there exist a smooth strongly
plurisubharmonic Morse exhaustion function p : X — R4 and a sequence 0 < ¢g <
¢ < - with lim;_, o, ¢; = +00 such that every c¢; is a regular value of p and, setting

Di={xeX:p(x)<e¢} fori=0,1,2,...,

we have that K C Dy C Dy C U, where U C X is a neighbourhood of K as in
the theorem (see [19, Theorem 5.1.6, p. 117]). We may assume that the given
holomorphic map fy = (20, wo) : U —  satisfies condition (L)) for all z € Dy and
zo(z) # 0 for all x € bDy. (We shall use the subscript in z; and w; as an index
in the induction process; a notation for the components of these maps will not be
needed.) Pick a number ¢, € R with

0<ty< i |z0()].

Choose a number ¢_; with 0 < ¢_; < tp and close enough to ty such that the
sublevel set D_; = {p < t_1} satisfies K C D_y C D_; C Dy and

Zo(DO \ Dfl) C (Cn+1 \toE

Note that the set D; is &(X)-convex for every i = —1,0,1,....

By the Oka—Weil theorem, we can approximate the map wg : U — CP uniformly
on Dy by a holomorphic map w; : X — C" such that (20, w;)(Dy) C Q. We shall
now construct a holomorphic map 2z, : D; — C™*! such that the holomorphic map
f1 = (z1,w1) : D1 — € enjoys suitable properties to be explained. This will be the
first step of an induction procedure.

Pick a number t; >ty + 1 so big that

(2.1) h(t1) > max{|w(2)| : z € Dy }.

(Such a number exists since lim;_,o h(t) = +00.) Fix € > 0 whose precise value will
be determined later. Let Z, : Dg — C"*! be a holomorphic map given by Theorem
211 (with Zy = ¢ in the notation of that theorem, applied to the map go = 2o, the
compact set D_; C Dy, and the numbers € and ¢, < ;). Condition (b) in Theorem
2T gives
|Z0(z)| > |20(x)| — € for all z € Dy.

Since the function A in ([L2]) is continuous, it follows that if € > 0 is small enough
then the map (Zp, w;) : Dy — CV has range in Q, and we have that

(22) éo(bDo) c ¢t \tlﬁ, EO(DO \ Dfl) c cntt \to@, |,§0 —Zo| < € on Dfl.

We now use the fact that C"*!\ #;B is an Oka domain (see Kusakabe [20,
Coro_llary 1.3]). Hence, the main result of Oka theory gives a holomorphic map
21 : D; — C™*! satisfying

(23) Z1(D1 \D()) C (Cn+1 \tlﬁ and ‘21 — 50| < € on Do.
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(See [12] Theorem 1.3] for a precise statement of a more general result. In the
special case at hand, the existence of a map z satisfying (23) was proved by
a more involved argument in the paper [I6] by Forstneri¢ and Ritter, predating
Kusakabe’s work [20].) If the number € > 0 is chosen small enough, it follows from

EI)-@3) and the definition of  ([L2)) that
(24) Zl(DO \Dfl) C (Cn+l \toB and (zl,wl)( ) c Q.

Since the dimension of the target space C is at least 2dim X + 1, we may assume
after a small perturbation that the map f; = (z1,w) : D; < € is an embedding
satisfying the above conditions (see [14, Corollary 8.9.3]). Assuming as we may
that all approximations are close enough, we also have that |f; — fo| < €o on D_;
for a given ¢y > 0.

Continuing inductively, we obtain an increasing sequence ty < t1 < to < --- with
lim;_, o, t; = 00, a decreasing sequence €y > €1 > € > --- > 0 with lim; . ¢; = 0,
and a sequence of holomorphic embeddings f; = (z;,w;) : D; — C?"*! satisfying
the following conditions for i = 1,2, .. ..

(i) fi(Di) € O
) ( A \ Difl) c crtt \tZE
i) 2 (Di—1\ Di—2) C C"T\ t;_4B.

iv) [fi — fic1] < e€i—1 on D;_s.
) ti
i)
)

/.\
[y
e e
= o=

_

i
(V > tz 1 —|— 1

(vi) 0 < € < €;—1/2.

(vii) Every holomorphic map f : D; — (CN with |f — fi| < 2¢; on D;_; is an
embedding on D;_5 and satisfies f(D;_1) C Q.

Note that conditions (i) and (ii) also holds for ¢ = 0 by the assumptions on fj, and
conditions (i)—(v) hold for ¢ = 1 by the construction of the map f.

The inductive step is similar to the one from 7 = 0 to ¢ = 1, which was explained
above. Assume inductively that conditions (i)—(v) hold for some ¢ € {1,2,...}.
Pick a number ¢; satisfying conditions (vi) and (vii). Also, fix a number € > 0
whose precise value will be determined during this induction step. By the Oka—
Weil theorem, there is a holomorphic map w;1 : X — CP with |w; 1 — w;| < € on
D;. Choose a number t;,1 > t; + 1 so big that

(25) h(ti+1) > max{|wi+1(x)| T e Di+1}.

If € > 0 is chosen small enough then Theorem 1l applied to the map go = z; :
D; — C™*1 the compact set D;,_; C D;, and the numbers t; < ti+1 furnishes a
holomorphlc map Z; : D; — C"*! such that the map (Z;,w;;1) : Dy — C¥ has
range in € and the following conditions hold:

2z(sz) C (CnJrl \ti+1E; 5Z(Dz \ Di—l) C (CnJrl \tzE, |21 — ZZ| < € Oon Di—l-

(For i = 0 these are conditions (Z2).) Since C"**\ #;41B is an Oka domain (see
[20, Corollary 1.3]), there is a holomorphic map z;41 : D;+1 — C"! satisfying

Zi+1(Di+1 \Di) C (Cn+1 \ti+1E and |Zi+1 — 22| < € on Dl
(This is an analogue of condition (23).) Finally, we perturb the holomorphic map

fit1 = (zig1,wit1) : Diyp — CV
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slightly to make it an embedding. If all approximations are close enough then f;
satisfies conditions (i)—(iv), and (v) holds by the choice of #;;1. This completes the
induction step.

Conditions (iv) and (vi) imply that the sequence f; converges to the limit map

f=(z,w)= lim f; : X - CV
1— 00

satisfying | f — f;| < 2¢; on D;_; for every i = 0, 1,.... (In particular, |f — fo| < 20
on K.) Conditions (i), (vi), and (vii) then imply that f is a holomorphic embedding
with f(X) C Q. Finally, conditions (ii)~(vi) imply that the map z : X — C"*! is
proper, and hence f is proper as map to C. (]
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