www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

An exact algorithm to find
a maximum weight clique
in a weighted undirected graph

Kati Rozman?, An Ghysels?, Duanka Janezi¢'* & Janez Konc®34**

We introduce a new algorithm MaxCliqueWeight for identifying a maximum weight clique in a
weighted graph, and its variant MaxCliqueDynWeight with dynamically varying bounds. This
algorithm uses an efficient branch-and-bound approach with a new weighted graph coloring algorithm
that efficiently determines upper weight bounds for a maximum weighted clique in a graph. We
evaluate our algorithm on random weighted graphs with node counts up to 10,000 and on standard
DIMACS benchmark graphs used in a variety of research areas. Our findings reveal a remarkable
improvement in computational speed when compared to existing algorithms, particularly evident in
the case of high-density random graphs and DIMACS graphs, where our newly developed algorithm
outperforms existing alternatives by several orders of magnitude. The newly developed algorithm
and its variant are freely available to the broader research community at http://insilab.org/maxcl
iqueweight, paving the way for transformative applications in various research areas, including drug
discovery.

The Maximum Weight Clique Problem (MWCP) finds significant utility in bioinformatics and drug design play-
ing a crucial role in the analysis of complex molecular networks and the identification of functionally relevant
components within them. In the context of biological networks such as protein-protein interaction networks or
gene regulatory networks, the MWCP is employed to uncover groups of molecules that form cohesive functional
units, often associated with particular cellular processes or pathways'. By assigning weights to these molecules
based on attributes such as gene expression levels, interaction strengths, or molecular properties, the MWCP
aids in pinpointing the most influential or interconnected subsets of molecules. This knowledge is instrumental
in understanding intricate biological mechanisms, disease pathways, and drug target identification.

Furthermore, the MWCP assists in the rational design of drugs by helping researchers identify clusters of
interacting molecules that could be potential drug targets or that contribute to disease progression®*. Thus, the
application of the MWCP in bioinformatics and drug design enhances our ability to decipher complex biologi-
cal systems and facilitates the development of innovative therapeutic strategies. The MWCP is also applied in
other research areas, such as robotics*, combinatorial auctions®, telecommunications® and protein functional
sites recognition’.

In a weighted graph, vertices are assigned numerical weights, often positive integer values, indicating their
importance, value, or cost. A maximum weight clique is a subset of vertices that meets the definition of a clique,
that is, each vertex is directly connected to every other vertex in the subset. Additionally, a maximum weight
clique has the highest sum of weights of its associated vertices, compared to all other cliques that can be found
in the given graph. The goal of the MWCP is to discover one of possibly several such maximum weight cliques.
The challenge is to efficiently determine which vertices should be included in the clique in order to achieve the
maximum weight while maintaining the definition of the clique.

The MWCP is an NP hard problem, indicating that as the weighted graph size grows, the computational effort
required to find an optimal solution increases exponentially. Several exact algorithms have been developed to
address the MWCP?!! and related problems'? so far. These algorithms guarantee optimal solutions by employ-
ing techniques like branch and bound that allows them to explore efficiently only a subset of possible maximum
weight cliques within the graph, and to quickly prune the unpromising branches. To tackle massive graphs,

'Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaska
Ulica 8, 6000 Koper, Slovenia. %IBiTech — BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance
36, 9000 Gent, Belgium. 3Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana,
Slovenia. “Faculty of Pharmacy, University of Ljubljana, Askeréeva 7, 1000 Ljubljana, Slovenia. @email:
dusanka.janezic@upr.si; konc@cmm.ki.si

Scientific Reports | (2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

heuristic algorithms have also been developed to provide weighted cliques within a reasonable time, which is
sufficient for most practical applications'*~>.

In this work, we develop a new exact maximum weight clique algorithm MaxCliqueWeight and its variant
MaxCliqueDynWeight, a dynamic variant of the algorithm involving dynamically varying upper bounds as first
introduced in'¢, which increase efficiency of the clique-finding algorithm. The algorithms are based on a fast
branch and bound algorithm for finding a maximum clique in an undirected graph'®. We test the newly developed
algorithms on random weighted graphs of up to 10,000 vertices and on standard benchmark DIMACS graphs,
used in different research fields and industries'”. We show that our newly developed algorithms are up to three
orders of magnitude faster than a comparable Cliquer algorithm®'® on random graphs, with the largest speedup
achieved by the MaxCliqueDynWeight algorithm on a graph with 100 vertices and an edge density of 0.95; the
MaxCliqueWeight algorithm is up to six orders of magnitude faster on DIMACS graphs, with the highest speedup
on the san200_0.7_2 graph with 200 nodes and an edge density of 0.7.

Methods

Graph notations

Table 1 gives an overview of the variables used in the developed MaxCliqueWeight algorithm and its MaxClique-
DynWeight variant together with their meaning.

A new algorithm to find a maximum weight clique in a weighted undirected graph

We describe a new algorithm MaxCliqueWeight, in which we have extended the basic algorithm, referred to
as MaxClique, developed in'®. The new MaxCliqueWeight algorithm works on vertex-weighted graphs, that
is, graphs where each vertex is assigned a weight represented by a positive integer number. The new algorithm
finds a maximum weight clique, i.e., a clique with the highest total sum of its weights, in an undirected vertex-
weighted graph, as shown in Table 2.

The algorithm recursively explores the search tree of the possible weighted cliques, using a branch-and-bound
technique to efficiently prune parts of the search space that cannot contain a maximum weight clique. It consists
of the new ColorSortWeight procedure (see Table 3) that provides the upper bound to the weight of the clique that
can be found at each step of the search tree, and of the Expand procedure (see Table 4), the recursive procedure
that performs the branch-and-bound search.

Input

The algorithm takes as input a weighted graph G represented by a set of vertices R, a set of adjacent vertices
I'(v) for each vertex v € R, and a set of weights W, where each vertex v € R has assigned a weight w, which is a
positive number (w > 0).

Output
The set Qmax consisting of vertices of the maximum weight clique found in the input vertex-weighted graph.

Name Definitions
G An input graph G represented by a set of vertices R and a set of adjacent vertices I'(v) for each vertex vER
R A set of input graph vertices represented by numbers 0...n
I'(v) A set of vertices adjacent (connected by an edge) to each vertex vER in the input graph G
A(R) Maximum degree of any vertex in R
C A set of color classes C[k], k=1...|R|+ 1, where each contains non-adjacent vertices only; k represents the color of all vertices in
the k-th color class
Q A global variable, a set of graph vertices that represent a (weighted) clique being constructed
w A set of weights for graph vertices of the input graph (e.g., W[R[i]] denotes the weight of vertex with index i in R)
Qmax A global variable, a set of graph vertices that represent a maximum weight clique
Table 1. Graph variables and definitions used in the clique algorithms.
Line Pseudocode Description
1 SortDecDeg (R) Sort vertices in R by decreasing degrees (from the highest to the lowest degree)
2 ColorSortWeight (R) Set initial colors' and wcqlors of the input vertices in set R. These are the upper bounds to the size and the
weight of a maximum clique, respectively
3 Expand (R) Start the recursive branch-and-bound tree search for (weight) cliques
Table 2. The initialization steps of the new algorithms MaxCliqueWeight and MaxCliqueDynWeight.
Scientific Reports | (2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

Line Pseudocode

1. procedure ColorSortWeight (R)

2. maxno = 1

3. fori=0to |R| -1

4. p = R[i]

5. k=1

6. Cll]=0,C[2]=90

7. weight(C[1]) = -inf, weight(C[2]) = -inf
8. while C[k] N I'(p) # @

9. k=k+1

10. if k > maxno

11. maxno = k

12. Clmaxno + 1] =@

13. weight(C[maxno + 1]) = -inf
14. weight(C[k]) = max W|p], weight(C[k])
15. Clk] = Clk] U {p}

16. color(p) = k

17. min_ k w=1

18. while min_k w < maxno and Zk-1.min_k_w(weight(C[k])) < weight(Qmax) — weight(Q)
19. min k w=min k w+ 1

20. j=0

21. fori=0to |[R| -1

22. if color(R[i]) < min_k w

23. R[j] = R[i]

24. j=j+1

25. ifji>0

26. color(R[j]) =0

27. for k = min_k w to maxno

28. ub_k = Zn-1.x(weight(C[k])

29. fori=0to |C[K]| -1

30. wcolor(R[j]) = ub_k

31 R[j] = ClK][]

32. j=jt+1

Table 3. A new approximate coloring algorithm for weighted undirected graphs used in our new maximum
weight clique algorithm MaxCliqueWeight and its variant MaxCliqueDynWeight. Global variables are: Q - a set
that contains the currently growing weight clique, Qmax - a set that contains the highest weight clique currently
found. For definitions of all variables see Table 1.

Scientific Reports | (2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

Line Pseudocode

1. procedure Expand (R)

2. while R # ¢

3. p = last vertex in R # choose vertex with highest color and/or cumulative weight
4. if weight(Q) + wcolor(p) > weight(Qmax)
5. Q=Qu {p}

6. Rp =R N I(p)

7. ifRp#0

8. if T[level] < Tlimit

9. SortDecDeg (Rp)

10. ColorSortWeight (Rp)

11. Expand (Rp)

12. else if weight(Q) > weight(Qmax)

13. Qmax = Q

14. Q=Q\ {p}

15. else return

16. R=R\ {p}

Table 4. Expand procedure for the new maximum weight clique algorithm MaxCliqueWeight and its variant
MaxCliqueDynWeight. Global variables are the set Q that contains the currently growing clique and the set
Qmax which contains the largest clique currently found. For definitions of all variables see Table 1.

Initialization

Vertices in the set R (see Table 2) are sorted by their degrees in decreasing order, so that the first vertex has the
highest degree of all vertices in R, and the last one has the lowest degree (see line 1 in Table 2). This order of
vertices produces the tightest upper bounds to the size of a maximum weight clique in our experiments (see
also'®). The ColorSortWeight procedure is then called once on the input vertices in the set R (line 2 in Table 2).
This procedure efficiently determines the initial upper bound to the weight of a clique (wcolor) for each vertex
vER if v is selected to form the growing clique.

ColorSortWeight procedure: determination of upper bounds to clique weight

The ColorSortWeight procedure takes a set of vertices R as input and partitions these vertices into color classes C,
where vertices in the same color class C[k] are not connected by an edge as shown in Table 3. Here, k represents
the color of all vertices in color class C[k]. For each vertex p € R, the procedure determines the lowest color k
such that no vertex in the k-th color class C[Kk] is adjacent to p (line 8 in Table 3). If k is greater than the maximum
number of colors seen so far represented by the variable maxno (line 10 in Table 3), a new color class is created.
Vertex p is then inserted into this color class k and its color k is assigned to it, i.e., color(p) = k. At each step, the
weight of color class C[k], initially set to zero, is updated to the weight of the vertex p if the weight of p is larger
than the weight of its color class (line 14 in Table 3). This results in each color class C[k] being assigned the
maximum weight of its vertices. Thus, any current clique Q consisting of vertices in the set R that is found will
have at most k vertices and its weight will be less or equal the sum of the maximum weights of the color classes
1 through k, i.e., weight(Q) < X _, \(weight(C[n])). This condition holds after line 16 in Table 3.

In the next step, the ColorSortWeight procedure determines the color class (min_k_w) below which vertices
cannot be used to extend the growing weighted clique based on the difference between the weight of the currently
growing clique Q and the weight of the maximum weight clique found so far Qmax (line 18 in Table 3). The value
of min_k_w is found iteratively by starting with min_k_w = 1 and increasing it to maxno; the search is stopped
when the sum of the weights of the k smallest color classes is greater than the difference between the weight of
the maximum clique found so far Qmax and the weight of the currently growing clique Q.

The vertices in the set R with colors less than min_k_w are not going to be used to extend the current clique,
therefore they can be kept in the initial ordering. They are copied to the beginning of R in their initial order of
decreasing degrees (lines 21-24 in Table 3). Maintaining the initial order of vertices was shown to produce tighter
upper bounds than if order is not maintained'® and improves efficiency of clique search (see'®).

Scientific Reports |

(2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

On the other hand, vertices in color classes with k greater or equal to min_k_w can form cliques with weights
higher than the weight of the maximum weight clique Qmax found so far. These vertices are copied from their
respective color classes C, starting from C[min_k_w] and ending with C[maxno], back to the set R in the order
in which they appear in each color class (lines 27-32 in Table 3). Each such vertex with color of k is assigned a
cumulative weight (wcolor), which is the sum of maximum weights of all color classes 1 to k (see the calculation
of ub_k on line 28 in Table 3). A wcolor represents the upper bound to the weight of the clique that can be found
in the Expand procedure; wcolor is used for prunning the search tree, which is described next.

Expand procedure: finding a maximum weight clique

After the upper bounds of vertices in R are set, the Expand procedure is called. This call is done once during
the Initialization phase (see Table 2) as well as at each step during the recursive branch-and bound tree search
(line 11 in Table 4) as explained in the following. The Expand procedure explores the search tree of possible
weighted cliques, starting with the initially empty set Q representing a set of vertices of the currently growing
weighted clique. At each step, Expand selects the vertex p € R with the highest cumulative weight (wcolor) (line
3 in Table 4), which is the last vertex in set R, and removes this vertex p from the set R. If the weight of Q, which
is the sum of the weights of all its constituting vertices plus the weight of the selected vertex p is greater than the
weight of Qmax, the vertex p is added to Q (line 4 in Table 4).

The subset of vertices Rp C R, in which each vertex is adjacent to p, is determined (line 6 in Table 4), and if
this set Rp is not empty, the ColorSortWeight procedure is called with Rp as an argument. This sets the upper
bounds (wcolors) for vertices in set Rp. The Expand procedure is then called recursively with Rp as argument.
The recursive calls continue until Rp is empty. If Rp is empty, and the weight of Q is greater than the weight of
Qmax (line 12 in Table 4), Qmax is updated to be Q. In any case, if the weight of the candidate clique is greater
than Qmax or not, the Expand backtracks removing the added vertex from Q to allow the search along a different
branch of the search tree. The result of the Expand procedure is a set Qmax containing vertices of a maximum
weight clique that was found in the input vertex-weighted graph.

Dynamically varying bounds for greater efficiency

In the MaxCliqueWeight algorithm the calculation of the degrees and sorting of vertices is performed only once
with the initial set of vertices R (see line 1 in Table 2). In'¢, we developed a new technique of varying upper
bounds that recalculates the degrees of vertices in Rp in the graph induced by these vertices, i.e., G(Rp), at heu-
ristically determined steps of the Expand procedure. Vertices in Rp are then sorted in a decreasing order with
respect to their degrees in G(Rp). The graph coloring algorithm thus considers vertices in Rp sorted by their
degrees in the induced graph G(Rp) rather than in G, which increases their tightness. Varying upper bounds
enables to reduce the number of steps required to find the maximum clique and improve the run time of the
algorithm by as much as an order of magnitude on dense graphs, while preserving its superior performance on
sparse graphs'®.

However, the calculation of degrees is computationally expensive (O(|Rp|?), therefore we need to determine
at which steps this should be performed to decrease the overall running time of the maximum clique search. The
heuristic by which we determine the steps where the recalculation of degrees in G(Rp) and resorting of vertices
is performed assumes that the calculation time is improved only when the candidate set Rp is large. Obviously,
set Rp is larger on initial (lower) levels of the recursion of the Expand procedure than on the higher levels. With
the recursion level we denote the number of recursive calls of the Expand procedure from the first call to the
current branch. For large candidate sets the computational expense related to the computation of tighter bound
is much smaller than the cost of investigating false solutions, which arise when applying less tight bounds.

Therefore, we count the number of steps up to and including each level of the recursion in the Expand pro-
cedure and also the number of all steps completed so far. Using these two values, we calculate T[level], which is
the fraction of steps up to the current level among all the steps completed so far (see line 8 in Table 4). With a
new heuristic parameter, Tlimit, we can then limit the use of tighter bounds (recalculation of degrees) to certain
levels. While T[level] is less than Tlimit, we perform the calculations of the degrees and sorting and in the Color-
Sort algorithm we consider vertices in Rp sorted by their degrees in G(Rp). The Tlimit parameter is set to 0.025
by default’®, which limits the calculation of degrees to the lower levels of the recursion where Rp is the largest.

Maximum weight clique search on an example graph

To introduce the novel MaxCliqueWeight algorithm, we illustrate its operation through a step-by-step walk-
through on a sample weighted graph. This graph comprises seven vertices, labeled one through seven and
depicted as circles. Each vertex is associated with a positive integer weight, denoted within parentheses, as
shown in Figure 1.

In Step 1, we initiate the Expand procedure for the first time (see line 3 in Table 2). At this point, the set R
contains vertices of the input graph, sorted by their degrees in descending order. The first vertex in R (vertex no.
4) has five degrees (number of connected edges), while all other vertices have four degrees. The set wcolors, rep-
resenting the upper bounds for clique weights in the input graph, has been initialized with the ColorSortWeight
procedure (as seen in Table 3). Additionally, sets Q and Qmax are empty at this stage.

In Step 2, which marks the next level of the recursion of the Expand procedure, the last vertex in R (vertex
no. 7, colored blue in Figure 1) is selected. The condition on line 4 in Table 4, known as the weight bound condi-
tion, is satisfied. This condition checks if the upper bound (wcolor) of vertex no. 7, which is wecolor(7) = 21, plus
the weight of Q (0) is greater than the weight of Qmax (0). In this case, this condition is met, and vertex no. 7
is added to the set Q, representing the growing clique. Simultaneously, the set R is reduced to contain only the
vertices adjacent to vertex no. 7.

Scientific Reports |

(2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

R=1[4,25136,7]
weolors = [7, 7, 15, 15, 20, 20, 21)
C=[1,1,223234]

Qmax = [7, 6,
weight{Qmax)

5,

R=[4,5]
weolors = [7, 15]
C=[1,2]
Q=[7 6]

=[4,2]

colors = [0, 0]
=[1,1]

=[3,1]

max = [7, 6, 5, 4]

onE=

R=[4,2] Qmax = [3, 5, 4]
weolors = [7, 7] weight(Qmax) = 20
C=[1,1]

Q=3

.5]
Qmax = [7, 6, 5, 4]

Figure 1. Example calculation with the MaxCliqueWeight algorithm on a weighted graph. Each vertex is
represented as a circle and has a vertex number and below it is in parentheses the vertex’s weight. Vertices
belonging to the current clique Q are colored in blue. Maximum weight clique is shown with red thick edges. In
each step, below the graph are the current values of important variables as they are sampled at the beginning of
the Expand procedure (before line 2 in Table 4) for steps 1-4 and 6-9 or at the update of Qmax in the Expand
procedure (after line 13 in Table 4) for steps 5 and 10: R—graph vertices that remain to be explored; wcolors—
upper bounds to the weight of a clique, where each wcolor corresponds to the vertex in R at the same index in
the list; C—color classes determined in the ColorSortWeight procedure, where each color class corresponds to
the vertex in R at the same index in the list; Q—vertices of the current growing clique; Qmax—vertices of the
current maximum weight clique.

In Step 3 and Step 4, the last vertices in R, vertex no. 6 and vertex no. 5, respectively, are added to the set Q.
In Step 5, vertex no. 4 is added. Since Rp is empty, indicating that the clique in Q cannot expand further, the set
Q is copied into Qmax.

Moving to Step 6, the Expand branch-and-bound procedure backtracks to the recursion level of Step 1. It then
begins constructing a new clique Q by selecting the next-to-last vertex in R (vertex no. 6). The weight bound
condition on line 4 in Table 4 is satisfied, as the wcolor of vertex no. 6, which is 20, plus the weight of Q (0) is
greater than the weight of Qmax (18). Therefore, vertex no. 6 is added to the set Q. However, all the vertices in
the current set R (vertices no. 4, 5, and 1) have wcolors equal to zero. Consequently, none of these vertices can
extend Q’s weight beyond that of Qmax, i.e., the weight of Q (2) plus the wcolor of vertex no. 4, 5, or 1 (0) is less
than the weight of Qmax (18).

In Step 7, the Expand procedure backtracks to the recursion level of Step 1, and vertex no. 3 is added to the
set Q.

In Step 8 vertex no. 1 is added to the set Q, as the weight of Q (5), which now includes vertex no. 3, plus the
weolor of vertex no. 1 (15), exceeds the weight of Qmax (18). Vertex no. 2 is then considered for addition but is

Scientific Reports | (2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

excluded since the weight of Q (7), including vertices no. 3 and 1, plus the wcolor of vertex no. 2 (0), is less than
the weight of Qmax (18). Consequently, the algorithm backtracks to the recursion level of Step 7 and attempts
to add another vertex.

In Step 9, vertex no. 5 is added to the set Q because the weight bound condition is met. The weight of the set
Q (5) plus the wcolor of vertex no. 5 (15) is greater than the weight of Qmax (18). The algorithm then attempts
to extend the clique in Q with the next-to-last vertex in R, vertex no. 2, but this fails. This time, the reason for
not adding the vertex is the condition on line 12 in Table 4. This condition checks if weight(Q) > weight(Qmax),
which is not met as weight(Q) = 13 < weight(Qmax) = 18.

Finally, in Step 10, vertex no. 4 is added to the set Q, as the weight of Q (13) plus the wcolor of vertex no. 4
(7) is greater than the weight of Qmax (18). The weight of the new clique in Q is now 20. Consequently, Qmax
is updated to be Q, and Qmax now holds the maximum weight clique (marked red in Figure 1), which is the
result of this example calculation.

Results and discussion

To evaluate the developed maximum weight clique algorithm MaxCliqueWeight and its dynamic variant Max-
CliqueDynWeight we have tested them on the test set of random weighted graphs as well as on the test set of
DIMACS graphs. We have compared our algorithms to the Cliquer algorithm®!® for finding a maximum weight
clique, which is widely used and well established in the research community. We did not investigate some graph
size and edge density combinations and did not consider certain DIMACS graphs due to the expected long
computation times.

Generation of weighted graphs for testing

Random weighted graphs

The first test set consists of 35 random weighted graphs with 100, 200, 300, 500, 700, 1000, 5000, and 10000
vertices, where we refer to the number of vertices as the size of a graph. Edge densities within each graph size
category take discrete values of 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99, where edge density of a graph equals to the
probability p of an edge between two graph vertices. For each graph of a given size and for each pair of vertices
vi and vj within this graph, if a uniform continuous distribution u(vi, vj) for random numbers on the range [0,
1), with equal probability throughout the range, was less than a probability p, then we connected the vertices vi
and vj by an edge.

To each vertex v we assigned a weight, which is a positive integer number. The weight assignment is done as
follows. For each vertex v we generated a real value random number according to the normal random number
distribution defined as: f(x;1,0) = 1/(0-sqrt(2m))er(— 1/2-((x — p)/0)~2), where p is the mean and o is the standard
deviation; in our experiments, we set p to 1,000,000 and o to 200,000. We checked that the resulting random
numbers were positive, i.e., > 0. We then rounded the resulting values to the nearest integer values. In this way,
we obtained a random positive integer number, a weight, for each vertex v in a graph.

Benchmark graphs from the DIMACS challenge

The second test set consists of 57 graphs from the second DIMACS implementation challenge available at http://
dimacs.rutgers.edu'”. The DIMACS implementation challenges help understand and improve the practical per-
formance of algorithms for important problems, particularly those that are hard in the theoretical sense. It is a
publicly available collection of benchmark graphs for testing algorithms, such as the maximum clique, graph
coloring, and satisfiability algorithms, which are all NP hard problems. Since the DIMACS graphs are unweighted
graphs, we assigned vertex weights to them using the same procedure as described for random graphs in the
second paragraph of section for generation of random weighted graphs.

Random weighted graphs

The results for random weighted graphs are in Table 5. The best performing algorithm is the MaxCliqueDyn-
Weight algorithm, which achieves up to three orders of magnitude speedup compared to the Cliquer algorithm®'®
on difficult to solve graph instances characterized by their high edge densities. For example, see random graph
with 100 vertices and edge density of 0.95, where MaxCliqueDynWeight achieves 6100x speedup. As the edge
density approaches 1.0, our algorithm takes less time, e.g., see graphs with 100 and 200 vertices and edge densities
of 0.9 and 0.99 in Table 5. This can be explained by the fact that the closer we get to the density of 1.0, the easier
the maximum clique problem becomes, since a graph with an edge density of 1.0 is by definition a maximum
clique.

Generally, our MaxCliqueWeight and MaxCliqueDynWeight algorithms perform best on dense graphs with
edge densitites 0.5-0.99, while they also still retain good performance on sparser graphs. The large speedup
of our algorithms is most likely due to the use of efficient upper bound computation based on graph coloring,
which allows us to efficiently prune large parts of the search tree compared to the Cliquer algorithm, which has
no such upper bounds.

DIMACS benchmark graphs
Next, we tested the developed maximum weight clique algorithms on DIMACS graphs, used in standard bench-
marking of maximum clique algorithms. We added random vertex weights to DIMACS graphs as described.
The results are in Table 6.

The clear winner among the three algorithms tested is the MaxCliqueDynWeight algorithm. It is especially
well suited for denser graphs with edge densities 0.5-0.99, where it achieves speedups of several orders of mag-
nitude compared to Cliquer algorithm. For examples, see »san« and »sanr« graphs in Table 6. On the other hand,

Scientific Reports |

(2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

Graph MaxCliqueWeight MaxCliqueDynWeight Cliquer

Size Density | Time+SD [s] Speedup* | Time+SD [s] Speedup* | Time+SD [s]
100 0.1 0.001+0 1 0.001+£0 1 0.001+0

100 0.3 0.001+£0 1 0.001+£0 1 0.001+£0

100 0.5 0.001+0 1 0.001+£0 1 0.001+0

100 0.7 0.0041+£0.00078 | 2.2 0.0028+0.00058 | 3.2 0.009+0.0013
100 0.8 0.015+0.0025 6.3 0.01+0.0017 9.3 0.096+0.015
100 0.9 0.053+0.018 46 0.025+0.006 99 24+0.12

100 0.95 0.012+0.0048 4000 0.0077 £0.0025 6100 47+1.1

100 0.99 0.0019+0.0011 | 770 0.0024+0.00094 | 630 1.5+£0.08

200 0.1 0.001+0 1 0.001+0 1 0.001+0

200 0.3 0.001+0.0001 1 0.001+0 1 0.001+0.00017
200 0.5 0.016+0.0018 1 0.013+0.0019 1.3 0.017+0.0015
200 0.7 0.64+0.043 2.2 0.38+0.033 3.7 1.4+0.09

200 0.8 11+0.67 5.7 4.9+0.23 13 63+1.7

200 0.9 31065 >23 62+6.2 >120 >2h

200 0.95 2500+710 >2.9 300+34 >24 >2h

200 0.99 18+21 >390 8.1+2.9 >890 >2h

300 0.1 0.001+£0 1 0.001+£0 1 0.001+£0

300 0.3 0.0039+0.0006 1.2 0.0041+0.00035 1.1 0.0046 £0.00071
300 0.5 0.1+0.011 1.1 0.085+0.01 1.3 0.11+0.01
300 0.7 14+0.87 24 7.8+0.41 4.3 33+£0.85

300 0.8 1700+ 74 >4.2 480+10 >15 >2h

300 0.99 5500+ 1000 >1.3 34001000 >2.1 >2h

500 0.1 0.001+0 1.6 0.001+0 1.6 0.0016+0.0005
500 0.3 0.031+0.004 0.88 0.03+0.003 0.93 0.028 £0.0029
500 0.5 2.6+0.11 1.1 1.9+0.1 1.5 2.9+0.12

500 0.7 2200+110 2.8 930+41 6.6 6100+ 160
700 0.1 0.0024+0.00074 | 1.8 0.0022+0.00057 |1.9 0.0043+0.001
700 0.3 0.13+0.015 0.94 0.13+0.016 0.97 0.12+0.014
700 0.5 22+0.83 0.94 16+0.58 1.3 21+0.52

1000 0.1 0.0065+0.0011 1.5 0.0066+0.0014 1.5 0.0099+0.002
1000 0.3 0.64+0.035 0.77 0.63+0.062 0.79 0.5+0.042
1000 0.5 250+4.4 1 180+3.6 14 250+6.8

5000 0.1 1£0.091 0.8 1.3+0.082 0.63 0.81+0.079
5000 0.3 3300+71 0.66 300076 0.73 220055
10,000 0.1 14+0.32 0.65 15+0.32 0.59 9.1+0.34

Table 5. Calculation times on random weighted graphs for the MaxCliqueWeight and MaxCliqueDynWeight
algorithms compared to the Cliquer algorithm. The fastest calculation times and best speedups in each row
are in bold. Calculation times are averaged over 100 runs, where each run was performed with randomly
shuftled graph vertices as input. Calculation times that were < 1 ms were set to 1 ms, while those exceeding

2 h were set to 2 h. *Speedups are calculated by dividing the Cliquer algorithm’s calculation time with the
MaxCliqueWeight’s or MaxCliqueDynWeight's calculation time.

for sparse graphs with edge densities 0.1-0.3, which are easier to solve, characterized by the calculation times
typically under a second, our algorithm still achieves comparable speeds to the Cliquer algorithm.

Effect of ordering of graph vertices on algorithms’ performances

To test the effect of the order of input graph vertices on algorithms’ performances, every calculation on random
and on DIMACS weighted graphs was repeated 100 times. Each time the input graph vertices were randomly
shuffled. This was done before the initialization steps shown in Table 2. The shuffling only changed the position
of vertices (vertex numbers) in each input graph, and not the structure of each graph.

We observe that for larger and denser graphs, the effect of initial order on calculation time can be large, e.g.,
see standard deviations for random graph with 300 vertices and edge density of 0.99 in Table 5, or the MANN_a27
graph with 378 vertices and edge density of 0.99 in Table 6. In these cases, measuring the algorithms’ speed with
only one ordering of graph vertices could easily result in wrong assesment of this algorithm’s performance. If we
tested with one particular graph vertices ordering for MANN_a27 graph, we could wrongly assign MaxClique-
DynWeight algorithm as the fastest algorithm, while the averaged calculation time shows that MaxCliqueWeight
is the winner in this case.

Scientific Reports |

(2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

Graph MaxCliqueWeight MaxCliqueDynWeight Cliquer
Name Size | Density | Time+SD [s] Speedup* | Time+SD [s] Speedup* | Time+SD [s]
C125-9 125 0.9 0.72+0.18 180 0.32+0.059 410 130+3.7
C250-9 250 0.9 >2h 1 4500 =240 >1.6 >2h
MANN_a27 378 0.99 1000 +1600 >6.9 2400+2100 >3 >2h
MANN_a9 45 0.93 0.001+0 9.3 0.001+0 9.3 0.0094 +£0.0026
brock200_1 200 0.75 1.5+£0.18 33 0.78+0.11 6.3 49+0.2
brock200_2 200 0.5 0.014+0.0014 1 0.012+0.00095 1.2 0.014+0.0014
brock200_3 200 0.61 0.084+0.009 1.5 0.065+0.0066 1.9 0.13+0.012
brock200_4 200 0.66 0.22+0.023 1.2 0.15+0.018 1.8 0.27+0.024
brock400_1 400 0.75 1500+ 190 4.7 57075 12 6900 + 160
brock400_2 400 0.75 1500220 3.1 580+87 7.8 4500+130
brock400_3 400 0.75 760290 3.8 290+110 10 290072
brock400_4 400 0.75 550+220 13 230+92 3 690+ 15
brock800_3 800 0.65 >2h 1 5800+670 >1.2 >2h
brock800_4 800 0.65 7100100 1 4500+ 840 >1.6 >2h
c-fat200-1 200 0.08 0.001+£0 1 0.001+£0 1 0.001+£0
c-fat200-2 200 0.16 0.001+0 1 0.001+£0 1 0.001+0
c-fat200-5 200 0.43 0.026+0.015 0.04 0.001+£0 1 0.001+0
c-fat500-1 500 0.04 0.001+0 1 0.001+0 1 0.001+0
c-fat500-10 500 0.37 0.011+0.0081 0.37 0.0039+0.0012 1 0.004+0.001
c-fat500-2 500 0.07 0.001+£0 1 0.001+0 1 0.001+0.00014
c-fat500-5 500 0.19 0.0018+0.0014 0.84 0.0011+0.0003 14 0.0015+0.0005
gen200-p0-9-44 200 0.9 47+17 >150 19+£5.9 >380 >2h
gen200-p0-9-55 200 0.9 13+£7.1 420 3+14 1800 5300+130
hamming6-2 64 0.9 0.001+£0 1 0.001+0 1 0.001+£0
hamming6-4 64 0.35 0.001+£0 1 0.001+£0 1 0.001+£0
hamming8-2 256 0.97 9.9+8.1 690 2.2+0.8 3000 6800+ 180
hamming8-4 256 0.64 0.046+0.006 6 0.043+0.005 6.4 0.27+0.022
johnson16-2-4 120 0.76 0.016+0.0086 15 0.046+0.0082 52 0.24+0.024
johnson8-2-4 28 0.56 0.001+0 1 0.001+0 1 0.001+0
johnson8-4-4 70 0.77 0.001+£0 1 0.001+0 1 0.001+0.0001
keller4 171 0.65 0.018+0.0036 7.8 0.011+0.001 12 0.14+0.013
p_hat1000-1 1000 |0.24 0.38+0.028 1.1 0.34+0.036 1.2 0.41+0.024
p_hat1000-2 1000 |0.49 >2h 1 1800+150 >4.1 >2h
p_hat1500-1 1500 |0.25 4.2+0.13 0.79 3.5+0.099 0.94 3.3+0.12
p_hat300-1 300 0.24 0.0022+0.00039 1.4 0.0021+0.00034 (1.4 0.003+0.00028
p_hat300-2 300 0.49 0.1+0.016 54 0.059+0.0077 9.3 0.55+0.047
p_hat300-3 300 0.74 25%2.7 37 6.4+0.63 150 940 +24
p_hat500-1 500 0.25 0.019+0.0025 1.2 0.018+0.0018 1.3 0.023+0.0023
p_hat500-2 500 0.5 9.5+0.83 11 2.7+0.2 37 100+2.5
p_hat500-3 500 0.75 >2h 1 2300110 >3.1 >2h
p_hat700-1 700 0.25 0.096+0.011 0.81 0.082+0.0085 0.95 0.077+0.0078
p_hat700-2 700 0.5 250+15 >29 47+1.7 >150 >2h
san1000 1000 [0.5 9.3+0.69 >780 0.25+0.018 >29,000 >2h
san200_0.7_1 200 0.7 0.055+0.041 970 0.0071+0.0039 7400 53+1.2
san200_0.7_2 200 0.7 0.0056+0.00074 | 1,000,000 |0.0061+0.0005 930,000 5700+190
san200_0.9_1 200 0.9 0.17+0.14 >42,000 0.11+0.048 >68,000 >2h
5an200_0.9_2 200 0.9 7%9.3 >1000 1+0.47 >7200 >2h
$an200_0.9_3 200 0.9 82143 >88 20+7.8 >360 >2h
san400_0.5_1 400 0.5 0.027+0.0083 2300 0.0076 +0.0011 8200 62+1.5
san400_0.7_1 400 0.7 15+12 >490 0.98+0.45 >7300 >2h
san400_0.7_2 400 0.7 35+24 >200 3.3+1.6 >2200 >2h
san400_0.7_3 400 0.7 37+9.6 >200 8.9=x1.1 >810 >2h
san400_0.9_1 400 0.9 980+1100 >7.4 1100+1100 >6.7 >2h
sanr200_0.7 200 0.7 0.52+0.034 33 0.31+0.025 5.6 1.7+0.065
sanr200_0.9 200 0.9 31047 >23 53+4.2 >140 >2h
Continued

Scientific Reports | (2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

Graph MaxCliqueWeight MaxCliqueDynWeight Cliquer
Name Size | Density | Time+SD [s] Speedup* | Time+SD [s] Speedup* | Time+SD [s]
sanr400_0.5 400 0.5 0.7+0.041 1.2 0.54+0.024 1.5 0.83+0.036
sanr400_0.7 400 0.7 280+8.5 2.5 120+2.8 5.9 700+18

Table 6. Calculation times on weighted DIMACS graphs for the MaxCliqueWeight and MaxCliqueDynWeight
algorithms compared to the Cliquer algorithm. The fastest calculation times and best speedups in each

row are in bold. Calculation times are averaged over 100 runs, each run performed with randomly shuffled
graph vertices. Calculation times that were < 1 ms were set to 1 ms, while those exceeding 2 h were set to 2 h.
*Speedups are calculated by dividing the Cliquer algorithm’s calculation time with the MaxCliqueWeight’s or
MaxCliqueDynWeight's calculation time.

For the graphs MANN_a27, brock800_3, brock800_4, san400_0.9_1 (see Table 6) and the random graph
with a size of 300 and an edge density of 0.99 (see Table 5), the high standard deviations remain high even if the
number of repetitions is increased from ten to one hundred. This indicates that the high standard deviations in
these cases are most likely due to the dependence of our algorithms on the initial order of the vertices and not
due to a low number of repetitions.

Shuffling graph vertices and multiple repetitions are not common when testing clique algorithms, but can
significantly affect the measurements. Shuffling of graph vertices has already been proposed for this reason®.
Therefore, we recommend testing all maximum weight clique algorithms and other graph algorithms with dif-
ferent initial orders of graph vertices to assess the effects of the different ordering on computational efficiency.

To test whether these results are representative for graphs of the given size and density or whether they are
due to idiosyncratic properties of the graphs, we performed additional experiments for random and DIMACS
graphs. For each random graph size and density, we generated 100 new random graphs so that we randomized
the edges and weights. For each DIMACS graph, we only applied the generation of random weights 100 times
to each graph type, since we could not randomize the edges of these graphs as this would destroy their inherent
structures. The average calculation times of the tested algorithms for random and DIMACS weighted graphs,
respectively, can be found in Supplementary Tables S1 and S2.

The calculation times and speedups obtained with this new method follow a very similar trend to those we
observed with random vertex shuffling, which can be seen by comparing Table 5 with Supplementary Table S1
and Table 6 with Supplementary Table S2. The only exception is the san400_0.9_1 graph, which is solved much
faster by our algorithm when randomizing vertex order than when randomizing vertex weights. We have previ-
ously observed that the initial order of vertices has a particular impact on the performance of maximum clique
algorithms for this particular graph’®.

Conclusions

In this work, we describe a new maximum weight clique algorithm MaxCliqueWeight and its variant MaxClique-
DynWeight algorithm. The MaxCliqueDynWeight algorithm proves to be the faster of the two algorithms for
most random and DIMACS weighted graphs, and is significantly faster than the widely used Cliquer algorithm
for dense graphs. Our algorithm is particularly well suited for dense graphs with edge densities 0.5-0.99, but it
retains most of its speed for sparser graphs as well. The developed algorithm finds diverse applications across
various domains, such as drug discovery and bioinformatics. It holds the potential to significantly accelerate the
development of novel drugs through computer-based algorithms.

Data availability

All relevant data are available at http://insilab.org/maxcliqueweight.

Received: 24 October 2023; Accepted: 13 April 2024
Published online: 20 April 2024

References
1. Sajjadi, S.J., Qian, X,, Zeng, B. & Adl, A. A. Network-based methods to identify highly discriminating subsets of biomarkers. IEEE/
ACM Trans. Comput. Biol. Bioinf. 11, 1029-1037 (2014).
2. Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola,]. M. Molecular docking with Gaussian Boson Sampling. Sci. Adv. 6,
eaax1950 (2020).
3. Kong, J. et al. ProBiS-Dock: A hybrid multitemplate homology flexible docking algorithm enabled by protein binding site com-
parison. J. Chem. Inf. Model. 62, 1573-1584 (2022).
4. Nuiez, P, Vizquez-Martin, R. & Bandera, A. Visual odometry based on structural matching of local invariant features using stereo
camera sensor. Sensors 11, 7262-7284 (2011).
5. Wu, Q. & Hao, J.-K. Solving the winner determination problem via a weighted maximum clique heuristic. Expert Syst. Appl. 42,
355-365 (2015).
6. Balasundaram, B. & Butenko, S. Graph domination, coloring and cliques in telecommunications. In Handbook of Optimization in
Telecommunications (eds Resende, M. G. C. & Pardalos, P. M.) 865-890 (Springer, 2006).
7. Mascia, E, Cilia, E., Brunato, M. & Passerini, A. Predicting structural and functional sites in proteins by searching for maximum-
weight cliques. Proc. AAAI Conf. Artif. Intell. 24, 1274-1279 (2010).
. Ostergdrd, P. R. . A new algorithm for the maximum-weight clique problem. Nordic J. Comput. 8, 424-436 (2001).
9. Fang, Z,, Li, C.-M. & Xu, K. An exact algorithm based on MaxSAT reasoning for the maximum weight clique problem. J. Artif.
Intell. Res. 55,799-833 (2016).

o

Scientific Reports |

(2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

www.nature.com/scientificreports/

10. Jiang, H., Li, C.-M. & Manya, F. An exact algorithm for the maximum weight clique problem in large graphs. Proceedings of the
AAAI Conference on Artificial Intelligence 31 (2017).

11. Jiang, H., Li, C.-M,, Liu, Y. & Manya, F. A Two-stage MaxSAT reasoning approach for the maximum weight clique problem.
Proceedings of the AAAI Conference on Artificial Intelligence 32 (2018).

12. Gellner, A., Lamm, S., Schulz, C., Strash, D. & Zavalnij, B. Boosting data reduction for the maximum weight independent set
problem using increasing transformations. In 2021 Proceedings of the Symposium on Algorithm Engineering and Experiments
(ALENEX) 128-142 (Society for Industrial and Applied Mathematics, 2021). https://doi.org/10.1137/1.9781611976472.10.

13. Wang, Y., Cai, S., Chen, J. & Yin, M. SCCWalk: An efficient local search algorithm and its improvements for maximum weight
clique problem. Artif. Intell. 280, 103230 (2020).

14. Cai, S. & Lin, J. Fast Solving Maximum Weight Clique Problem in Massive Graphs 568-574 (2016).

15. Fan, Y. et al. Restart and Random Walk in Local Search for Maximum Vertexweight Cliques with Evaluations in Clustering Aggrega-
tion 622-630 (2017).

16. Kong, J. & Janezic, D. An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math.
Comput. Chem. 58, 569-590 (2007).

17. Johnson, D. S. & Trick, M. A. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, October 11-13, 1993.
vol. 26 (American Mathematical Society, 1996).

18. Niskanen, S. & Ostergérd, P. Cliquer User’s Guide, Version 1.0 (2003).

19. Tomita, E. & Seki, T. An efficient branch-and-bound algorithm for finding a maximum clique. In Discrete Mathematics and Theo-
retical Computer Science Vol. 2731 (eds Calude, C. S. et al.) 278-289 (Springer, 2003).

20. Ostergard, P. R.J. A fast algorithm for the maximum clique problem. Discret. Appl. Math. 120, 197-207 (2002).

Acknowledgements
This work was supported by the Slovenian Research and Innovation Agency project grants N1-0142, N1-0209,
J1-4414,]1-1715, and L7-8269.

Author contributions
J.K. and D.J. conceived and designed the experiments. K.R., A.G, and J.K. performed the experiments and ana-
lyzed the data. K.R., A.G., D.J. and J.K. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/541598-024-59689-x.

Correspondence and requests for materials should be addressed to D.J. or J.K.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

o] icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:9118 | https://doi.org/10.1038/s41598-024-59689-x nature portfolio

