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Abstract
We show that ifΩ is an𝑚-convex domain inℝ𝑛 for some
2 ⩽ 𝑚 < 𝑛whose boundary 𝑏Ωhas a tubular neighbour-
hood of positive radius and is not 𝑚-flat near infinity,
then Ω does not contain any immersed parabolic mini-
mal submanifolds of dimension ⩾ 𝑚. In particular, if𝑀
is a properly embedded non-flat minimal hypersurface
in ℝ𝑛 with a tubular neighbourhood of positive radius,
then every immersed parabolic hypersurface inℝ𝑛 inter-
sects𝑀. In dimension𝑛 = 3, this holds if𝑀 has bounded
Gaussian curvature function.We also introduce the class
of weakly hyperbolic domainsΩ in ℝ𝑛, characterised by
the property that every conformal harmonic map ℂ →

Ω is constant, and we elucidate their relationship with
hyperbolic domains, and domains without parabolic
minimal surfaces.

MSC 2020
53A10 (primary), 32Q45 (secondary)

1 INTRODUCTION

This paper is motivated by two closely related lines of developments in the theory of minimal
surfaces. The first one is the circle of results known as halfspace theorems. The second one is the
recently introduced hyperbolicity theory for minimal surfaces.
Concerning the first topic, Xavier [42] proved in 1984 that the convex hull of a complete non-flat

minimal surface inℝ3with boundedGaussian curvature equalsℝ3. TheStrongHalfspaceTheorem
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of Hoffman andMeeks [23, Theorem 2] says that any two proper minimal surfaces inℝ3 intersect,
unless they are parallel planes. By Pacelli Bessa, Jorge and Oliveira-Filho [8] and Rosenberg [40],
the same conclusion holds for a pair of complete immersed minimal surfaces inℝ3 with bounded
curvature; such surfaces need not be proper inℝ3 (see Andrade [6]) unless they are embedded (see
Meeks and Rosenberg [38, Theorem 2.1]). Closer to the topic of this paper, Pacelli Bessa, Jorge, and
Pessoa proved in [9] that an immersed parabolic minimal surface in ℝ3 intersects every complete
immersed non-flat minimal surface with bounded curvature. Related developments concern the
maximum principle at infinity; see the surveys by Meeks and Pérez [32, 34] and the recent paper
by Gama et al. [17].
In this paper, we find geometric conditions on the boundary of a domain Ω in ℝ𝑛 for 𝑛 ⩾ 3,

implying that Ω does not contain any immersed (not necessarily proper or complete) parabolic
minimal submanifolds of a given dimension; see Theorem 2.1. In particular, we obtain a halfspace
theorem for a pair of minimal hypersurfaces in ℝ𝑛, one of which is parabolic and the other one is
properly embedded and has a tubular neighbourhood of positive radius; see Corollary 2.2. When
𝑛 = 3, this coincides with a special case of the aforementioned result of Pacelli Bessa et al. [9,
Theorem 1.1]; see Corollary 2.3.
Parabolicity of an open Riemannian manifold is important from the point of view of potential

theory. Determining whether such a manifold is parabolic or hyperbolic is a classical question,
the so-called type problem. The survey by Grigor’yan [19] is a standard reference. The extrinsic
case, considering the type problem for a submanifold of a Riemannian manifold, is natural and
interesting as well, in particular when the ambient manifold is a Euclidean space. The case of
minimal surfaces in ℝ𝑛 has been widely studied. For minimal submanifolds of dimension higher
than 2, there is not much literature, the reason probably being that every complete minimal sub-
manifold of dimension at least 3 in a Euclidean space is hyperbolic; see Markvorsen and Palmer
[31, Theorem 2.1].
The absence of parabolic minimal submanifolds in a given domain indicates that the domain is

small or tight for minimal submanifolds. Another measure of smallness is hyperbolicity (as mea-
sured by minimal surfaces), a notion introduced in the recent paper by Forstnerič and Kalaj [16],
and developed further by Drinovec Drnovšek and Forstnerič [12]. A domain Ω ⊂ ℝ𝑛 is hyper-
bolic if for every point 𝑝 ∈ Ω, there are a neighbourhood 𝑈 ⊂ Ω of 𝑝 and a constant 𝑐𝑝 < ∞

such that every conformal harmonic disc 𝑓 ∶ 𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1} → Ω with 𝑓(0) ∈ 𝑈 satis-
fies ‖𝑑𝑓0‖ ⩽ 𝑐𝑝. This is a close analogue of Kobayashi hyperbolicity in complex analysis; see
Kobayashi [27, 28]. In Section 4, we introduce the class of weakly hyperbolic domains— domains
Ω ⊂ ℝ𝑛 (𝑛 ⩾ 3) without non-constant conformal harmonic maps ℂ → Ω. Weak hyperbolicity is
an analogue of Brody hyperbolicity, which excludes non-constant holomorphic maps from ℂ to
a given complex manifold. A hyperbolic domain is also weakly hyperbolic; the converse holds
on convex domains (see Proposition 4.4) but fails in general. In fact, we show that the class of
weakly hyperbolic domains properly contains the other two mentioned classes, and there is a
non-hyperbolic domain in ℝ3 without parabolic minimal surfaces (see Proposition 4.2). On the
other hand, it remains an open problem whether there exists a hyperbolic domain containing a
parabolic minimal surface.

2 EXCLUDING PARABOLICMINIMAL SUBMANIFOLDS

Let 𝑚 ⩾ 2 be an integer. A connected 𝑚-dimensional Riemannian manifold (𝑅, g) is said to
be parabolic if every negative subharmonic function on 𝑅 is constant. A connected manifold
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2780 FORSTNERIČ

immersed into a Euclidean space ℝ𝑛 is said to be parabolic if it is parabolic in the metric induced
from the Euclidean metric on ℝ𝑛 by the immersion. On a surface 𝑅, parabolicity only depends on
the conformal class of the metric. Every compact conformal surface punctured at finitely many
points is parabolic; an example is ℂ = ℂℙ1 ⧵ {∞}. See Grigor’yan [19] for more information. The
following result is proved in Section 3.

Theorem 2.1. Let 2 ⩽ 𝑚 < 𝑛 be integers. Assume that Ω is a domain in ℝ𝑛 with 𝒞2 boundary
𝑀 = 𝑏Ω whose principal curvatures 𝜈1 ⩽ 𝜈2 ⩽ ⋯ ⩽ 𝜈𝑛−1 satisfy 𝜈1 + 𝜈2 +⋯ + 𝜈𝑚 ⩾ 0 at every
point, the set of 𝑚-flat points {𝑝 ∈ 𝑀 ∶ 𝜈𝑗(𝑝) = 0 for 𝑗 = 1,… ,𝑚} has bounded interior in 𝑀 and
there is an 𝜖 > 0 such that every point in the 𝜖-neighbourhood of 𝑀 has a unique nearest point in
𝑀. Then, Ω does not contain any parabolic immersed minimal submanifolds of dimension ⩾ 𝑚. In
particular, if these conditions hold for 𝑚 = 2, then every conformal harmonic map 𝑅 → Ω from a
parabolic conformal surface 𝑅 is constant.

The minimal submanifolds in the theorem are not assumed to be complete or proper. The
hypothesis on the set of 𝑚-flat points of 𝑏Ω cannot be omitted unless 3 ⩽ 𝑚 = 𝑛 − 1. A coun-
terexample is a halfspace𝐻 ofℝ𝑛, which contains parabolic minimal submanifolds of dimensions
𝑚 ∈ {2,… , 𝑛 − 2}, or𝑚 = 2 if 𝑛 = 3, contained in hyperplanes parallel to 𝑏𝐻. (Note that ℝ𝑚 with
the flat metric is parabolic for 𝑚 = 2, but is hyperbolic if 𝑚 ⩾ 3, carrying the negative subhar-
monic function −1∕|𝑥|𝑛−2.) When 𝑚 = 2, the minimal surfaces in the theorem are allowed to
have isolated branch points, and in this case, the result is essentially optimal since many open
conformal surfaces of hyperbolic type admit non-constant bounded (and even complete) confor-
mal harmonic maps to ℝ3. This holds in particular for any bordered conformal surface; see [4,
Chapter 7] for a survey of this topic.
A domainΩ ⊂ ℝ𝑛 with𝒞2 boundary whose principal curvatures 𝜈1 ⩽ 𝜈2 ⩽ ⋯ ⩽ 𝜈𝑛−1 from the

inner side satisfy 𝜈1 + 𝜈2 +⋯ + 𝜈𝑚 ⩾ 0 at every point of 𝑏Ω is said to be𝑚-convex, and if𝑚 = 2,
it is also calledminimally convex; see [4, Definition 8.1.9] or Definition 3.1. By [4, Theorem 8.1.13],
this holds if and only if there exist a neighbourhood𝑈 ⊂ ℝ𝑛 of 𝑏Ω and a𝒞2 function 𝜌 ∶ 𝑈 → ℝ

such that Ω∩ 𝑈 = {𝜌 < 0}, 𝑑𝜌 ≠ 0 on 𝑏Ω ∩ 𝑈 = {𝜌 = 0}, and

trΛHess𝜌(𝑥) ⩾ 0 for every point 𝑥 ∈ 𝑏Ω and𝑚-plane Λ ⊂ 𝑇𝑥𝑏Ω. (2.1)

Here, trΛHess𝜌(𝑥) denotes the trace of the restriction to Λ of the Hessian form of 𝜌 at 𝑥. It
was shown in [15] that a bounded 𝑚-convex domain with 𝒞2 boundary in ℝ𝑛 admits an 𝑚-
plurisubharmonic defining function, that is, one satisfying condition (2.1) for every point 𝑥 ∈ Ω

and 𝑚-plane Λ ⊂ ℝ𝑛 (see (3.4)). The main new point shown in this paper is that an unbounded
domain Ω as in Theorem 2.1 admits a defining function which is 𝑚-plurisubharmonic on Ω,
obtained by convexifying the signed distance function to 𝑏Ω; see Proposition 3.2. This is the key
fact of independent interest used in the proof of Theorem 2.1.
Note that𝑚-convex domains play a major role in the theory of minimal submanifolds. In par-

ticular, every bounded minimally convex domain contains many properly immersed minimal
surfaces parameterised by an arbitrary bordered conformal surface; see [4, Theorems 8.3.1 and
8.3.4] for the orientable case and [3, Theorem 6.9] for the non-orientable one. Such domains also
form barriers for minimal submanifolds; see Jorge and Tomi [25] and Gama et al. [17], and the
references therein. In [17], the authors proved the maximum principle at infinity in a very gen-
eral context including parabolic minimal 𝑚-varifolds in 𝑚-convex domains. Nevertheless, I was
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DOMAINS WITHOUT PARABOLIC MINIMAL SUBMANIFOLDS ANDWEAKLY HYPERBOLIC DOMAINS 2781

unable to deduce Theorem 2.1 from [17, Theorem 1.1], which holds under weaker hypotheses on
𝑏Ω but seemingly stronger hypotheses on the minimal submanifolds.
The case of particular interest is when the boundary 𝑀 = 𝑏Ω satisfies 𝜈1 +⋯ + 𝜈𝑛−1 = 0, so

it is a minimal hypersurface. If 𝑀 is not a hyperplane, then the set of its (𝑛 − 1)-flat points has
empty interior, and we obtain the following corollary to Theorem 2.1.

Corollary 2.2. Assume that𝑀 is a properly embedded minimal hypersurface in ℝ𝑛 for 𝑛 ⩾ 3 such
that for some 𝜖 > 0, every point in the 𝜖-neighbourhood of𝑀 has a unique nearest point in𝑀. Then
every immersed parabolic minimal hypersurface 𝑅 → ℝ𝑛 intersects𝑀, unless 𝑛 = 3,𝑀 is a plane in
ℝ3, and the image of 𝑅 is contained in a plane parallel to𝑀.

The condition in Theorem 2.1 and Corollary 2.1, that the 𝒞2 hypersurface 𝑀 = 𝑏Ω admits a
tubular neighbourhood of positive radius 𝜖 > 0, is non-trivial whenΩ is unbounded, which is the
only case of interest. If this holds, one says that𝑀 has positive reach, a terminology introduced by
Federer [14, Sect. 4]. The reach of𝑀 is the supremum of the numbers 𝜖 > 0 having this property.
A𝒞2 hypersurface with positive reach has bounded principal curvatures (see the proof of Propo-
sition 3.2). The converse holds in several cases of interest. Federer proved [14, Lemma 4.11] that
a graph in ℝ𝑛 over a domain in ℝ𝑛−1 with sufficiently nice boundary, such that the gradient of
the graphing function is Lipschitz, has positive reach. Every compact piece of an embedded 𝒞2

hypersurface has positive reach.
If 𝑀 is a complete embedded minimal surface in ℝ3 of finite total Gaussian curvature, then

every end of 𝑀 is a graph over the complement of a disc in ℝ2 whose graphing function has
bounded second-order partial derivatives, and the ends are well separated (see Jorge and Meeks
[26]). Hence, every such surface has positive reach. It was shown by Meeks and Rosenberg [38,
Theorem 5.3] (see also [34, Corollary 2.6.6]) that a complete embedded minimal surface with
bounded curvature in ℝ3 is proper and has positive reach. This gives the following corollary to
Theorem 2.1, originally due to Pacelli Bessa, Jorge, and Pessoa [9, Theorem 1.1].

Corollary 2.3. The image of a non-constant conformal harmonic map 𝑅 → ℝ3 (possibly with
branch points) from a parabolic conformal surface intersects every properly embedded non-flat
minimal surface𝑀 in ℝ3 with bounded Gaussian curvature.

Remark 2.4. In [9, Theorem 1.1], Corollary 2.3 is proved under the weaker assumption that𝑀 is
a complete non-flat immersed minimal surface in ℝ3 of bounded curvature. (Unlike in the case
when𝑀 is embedded, such a surface need not be proper in ℝ3 as shown by Andrade [6].) Their
proof for the immersed case is more involved. I thank G. Pacelli Bessa and L. F. Pessoa for having
pointed out their work after an earlier version of this preprint was posted.

If one imposes stronger conditions on a minimal surface in a domainΩ ⊂ ℝ3, then the conclu-
sion of Corollary 2.3 holds under weaker conditions on 𝑏Ω. For example, if Ω ⊊ ℝ3 is a smoothly
bounded minimally convex domain and 𝑅 ⊂ Ω is a complete immersed minimal surface of finite
total Gaussian curvature (hence proper inℝ3), then 𝑅 is a plane andΩ is a slab or a halfspace (see
[1, Theorem 1.16]). This also follows from the results in [17].
Corollary 2.3 applies to every complete embedded non-flat minimal surface 𝑀 in ℝ3 of finite

total Gaussian curvature, as well as to many minimal surfaces of infinite total curvature such as
the standard helicoid, the helicoids of positive genera constructed by Hoffman, Traizet andWhite
[24], and Riemann’s minimal surfaces [35]. It was shown by Meeks, Pérez and Ros [36, Theorem
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2782 FORSTNERIČ

1] that every properly embedded minimal surface in ℝ3 of finite genus has bounded curvature, so
Corollary 2.3 holds for such surfaces. Furthermore, every periodic properly embedded minimal
surface in ℝ3 whose fundamental domain is of finite topological type satisfies Corollary 2.3 by
results of Meeks and Rosenberg [37]; examples include Scherk’s surfaces. We refer to Meeks and
Pérez [34] for more information on this topic.
Corollary 2.3 gives a partial negative answer to [13, Problem 1.16], asking whether the com-

plement of a non-flat properly embedded minimal surface in ℝ3 contains a minimal surface
parameterised by ℂ. The case of unbounded curvature (and hence necessarily of infinite genus
by Meeks, Pérez and Ros [36, Theorem 1]) remains open.

Problem 2.5. Let𝑀 be a properly embedded minimal surface in ℝ3 with unbounded curvature. Is
there a non-constant conformal harmonic map ℂ → ℝ3 whose image avoids𝑀?

3 PROOF OF THEOREM 2.1

Webeginwith preliminaries. Recall that amap𝑓 = (𝑓1, … , 𝑓𝑛) ∶ 𝑈 → ℝ𝑛 from an open set𝑈 ⊂ ℂ

is said to be conformal if it preserves angles at every immersion point; equivalently, if 𝑧 = 𝑥 + 𝚤𝑦

is a complex coordinate on𝑈, then the partial derivatives of 𝑓 satisfy 𝑓𝑥 ⋅ 𝑓𝑦 = 0 and |𝑓𝑥| = |𝑓𝑦|.
Here, the dot denotes the Euclidean inner product and | ⋅ | the Euclidean length. These conditions
imply that the rank of 𝑓 at any point is either two (an immersion point) or zero (a branch point).
The analogous definition applies to maps from any conformal surface in local isothermal coor-
dinates. The image of a non-constant conformal harmonic map from an open conformal surface
is a minimal surface with isolated branch points; conversely, every minimal surface with isolated
branch points is of this form. For background, see, for example, the monographs [4, 11, 39] and
the surveys [2, 33, 34].
Given a subset𝑀 of ℝ𝑛, we denote by dist(⋅,𝑀) the Euclidean distance function to𝑀:

dist(𝑥,𝑀) = inf {|𝑥 − 𝑝| ∶ 𝑝 ∈ 𝑀}, 𝑥 ∈ ℝ𝑛.

For 𝑝 ∈ ℝ𝑛 and 𝜖 > 0, we let 𝔹(𝑝, 𝜖) = {𝑥 ∈ ℝ𝑛 ∶ |𝑥 − 𝑝| < 𝜖} and

𝑉𝜖(𝑀) =
⋃
𝑝∈𝑀

𝔹(𝑝, 𝜖) = {𝑥 ∈ ℝ𝑛 ∶ dist(𝑥,𝑀) < 𝜖}. (3.1)

Let 𝑀 be a properly embedded connected hypersurface in ℝ𝑛. Such 𝑀 is orientable and its
complement ℝ𝑛 ⧵ 𝑀 = 𝑀+ ∪𝑀− consists of a pair of connected domains. The signed distance
function to𝑀 is defined by

𝛿𝑀(𝑥) =

{
dist(𝑥,𝑀), if 𝑥 ∈ 𝑀+ ∪𝑀;

−dist(𝑥,𝑀), if 𝑥 ∈ 𝑀−.
(3.2)

If 𝑉 ⊂ ℝ𝑛 is an open neighbourhood of𝑀 such that every point 𝑥 ∈ 𝑉 has a unique nearest point
𝑝 = 𝜉(𝑥) ∈ 𝑀, and if𝑀 is of class 𝒞𝑟 for some 𝑟 ∈ {2, 3, … ,∞,𝜔}, then 𝛿𝑀 is also of class 𝒞𝑟 on
𝑉 (see Gilbarg and Trudinger [18, Lemma 14.16] or Krantz and Park [29]).
We recall the following notion; see [4, Sections 8.1.4–8.1.5].

 14692120, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12894 by C

ochrane Slovenia, W
iley O

nline L
ibrary on [10/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DOMAINS WITHOUT PARABOLIC MINIMAL SUBMANIFOLDS ANDWEAKLY HYPERBOLIC DOMAINS 2783

Definition 3.1. An oriented embedded 𝒞2 hypersurface 𝑀 ⊂ ℝ𝑛 is 𝑚-convex for some 𝑚 ∈

{1, 2, … , 𝑛 − 1} if its principal curvatures 𝜈1 ⩽ 𝜈2 ⩽ ⋯ ⩽ 𝜈𝑛−1 satisfy

𝜈1(𝑝) + 𝜈2(𝑝) +⋯ + 𝜈𝑚(𝑝) ⩾ 0 for all 𝑝 ∈ 𝑀. (3.3)

The hypersurface 𝑀 is strongly 𝑚-convex at 𝑝 ∈ 𝑀 if strong inequality holds in (3.3). A point
𝑝 ∈ 𝑀 is 𝑚-flat if 𝜈𝑗(𝑝) = 0 for 𝑗 = 1,… ,𝑚. We say that𝑀 is not 𝑚-flat at infinity if the set {𝑝 ∈

𝑀 ∶ 𝜈𝑗(𝑝) = 0 for 𝑗 = 1,… ,𝑚} has bounded relative interior in𝑀.

Given a 𝒞2 function 𝜌 ∶ Ω → ℝ on a domain Ω ⊂ ℝ𝑛, we denote by Hess𝜌(𝑥) the Hessian
of 𝜌 at the point 𝑥 ∈ Ω, that is, the quadratic form on 𝑇𝑥ℝ

𝑛 = ℝ𝑛 represented by the matrix
(

𝜕2𝜌

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥)) of second-order partial derivatives of 𝜌 at 𝑥. For 1 ⩽ 𝑚 < 𝑛, let 𝐺𝑚(ℝ

𝑛) denote the
Grassman manifold of 𝑚-planes in ℝ𝑛. Given Λ ∈ 𝐺𝑚(ℝ

𝑛), we denote by trΛHess𝜌(𝑥) ∈ ℝ the
trace of the restriction of the Hessian Hess𝜌(𝑥) to Λ. A 𝒞2 function 𝜌 ∶ Ω → ℝ is said to be
𝑚-plurisubharmonic if

trΛHess𝜌(𝑥) ⩾ 0 for all 𝑥 ∈ Ω and Λ ∈ 𝐺𝑚(ℝ
𝑛). (3.4)

If 𝜆1(𝑥) ⩽ 𝜆2(𝑥) ⩽ ⋯ ⩽ 𝜆𝑛(𝑥) are the eigenvalues of Hess𝜌(𝑥), then (3.4) is equivalent to

𝜆1(𝑥) +⋯ + 𝜆𝑚(𝑥) ⩾ 0 for every 𝑥 ∈ Ω.

In fact, 𝜆1(𝑥) +⋯ + 𝜆𝑚(𝑥) = infΛ trΛHess𝜌(𝑥). (See [4, Sect. 8.1] or [22].) The main point is that
a function 𝜌 ∶ Ω → ℝ is𝑚-plurisubharmonic if and only if its restriction to every𝑚-dimensional
minimal submanifold in Ω is a subharmonic function on the submanifold (see [4, Proposition
8.1.2]).
The notion of an 𝑚-plurisubarmonic function extends to upper semicontinuous functions by

asking that for any 𝑚-dimensional affine subspace 𝐿 of ℝ𝑛, the restriction of the function to
𝐿 ∩ Ω is a subharmonic function (see [4, Definition 8.1.1]). Such a function can be approximated
from above on any relatively compact subdomain of Ω by smooth 𝑚-plurisubarmonic functions
(see [4, Proposition 8.1.6]). In this paper, we shall use continuous𝑚-plurisubharmonic functions
obtained by taking the maximum of a smooth𝑚-plurisubharmonic function and a constant, and
in this case, smoothing can be obtained globally in a simple way; see the last part of the proof of
Proposition 3.2.
Theorem 2.1 is a consequence of the following proposition of independent interest.

Proposition 3.2. Let Ω ⊂ ℝ𝑛 be a domain with 𝒞𝑟 boundary for some 𝑟 ⩾ 2 satisfying the
assumptions in Theorem 2.1. There is a function 𝜌 ∶ Ω → (−∞, 0] of class 𝒞𝑟(Ω) which is 𝑚-
plurisubharmonic onΩ, it vanishes on𝑀 = 𝑏Ω and it satisfies 𝑑𝜌 ≠ 0 on 𝜌−1((−1, 0]) and for every
𝑡 ∈ (−1, 0), the level set 𝑀𝑡 = {𝜌 = 𝑡} coincides with a level set of the signed distance function 𝛿𝑀
(3.2), 𝑀𝑡 is 𝑚-convex, it is strongly 𝑚-convex at every 𝑚-non-flat point and 𝑀𝑡 is not 𝑚-flat near
infinity.

We point out that, for the proof of Theorem 2.1, it suffices to find a continuous 𝑚-
plurisubharmonic function 𝜌 ∶ Ω → (−∞, 0], which is of class 𝒞2 on an interior collar around
𝑀 = 𝑏Ω and has the other stated properties. Such a function is given by (3.18).
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2784 FORSTNERIČ

Proof. By Gilbarg and Trudinger [18, Lemma 14.16] or Krantz and Parks [29], the conditions
on 𝑀 = 𝑏Ω imply that the signed distance function 𝛿 = 𝛿𝑀 to 𝑀 (3.2) is of class 𝒞𝑟 on the
𝜖-neighbourhood 𝑉𝜖(𝑀) of𝑀 (see (3.1)). We choose the sign so that 𝛿 < 0 on

𝐶𝜖 ∶= Ω ∩ 𝑉𝜖(𝑀) = {𝑥 ∈ Ω ∶ dist(𝑥,𝑀) < 𝜖}. (3.5)

We recall some further properties of 𝛿, referring to Bellettini [7, Theorem 1.18, p. 14] and Gilbarg
and Trudinger [18, Section 14.6]. There is a projection 𝜉 ∶ 𝑉𝜖(𝑀) → 𝑀 of class 𝒞𝑟−1 such that
for every 𝑥 ∈ 𝑉𝜖(𝑀), the point 𝑝 = 𝜉(𝑥) ∈ 𝑀 is the unique nearest point to 𝑥 in 𝑀. The gradi-
ent ∇𝛿 has constant norm |∇𝛿| = 1 on 𝑉𝜖(𝑀), and it has constant value on the intersection of
𝑉𝜖(𝑀) with the normal line 𝑁𝑝 = 𝑝 + ℝ ⋅∇𝛿(𝑝) at 𝑝 ∈ 𝑏Ω = 𝑀. There an orthonormal basis
(𝑣1, … , 𝑣𝑛−1, 𝑣𝑛 = ∇𝛿(𝑝)) of ℝ𝑛 such that the vectors 𝑣1, … , 𝑣𝑛−1 span 𝑇𝑝𝑀, and in this basis, the
(symmetric) matrix 𝐴(𝑝) of Hess𝛿(𝑝) is diagonal:

𝐴(𝑝)𝑣𝑗 = 𝜈𝑗𝑣𝑗 for 𝑗 = 1,… , 𝑛 − 1; 𝐴(𝑝)𝑣𝑛 = 0, (3.6)

where the numbers 𝜈1 ⩽ 𝜈2 ⩽ ⋯ ⩽ 𝜈𝑛−1 are the principal normal curvatures of 𝑀 at 𝑝 from the
interior side. For any point 𝑥 ∈ 𝑁𝑝 ∩ 𝑉𝜖(𝑀), the same basis (𝑣1, … , 𝑣𝑛) diagonalises Hess𝛿(𝑥),
with the corresponding eigenvalues

𝜈𝑗(𝑥) =
𝜈𝑗

1 + 𝛿(𝑥)𝜈𝑗
for 𝑗 = 1,… , 𝑛 − 1; 𝐴(𝑝)𝑣𝑛 = 0. (3.7)

If 𝜈𝑗 > 0 for some 𝑗, then the above shows that 1 + 𝛿(𝑥)𝜈𝑗 > 0 for all 𝑥 ∈ 𝐶𝜖 ∩ 𝑁𝑝. Since 𝛿(𝑥)
assumes all values in (−𝜖, 0) on the set 𝐶𝜖 (3.5), this implies 1 − 𝜖𝜈𝑗 ⩾ 0 and hence 𝜈𝑗 ⩽ 1∕𝜖 for all
such 𝑗. From this and the hypothesis 𝜈1 + 𝜈2 +⋯ + 𝜈𝑚 ⩾ 0, it also follows that 𝜈𝑗 ⩾ −(𝑚 − 1)∕𝜖

for every 𝑗 = 1,… , 𝑛 − 1. Summarising, we have that

−(𝑚 − 1)∕𝜖 ⩽ 𝜈𝑗(𝑝) ⩽ 1∕𝜖 for all 𝑗 = 1,… , 𝑛 − 1 and 𝑝 ∈ 𝑀. (3.8)

That is, the hypersurface𝑀 = 𝑏Ω has bounded principal curvatures. The worst case estimate in
the first inequality in (3.8) occurs only when 𝜈1 = −(𝑚 − 1)∕𝜖 and 𝜈𝑗 = 1∕𝜖 for 𝑗 = 2,… ,𝑚, so we
also conclude that ∑

𝜈𝑗(𝑝)⩽0

𝜈𝑗(𝑝) ⩾ −
𝑚 − 1

𝜖
for all 𝑝 ∈ 𝑀. (3.9)

Consider the family of domains

Ω𝑡 = {𝑥 ∈ 𝐶𝜖 ∶ 𝛿(𝑥) < 𝑡} ∪ (Ω ⧵ 𝐶𝜖) for 𝑡 ∈ (−𝜖, 0].

As 𝑡 increases towards 0, the domains Ω𝑡 increase to Ω0 = Ω. The tangent space to the hypersur-
face 𝑏Ω𝑡 = {𝛿 = 𝑡} at the point 𝑥 = 𝑝 + 𝑡∇𝛿(𝑝) is spanned by the same vectors 𝑣1, … , 𝑣𝑛−1 as 𝑇𝑝𝑀
(see (3.6)), and the numbers 𝜈𝑗(𝑥) in (3.7) for 𝑗 = 1,… , 𝑛 − 1 are the principal curvatures of 𝑏Ω𝑡

at 𝑥. As 𝛿(𝑥) decreases (we move away from 𝑀), each of the curvatures 𝜈𝑗(𝑥) strictly increases
unless 𝜈𝑗(𝑝) = 0 (in whihc case 𝜈𝑗(𝑥) = 0), and it does not change the sign. This implies that for
every 𝑥 = 𝑝 + 𝑡∇𝛿(𝑝) ∈ 𝑏Ω𝑡 with 𝑡 ∈ (−𝜖, 0), we have
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DOMAINS WITHOUT PARABOLIC MINIMAL SUBMANIFOLDS ANDWEAKLY HYPERBOLIC DOMAINS 2785

𝜈1(𝑥) ⩽ 𝜈2(𝑥) ⩽ ⋯ ⩽ 𝜈𝑛−1(𝑥), 𝜈𝑗(𝑥) ⩾ 𝜈𝑗(𝑝) for 𝑗 = 1,… , 𝑛 − 1, and (3.10)

𝐻(𝑥) ∶= 𝜈1(𝑥) + 𝜈2(𝑥) +⋯ + 𝜈𝑚(𝑥) ⩾ 𝜈1(𝑝) + 𝜈2(𝑝) +⋯ + 𝜈𝑚(𝑝) ⩾ 0, (3.11)

where the first inequality in (3.11) is equality if and only if the point 𝑝 ∈ 𝑀 is 𝑚-flat (see Defini-
tion 3.1). Indeed, the function𝐻 increases as we move away from𝑀 = 𝑏Ω intoΩ, and it vanishes
on 𝑁𝑝 ∩ 𝐶𝜖 if and only if the point 𝑝 ∈ 𝑀 is 𝑚-flat. We conclude that for 𝑡 ∈ (−𝜖, 0), the hyper-
surface 𝑀𝑡 = 𝑏Ω𝑡 is 𝑚-convex, and it is strongly 𝑚-convex at 𝑥 = 𝑝 + 𝑡∇𝛿(𝑝) ∈ 𝐶𝜖 if and only
if the point 𝑝 = 𝜉(𝑥) ∈ 𝑀 is not 𝑚-flat. In particular, since 𝑀 is not 𝑚-flat near infinity by the
assumption,𝑀𝑡 is not𝑚-flat near infinity for any 𝑡 ∈ (−𝜖, 0).
From (3.7)–(3.10), it follows that for every 𝑥 ∈ 𝐶𝜖∕2 (see (3.5)), we have that

−
𝑚 − 1

𝜖
⩽ 𝜈𝑗(𝑥) ⩽

2

𝜖
for 𝑗 = 1,… , 𝑛 − 1, and (3.12)

∑
𝜈𝑗(𝑥)⩽0

𝜈𝑗(𝑥) ⩾ −
𝑚 − 1

𝜖
. (3.13)

Despite the estimate (3.11), the function 𝛿 need not be 𝑚-plurisubharmonic on 𝐶𝜖 due to the
zero eigenvalue ofHess 𝛿 in the normal direction determined by∇𝛿. However, we now show that
a suitable convexification of 𝛿 on a collar 𝐶𝜖0 ⊂ Ω in (3.5) for some 0 < 𝜖0 < 𝜖∕2 extends to an
𝑚-plurisubharmonic function 𝜌 ∶ Ω → (−∞, 0) such that every level set

𝑀𝑡 = {𝜌 = 𝑡} for 𝑡 ∈ (−𝜖0, 0)

coincides with a level set {𝛿 = 𝜏} for some 𝜏 = 𝜏(𝑡) ∈ (−𝜖, 0). The argument is similar to [15, proof
of Theorem 1.1], but we are now dealing with an unbounded domain Ω, and we obtain uniform
estimates of the quantities involved.
Choose a number 𝛼 > (𝑚 − 1)∕𝜖. Let ℎ ∶ ℝ → ℝ be a smooth, convex, increasing function with

ℎ(0) = 0, ℎ̇(0) = 1, and ℎ̈(0) = 𝛼. Then,

ℎ(𝑡) < 0 and 0 ⩽ ℎ̇(𝑡) < 1 for −∞ < 𝑡 < 0. (3.14)

Choose numbers 𝜖0, 𝜖′0 with 0 < 𝜖0 < 𝜖′
0
< 𝜖∕2 such that

ℎ̈(𝑡) >
𝑚 − 1

𝜖
for −𝜖′

0
⩽ 𝑡 ⩽ 0. (3.15)

Consider the function ℎ◦𝛿 ∶ 𝐶𝜖 → (−∞, 0). We have that

Hessℎ◦𝛿 = (ℎ̇◦𝛿)Hess𝛿 + (ℎ̈◦𝛿)∇𝛿 ⋅ (∇𝛿)𝑇. (3.16)

(Here, (∇𝛿)𝑇 is the transpose of ∇𝛿, and ∇𝛿 ⋅ (∇𝛿)𝑇 is an 𝑛 × 𝑛 matrix.) Recall that for
𝑝 ∈ 𝑀, the orthonormal vectors 𝑣1, … 𝑣𝑛−1, 𝑣𝑛 = ∇𝛿(𝑝) diagonalise Hess𝛿(𝑝), where 𝑇𝑝𝑀 =

span{𝑣1, 𝑣2, … , 𝑣𝑛−1}. Note that 𝑇𝑝𝑀 lies in the kernel of the matrix ∇𝛿 ⋅ (∇𝛿)𝑇 while 𝑣𝑛 is an
eigenvector with eigenvalue 1. The same basis then diagonalises Hessℎ◦𝛿(𝑥) at every point 𝑥 =

𝑝 + 𝛿(𝑥)𝑣𝑛 ∈ 𝑁𝑝 ∩ 𝐶𝜖, the eigenvalues corresponding to 𝑣1, … , 𝑣𝑛−1 get multiplied by ℎ̇(𝛿(𝑥)) ⩾ 0

and the eigenvalue in the normal direction 𝑣𝑛 equals ℎ̈(𝛿(𝑥)). Summarising, the eigenvalues of
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2786 FORSTNERIČ

Hessℎ◦𝛿(𝑥) at any point 𝑥 ∈ 𝐶𝜖 equal

ℎ̇(𝛿(𝑥))𝜈1(𝑥), … , ℎ̇(𝛿(𝑥))𝜈𝑛−1(𝑥), ℎ̈(𝛿(𝑥)). (3.17)

If 𝑥 ∈ 𝐶𝜖′
0
then −𝜖′

0
< 𝛿(𝑥) < 0, and hence by (3.13), (3.14) and (3.15), we have that

∑
𝜈𝑗(𝑥)⩽0

ℎ̇(𝛿(𝑥))𝜈𝑗(𝑥) + ℎ̈(𝛿(𝑥)) > 0.

Together with (3.10) and (3.11), it follows that the sum of any 𝑚 numbers in the list (3.17) is non-
negative at every point 𝑥 ∈ 𝐶𝜖′

0
, that is, the function ℎ◦𝛿 is 𝑚-plurisubharmonic on 𝐶𝜖′

0
. Hence,

the continuous function 𝜌0 ∶ Ω → [ℎ(−𝜖0), 0) given by

𝜌0(𝑥) =

{
ℎ(𝛿(𝑥)), if 𝑥 ∈ 𝐶𝜖0 ;

ℎ(−𝜖0), if 𝑥 ∈ Ω ⧵ 𝐶𝜖0

(3.18)

is 𝑚-plurisubharmonic. Indeed, near 𝑏𝐶𝜖0 , we have that 𝜌0 = max{ℎ◦𝛿, ℎ(−𝜖0)}, and the
maximum of two𝑚-plurisubharmonic functions is𝑚-plurisubharmonic (see [21, Sect. 6]).
To get a smooth 𝑚-plurisubharmonic function 𝜌 ∈ 𝒞𝑟(Ω) which agrees with 𝜌0 on a smaller

collar 𝐶𝜖1 ⊂ 𝐶𝜖0 , we choose numbers 0 < 𝜖1 < 𝜖2 < 𝜖0, pick a smooth increasing convex function
𝜒 ∶ ℝ → ℝ such that 𝜒(𝑡) is a negative constant for 𝑡 ⩽ ℎ(−𝜖2) and 𝜒(𝑡) = 𝑡 for 𝑡 ⩾ ℎ(−𝜖1) and set
𝜌 = 𝜒◦𝜌0. Clearly, 𝜌 is well defined onΩ and of class𝒞𝑟, and it is constant onΩ ⧵ 𝐶𝜖2 . Using the
formula (3.16) for points in 𝐶𝜖0 gives

Hess𝜒◦𝜌0 = (�̇�◦𝜌0)Hess𝜌0 + (�̈�◦𝜌)∇𝜌0 ⋅ (∇𝜌0)
𝑇.

Since �̇�◦𝜌0 ⩾ 0 and �̈�◦𝜌 ⩾ 0, 𝜌0 is 𝑚-plurisubharmonic on 𝐶𝜖0 , and the matrix ∇𝜌0 ⋅ (∇𝜌0)
𝑇

is non-negative definite, we infer that 𝜌 = 𝜒◦𝜌0 is of class 𝒞𝑟 and 𝑚-plurisubharmonic on Ω.
Clearly, 𝜌 satisfies the conclusion of the proposition for all 𝑡 ∈ (ℎ(−𝜖1), 0). For such 𝑡, we have
𝜒(𝑡) = 𝑡 and hence the hypersurface𝑀𝑡 = {𝜌 = 𝑡} = {ℎ◦𝛿 = 𝑡} equals

𝑀𝑡 = {𝛿 = 𝜏} for 𝜏 = ℎ−1(𝑡) ∈ (−𝜖1, 0). (3.19)

Replacing 𝜌 by 𝑐𝜌 with 𝑐 = −1∕ℎ(−𝜖1) > 0, this holds for 𝑡 ∈ (−1, 0). □

Proof of Theorem 2.1. Since an𝑚-convex domain is also 𝑘-convex for any𝑚 < 𝑘 ⩽ 𝑛 − 1, and every
𝑘-flat point is also 𝑚-flat, it suffices to show that the domain Ω in the theorem does not contain
any parabolic minimal surfaces of dimension𝑚.
Let 𝜌 ∶ Ω → (−∞, 0) be an𝑚-plurisubharmonic function given by Proposition 3.2. If 𝑓 ∶ 𝑅 →

Ω is an immersed minimal submanifold of dimension 𝑚, then 𝜌◦𝑓 is a negative function on 𝑅

which is subharmonic in the Riemannian metric induced by 𝑓 from the Euclidean metric on ℝ𝑛.
If in addition, this minimal surface is connected and parabolic, then this function is constant.
Thus, either 𝑓(𝑅) ⊂ 𝑀𝑡 = {𝜌 = 𝑡} for some 𝑡 ∈ (−1, 0), or 𝑓(𝑅) ⊂ Ω ⧵ 𝐶𝜖1 where 𝜖1 > 0 is as in
(3.19) and 𝐶𝜖1 is given by (3.5).
Assume that the first possibility holds. The minimal 𝑚-dimensional submanifold 𝑓(𝑅) ⊂ 𝑀𝑡

is clearly contained in the set of points where the hypersurface 𝑀𝑡 is not strongly 𝑚-convex. By
Proposition 3.2,𝑀𝑡 is𝑚-flat at every point where it fails to be strongly𝑚-convex, and the set of its
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DOMAINS WITHOUT PARABOLIC MINIMAL SUBMANIFOLDS ANDWEAKLY HYPERBOLIC DOMAINS 2787

𝑚-flat points has bounded interior. Since 𝑓(𝑅) is parabolic, it cannot be contained in a bounded
set, so this case is impossible.
Therefore,𝑓(𝑅) ⊂ Ω ⧵ 𝐶𝜖1 , so the distance between𝑓(𝑅) and 𝑏Ω is at least 𝜖1 > 0. If we translate

Ω for the distance 𝜖1∕2 in any direction, the same argument (with the same constants) applies to
the translated domain Ω′ and its boundary 𝑏Ω′. Since 𝑓(𝑅) ⊂ Ω′, we infer that dist(𝑓(𝑅), 𝑏Ω′) ⩾

𝜖1. Since this holds for every translate Ω′ of Ω for 𝜖1∕2, we conclude that dist(𝑓(𝑅), 𝑏Ω) ⩾ 3𝜖1∕2.
Repeating this argument shows that the distance from𝑓(𝑅) to 𝑏Ωmust be infinite, a contradiction.
If𝑚 = 2, the same argument shows that there are no non-constant conformal harmonic maps

𝑓 ∶ 𝑅 → Ω (possibly with branch points) from any parabolic conformal surface 𝑅. (In this case,
parabolicity does not depend on 𝑓 but only on the conformal structure of 𝑅.) □

Remark 3.3 (Concerning the paper [15]). By [15, Theorem 1.1], every bounded domainΩ inℝ𝑛(𝑛 ⩾

3), whose boundary is of class 𝒞𝑟,𝛼 for some 𝑟 ⩾ 2 and 0 < 𝛼 ⩽ 1 and is 𝑚-convex for some 𝑚 ∈

{1,… , 𝑛 − 1}, admits an𝑚-plurisubharmonic defining function of class𝒞𝑟,𝛼. The proof in the cited
paper refers to the result of Li and Nirenberg [30], saying that the signed distance function to a
hypersurface of class𝒞𝑟,𝛼 for such (𝑟, 𝛼) is of the same class𝒞𝑟,𝛼 near the hypersurface. By using
the result of Gilbarg and Trudinger [18, Lemma 14.16] and Krantz and Parks [29], we see that [15,
Theorem 1.1] also holds in smoothness classes𝒞𝑟 for 𝑟 = 2, 3, … ,∞,𝜔.
The second remark is that the last statement in [15, Theorem 1.1], concerning strongly𝑚-convex

domains, is one of several special cases of a result byHarvey andLawson [20, Theorem 5.12]. I wish
to thank the authors for the relevant communication.

4 WEAKLY HYPERBOLIC DOMAINS

As mentioned in the introduction, the second motivation for this paper comes from the recently
introduced hyperbolicity theory for domains inℝ𝑛 (𝑛 ⩾ 3) in terms of minimal surfaces.We recall
the background.
In 2021, Forstnerič and Kalaj [16] defined on any domain Ω in ℝ𝑛 for 𝑛 ⩾ 3 a Finsler pseudo-

metric gΩ ∶ 𝑇Ω = Ω× ℝ𝑛 → ℝ+ = [0, +∞), called theminimal pseudometric, and the associated
pseudodistance distΩ ∶ Ω × Ω → ℝ+ obtained by integrating gΩ, by using conformal harmonic
discs 𝔻 = {𝑧 ∈ ℂ ∶ |𝑧| < 1} → Ω, in the same way as the Kobayashi–Royden pseudometric and
pseudodistance are defined on any complex manifold by using holomorphic discs; see [27, 28,
41]. We recall the definition. Let CH(𝔻,Ω) denote the space of conformal harmonic discs 𝑓 ∶

𝔻 → Ω, possibly with branch points. Denote by 𝑧 = 𝑥 + 𝚤𝑦 the complex coordinate on 𝔻 and by
𝑓𝑥 the partial derivative of 𝑓 on 𝑥. The minimal pseudometric at 𝑝 ∈ Ω on a vector 𝑣 ∈ ℝ𝑛 is
defined by

gΩ(𝑝, 𝑣) = inf
{
1∕𝑟 > 0 ∶ ∃𝑓 ∈ CH(𝔻,Ω), 𝑓(0) = 𝑝, 𝑓𝑥(0) = 𝑟𝑣

}
⩾ 0.

It follows from definitions that distΩ is the biggest pseudometric on Ω such that every confor-
mal harmonic map 𝑅 → Ω from a conformal surface 𝑅 is distance decreasing with respect to the
Poincaré pseudometric on𝑅. Thus, distΩ describes the fastest possible rate of growth of hyperbolic
minimal surfaces inΩ. A domainΩ is said to be hyperbolic if distΩ is a distance function, and com-
plete hyperbolic if (Ω, distΩ) is a complete metric space. Every bounded domain is hyperbolic but
not necessarily complete hyperbolic. On the unit ball of ℝ𝑛, the minimal metric coincides with
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the Beltrami–Cayley–Klein metric, one of the classical models of hyperbolic geometry; see [16].
We refer to [12] for the basic hyperbolicity theory for domains in Euclidean spaces.
We now introduce the following weaker notion of hyperbolicity, which is of interest on

unbounded domains where hyperbolicity remains poorly understood.

Definition 4.1. A domain Ω in ℝ𝑛, 𝑛 ⩾ 3, is weakly hyperbolic (for minimal surfaces) if every
conformal harmonic map ℂ → Ω is constant.

Weak hyperbolicity is an analogue of Brody hyperbolicity in complex analysis: a complexmani-
fold𝑋 is said to beBrody hyperbolic if every holomorphicmapℂ → 𝑋 is constant. Every Kobayashi
hyperbolic manifold is clearly also Brody hyperbolic; the converse holds on compact complex
manifolds (see Brody [10]) but it fails in general (see [10, p. 219]).
Likewise, every hyperbolic domain inℝ𝑛 is weakly hyperbolic but the converse fails in general.

For the first claim, assume that Ω ⊂ ℝ𝑛 is not weakly hyperbolic. Pick a non-constant conformal
harmonic map 𝑓 ∶ ℂ → Ω and a point 𝑎 ∈ ℂwhere 𝑑𝑓𝑎 ≠ 0. The conformal harmonic discs 𝑓𝑟 ∶
𝔻 → Ω given by 𝑓𝑟(𝑧) = 𝑓(𝑎 + 𝑟𝑧) for 𝑟 > 0 satisfy 𝑓𝑟(0) = 𝑓(𝑎) and 𝑑(𝑓𝑟)0 = 𝑟𝑑𝑓𝑎. Letting 𝑟 →
+∞, we get gΩ(𝑓(𝑎), 𝑣) = 0 for all 𝑣 ∈ 𝑑𝑓𝑎(ℂ), so Ω is not hyperbolic.
The failure of the converse implication is given by part (b) of the following proposition. Part (c)

shows that a weakly hyperbolic domain may contain parabolic minimal surfaces whose universal
conformal covering surface is the disc.

Proposition 4.2.

(a) There is a non-hyperbolic domain in ℝ3 which does not contain any parabolic minimal
surfaces.

(b) In particular, there is a weakly hyperbolic domain in ℝ3 which is not hyperbolic.
(c) For every parabolic domain 𝐷 ⊊ ℝ2 = ℂ which omits at least two points of ℂ, there is a

weakly hyperbolic but non-hyperbolic domainΩ𝐷 ⊂ ℝ3 containing𝐷 × {0} as a properminimal
surface.

Proof. Given a domain 𝐷 ⊂ ℝ2, we define the domain Ω𝐷 ⊂ ℝ3 by

Ω𝐷 =
{
(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶ |𝑧| < 1, 𝑧2(𝑥2 + 𝑦2) < 1, (𝑥, 𝑦) ∈ 𝐷 if 𝑧 = 0

}
.

We claim that the following assertions hold.

(i) The minimal distance in Ω𝐷 between any pair of points 𝑝, 𝑞 ∈ 𝐷 × {0} vanishes.
(ii) The image of every non-constant conformal harmonic map 𝑅 → Ω𝐷 from a parabolic

conformal surface 𝑅 is contained in 𝐷 × {0}.

To prove the first claim (i), assume that 𝑝 = (𝑎, 𝑏, 0) and 𝑞 = (𝑐, 𝑑, 0). Set 𝑝𝑘 = (𝑎, 𝑏, 1∕𝑘)

and 𝑞𝑘 = (𝑐, 𝑑, 1∕𝑘) for 𝑘 = 2, 3, …. It is obvious that lim𝑘→∞ distΩ𝐷
(𝑝, 𝑝𝑘) = 0 and

lim𝑘→∞ distΩ𝐷
(𝑞, 𝑞𝑘) = 0. The sequence of linear discs {(𝑥, 𝑦, 1∕𝑘) ∶ 𝑥2 + 𝑦2 < 𝑘2} ⊂ Ω𝐷

shows that lim𝑘→∞ distΩ𝐷
(𝑝𝑘, 𝑞𝑘) = 0. Hence, distΩ𝐷

(𝑝, 𝑞) = 0.
To prove the second claim (ii), assume that 𝑅 is a parabolic conformal surface and 𝑓 =

(𝑓1, 𝑓2, 𝑓3) ∶ 𝑅 → Ω𝐷 is a non-constant conformal harmonic map. We have that |𝑓3| < 1, so
𝑓3 = 𝑐 is constant. If 𝑐 ≠ 0, then 𝑓2

1
+ 𝑓2

2
< 1∕𝑐2 < +∞, so 𝑓1 and 𝑓2 are constant as well, a

contradiction. Thus, 𝑐 = 0 and hence 𝑓(𝑅) ⊂ 𝐷 × {0}.
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Taking 𝐷 to be a bounded domain in ℝ2, property (ii) implies that Ω𝐷 does not contain any
parabolic minimal surfaces. Since Ω𝐷 is non-hyperbolic by property (i), such a domain satisfies
condition (a) in the proposition. Part (b) is an immediate consequence.
Let 𝐷 ⊂ ℂ be a parabolic domain which omits at least two points of ℂ. By (ii), the image of

every non-constant conformal harmonic map ℂ → Ω𝐷 is contained in 𝐷 × {0}, which contradicts
Picard’s theorem. Thus, Ω𝐷 is weakly hyperbolic but it contains the parabolic minimal surface
𝐷 × {0}. This proves part (c) of the proposition. □

Problem 4.3. Is there a hyperbolic domain Ω ⊂ ℝ3 containing a parabolic minimal surface? In
particular, if𝐷 ⊂ ℝ2 = ℂ is a parabolic domain which omits at least two points ofℂ, is the domain
𝐷 × (−𝜖, 𝜖) ⊂ ℝ3 hyperbolic for some (or all) 𝜖 > 0?

Note that the domain (ℂ ⧵ {0, 1}) × 𝔻 inℂ2 is Kobayashi hyperbolic. The difference between the
two cases is that the projection of a complex curve to any factor in a product of complexmanifolds
is holomorphic, while the projection of a conformal harmonic map is harmonic but not confor-
mal in general. It is easily seen that ℂ ⧵ {0, 1} contains many harmonic images of ℂ which are
conformal at some point, but not everywhere.
The situation is much simpler for convex domains as shown by the following proposition.

Proposition 4.4. For a convex domainΩ in ℝ𝑛, 𝑛 ⩾ 3, the following are equivalent.

(a) Ω is complete hyperbolic.
(b) Ω is hyperbolic.
(c) Ω is weakly hyperbolic.
(d) Ω does not contain any affine 2-plane.
(e) Ω does not contain any parabolic minimal surface.

Proof. The implications (𝑎) ⇒ (𝑏) ⇒ (𝑐) ⇒ (𝑑) and (𝑒) ⇒ (𝑑) are trivial. The implication (𝑑) ⇒

(𝑎) was proved in [12, Theorem 5.1], which establishes the equivalence of properties (𝑎)–(𝑑). It
remains to prove (𝑑) ⇒ (𝑒). It was shown in [12, proof of Theorem 5.1] that a convex domain Ω

in ℝ𝑛 satisfying condition (𝑑) is contained in the intersection of 𝑛 − 1 halfspaces 𝐻𝑗 = {𝓁𝑗 < 𝑐𝑗}

(𝑗 = 1,… , 𝑛 − 1), where 𝓁1, … ,𝓁𝑛−1 ∶ ℝ𝑛 → ℝ are linearly independent linear functionals and 𝑐𝑗
are constants. If 𝑓 ∶ 𝑅 → Ω is a conformal harmonic map from a connected parabolic conformal
surface 𝑅, then 𝓁𝑗◦𝑓 ∶ 𝑅 → (−∞, 𝑐𝑗) is a bounded from above harmonic function for every 𝑗 =
1,… , 𝑛 − 1, hence constant. Thus, 𝑓(𝑅) lies in a real line and hence 𝑓 is constant. □

Aproperty of a domain directly opposite toweak or strong hyperbolicity is flexibility forminimal
surfaces, introduced in [13, Definition 1.1]. A domain Ω ⊂ ℝ𝑛 for 𝑛 ⩾ 3 is said to be flexible if,
given an open conformal surface 𝑀, a compact set 𝐾 ⊂ 𝑀 whose complement has no relatively
compact connected components, and a conformal harmonic immersion 𝑓 ∶ 𝑈 → Ω from an open
neighbourhood of 𝐾, we can approximate 𝑓 uniformly on 𝐾 by conformal harmonic immersions
𝑀 → Ω. A flexible domain admits many conformal harmonic images of ℂ, so it is not weakly
hyperbolic. In particular, the domains in Theorem 2.1 for 𝑚 = 2 are not flexible. A halfspace is
neither (weakly) hyperbolic nor flexible.
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It is not surprising that the situation regarding Corollary 2.3 is quite different in ℝ4. As shown
in [13, Example 1.9], a domain in ℝ4 with coordinates (𝑥1, 𝑥2, 𝑥3, 𝑥4), given by

Ω = {𝑥4 > −𝑎|𝑥2| + 𝑏|𝑥3| for some 𝑎 > 0 and 𝑏 ∈ ℝ},

is flexible. Taking 𝑏 > 0, the complementary domain Ω′ = ℝ4 ⧵ Ω is of the same type with the
reversed roles of 𝑥2 and 𝑥3, andwith 𝑥4 replaced by−𝑥4, so it is also flexible. ByAlarcón and López
[5], each of these domains contains a properly immersed conformal minimal surface parame-
terised by an arbitrary open Riemann surface. (In fact, their result holds for any concave wedge
in ℝ3 obtained by intersecting Ω with the hyperplane 𝑥3 = 0.) This gives many pairs of disjoint
properly immersed minimal surfaces in ℝ4 of any given conformal type. There also exist pairs of
disjoint catenoids in ℝ4 whose ends are asymptotic to a pair of orthogonal 2-planes in ℝ4, so their
closures in ℝℙ4 are disjoint as well. On the other hand, a pair of complex algebraic curves in ℂ2

intersect, or their closures in ℂℙ2 intersect at infinity. (Note that every complex curve is also a
minimal surface.)
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