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On a definition of logarithm of quaternionic functions

Graziano Gentili, Jasna Prezelj, and Fabio Vlacci

Abstract. For a slice-regular quaternionic function f , the classical exponential function exp f is
not slice-regular in general. An alternative definition of an exponential function, the �-exponential
exp�, was given in the work by Altavilla and de Fabritiis (2019): if f is a slice-regular function,
then exp� f is a slice-regular function as well. The study of a �-logarithm log� f of a slice-regular
function f becomes of great interest for basic reasons, and is performed in this paper. The main
result shows that the existence of such a log� f depends only on the structure of the zero set of the
vectorial part fv of the slice-regular function f D f0 C fv , besides the topology of its domain of
definition. We also show that, locally, every slice-regular nonvanishing function has a �-logarithm
and, at the end, we present an example of a nonvanishing slice-regular function on a ball which does
not admit a �-logarithm on that ball.

1. Introduction

Let H be the skew field of quaternions and let us denote the 2-sphere of imaginary units of
H by SD ¹q 2H W q2D�1º. Consider the natural exponential function expWH!H n ¹0º
defined by the classical power series

exp q D
C1X
nD0

qn

nŠ
: (1.1)

In the case of quaternions, a satisfactory definition of a (necessarily local) inverse of this
exponential function – the logarithm and its different branches – is not a simple task,
together with the question of the continuation of the logarithm along curves lying in
H n ¹0º (see [4, 5, 11] and references therein).

Let � � H be an axially symmetric domain (see Definition 2.1), and consider the
class �R.�/ of all H-valued slice-regular functions defined in � (see, e.g., [7]). These
functions have proven to be naturally suitable to play the role of holomorphic functions
in the quaternionic setting, and have originated a theory that is by now quite rich and
well developed (see, e.g., [6] and references therein). Slice-regular functions present sev-
eral peculiarities, mainly due to the noncommutative setting of quaternions; among these
peculiarities, the facts that pointwise product and composition of slice-regular functions
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do not produce slice-regular functions in general. The definition of the �-product which is
typical for the algebra of polynomials with coefficients in a noncommutative field can be
extended to the class of slice-regular functions on an axially symmetric domain � � H,
which naturally becomes an algebra. As for composition, if f WH! H is a slice-regular
function, even

exp.f .q// D
C1X
nD0

f .q/n

nŠ

turns out not to be slice-regular in general. The �-product helps in this situation to find an
exponential function which maintains slice-regularity, defined (with obvious notations) as

exp� f .q/ D
C1X
nD0

f �n.q/

nŠ
: (1.2)

This �-exponential has many interesting properties typical of an exponential-type func-
tion, which can be found, e.g., in [1].

In this paper, we investigate the existence of a slice-regular logarithm log� f for a
slice-regular function f . This activity finds a deep motivation in the study of quaternionic
Cousin problems, that the authors are performing and that will be the object of a forth-
coming paper.

We will now briefly outline the path that this paper follows for the tuning of a slice-
regular logarithm. Recall that (see [8]) any slice-regular function f defined on an axially
symmetric domain� can be uniquely written, with respect to the standard basis ¹1; i; j; kº
of H, as

f D f0 C f1i C f2j C f3k D f0 C fv

where f` (` D 0; 1; 2; 3) are slice-preserving regular functions, and where

f0.q/ D
f .q/C f . Nq/

2

denotes the scalar part of f and
fv WD f � f0

its vectorial part. The vectorial part fv of f plays a fundamental role in the definition of
log�. Indeed, with the adopted notations we have

exp� f D exp�.f0 C fv/ D expf0 exp� fv

D expf0

� X
m2N0

.�1/m.f sv /
m

.2m/Š
C

X
m2N0

.�1/m.f sv /
m

.2mC 1/Š
fv

�
D expf0

�
cos.

p
f sv /C sin.

p
f sv /

fvp
f sv

�
(1.3)

when the symmetrization f sv WD f 21 C f
2
2 C f

2
3 of fv does not vanish, and where the

definitions of cos, sin and
p
f sv are the natural ones. A less algebraic, but maybe more
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enlightening, point of view is the following. To better understand the computation of
exp� fv let us notice that, since

fv � fv D �f
s
v D �fv � f

c
v

holds, outside the zero set of f sv , we have

fvp
f sv
�

fvp
f sv
D
�f sv
f sv
D �1

identically. Therefore the vectorial function

fvp
f sv

can be given the role of an imaginary unit, and therefore

exp� fv D exp�

�
fvp
f sv

p
f sv

�
D cos.

p
f sv /C sin.

p
f sv /

fvp
f sv
:

All this said, we begin by focusing our study of the solutions f of the equation

exp� f D g

to the case of exp� f D 1 on an axially symmetric domain � whose intersection �I with
RC IR Š CI is “small” for any I 2 S. We then proceed to the definition of a local �-
logarithm for any slice-regular function on such a domain. As one may expect, once the
function log� g is defined, we can also define the real powers of g, like for example

s
p
g WD exp�

�
1

s
log� g

�
; (1.4)

for all s 2 R, s > 0.
It turns out that the structure of the zeroes of the vectorial part gv of the slice-regular

function gW�!H in question plays a key role. Roughly speaking, the set Z.gv/ of non-
real and nonspherical zeroes of the vectorial part gv of g (shared with the entire vectorial
(equivalence) class Œgv� and for this reason denoted Z.Œgv�/, see Definition 5.1) determ-
ines the right conditions for the existence of the �-logarithm of g in such a domain �. In
the chosen setting, a slice-regular function gW�! H belongs to the vectorial class Œ0� if
and only if its vectorial part gv is equivalent to the null function in �, that is, if and only
if g belongs to the same vectorial class of its scalar part g0. This situation is particularly
fortunate for our study, as explicitly suggested by formula (1.3).

The set of all slice-regular functions g 2 �R.�/ which are in the vectorial class Œ0� is
denoted by �RŒ0�.�/D �RR.�/. In general, �R!.�/will denote the set of slice-regular
functions g 2 �R.�/ whose vectorial parts gv are in the class ! (see Section 5).
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For the existence of a �-logarithm of a function g 2 �R.�/, a sort of slicewise simple-
connectedness of the axially symmetric domain � is required (but is not in general a
sufficient condition): indeed we will require that each of the, at most two, connected com-
ponents of �I D � \ CI is simply connected for one (and hence for all) I 2 S. Such a
domain � will be called a basic domain. If W � H is any subset, then we will set the
notation SW WD ¹sw W s 2 S; w 2 W º and use it henceforth.

The main theorem of this paper, stated below and proved in Section 7.1 together with
some of its consequences, identifies sufficient conditions for the existence of a �-logarithm
of a function g 2 �R.�/ with respect to the different structures of the vectorial class Œgv�
and of its zero set Z.Œgv�/.

Theorem 1.1. Let � � H be a basic domain and let g 2 �R!.�/ be a nonvanishing
function. Then the following holds:

(a) if ! D Œ0�, a necessary and sufficient condition for the existence of a �-logarithm
of g on �, log� g 2 �RŒ0�.�/, is

g.� \R/ � .0;C1/I

(b) if ! ¤ Œ0�, then if Z.!/ D ¿ or if SZ.!/ D � there are no conditions, and a
�-logarithm of g on �, log� g 2 �R!.�/, always exists;

(c) if ! ¤ Œ0� and Z.!/ is discrete, a sufficient condition for the existence of a �-
logarithm of g on �, log� g 2 �R!.�/, is the validity of both inclusionsp

gs.� \R/ � .0;C1/ (1.5)

and
g0
p
gs
.�/ � H n .�1;�1�; (1.6)

where gs D g20 C g
s
v denotes the symmetrization of g.

Now, if the functions �; � 2 �RR.H/ are defined by the identities

�.z2/ D cos z and �.z2/ D
sin z
z
;

then the last formula in (1.3) can be rewritten as

exp� f D expf0
�
�.f sv /C �.f

s
v /fv

�
:

Moreover, for any I 2 S the mapping

�I WCI n ¹k
2�2 W k 2 N [ ¹0ºº ! CI n ¹1;�1º

turns out to be a covering map (see Section 4.1). In this setting, we can obtain the second
main result of this paper which appears in Section 7.2: Theorem 7.4. It produces a formula
for the �-logarithms of a nonvanishing slice-regular function g, defined on a basic domain
with no real points and whose vectorial part gv has only one (nonreal) zero.



On a definition of logarithm of quaternionic functions 1103

In the last section, we also show that for the function

g.z/ D �1C z2i C
p
2zj C k;

which is nonvanishing on the ball B4.0; 1:1/, there is no slice-regular logarithm globally
defined in the entire B4.0; 1:1/. Indeed, this function g meets the hypotheses of The-
orem 1.1 (c), but does not fulfil the stated sufficient conditions (1.5) and (1.6).

While preparing the final draft of this paper, we became aware that results similar
to ours, but suggested by different motivations and involving different techniques, were
obtained by Altavilla and de Fabritiis and are now posted on arXiv ([2]).

2. Preliminary results

Given any quaternion z … R, there exist (and are uniquely determined) an imaginary unit
I 2 S, and two real numbers, x; y, y > 0, such that z D x C Iy. With this notation, the
conjugate of z will be Nz WD x � Iy and jzj2 D z Nz D Nzz D x2 C y2. Each I 2 S generates
(as a real algebra) a copy of the complex plane denoted by CI D RC IR. We call such a
complex plane a slice. The upper half-plane in CI , namely the set CCI WD ¹x C yI 2 CI W
y > 0º will be called a leaf.

Definition 2.1. A domain � of H will be called axially symmetric1 if

� D
[

xCIy2�

x C Sy;

i.e., if for all x; y 2 R and all I 2 S, we have that x C Iy 2 � implies that the entire
2-sphere x C Sy is contained in �.

The proof of the following facts is straightforward.

Proposition 2.2. Let��H be an axially symmetric domain. For all I 2 S, we have that

� D
[

xCIy2�I

x C Sy:

Moreover, for all I 2 S, the set �I � R C IR is invariant under conjugation, i.e.,
�I D �I .

A class of natural domains of definition for slice-regular functions is the following
one.

Definition 2.3. A domain � of H is called a slice domain if, for all I 2 S, the subset �I
is a domain in RC IR and if � \ R ¤ ¿. If, moreover, � is axially symmetric, then it
is called a symmetric slice domain.

1Some authors use the term “circular”.
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On the other hand, slice functions (see [10]) are naturally defined on axially symmetric
domains which are not necessarily slice domains.

Definition 2.4. An axially symmetric domain � of H nR is called a product domain.

If � � H is an axially symmetric domain, then for (one and hence for) all I 2 S, the
set �I is an open subset of CI such that: either it is a connected set that intersects R, or
it has two symmetric connected components separated by the real axis, swapped by the
conjugation. In the former case,� is an axially symmetric slice domain; in the latter case,
� is a product domain.

Proposition 2.5. Let��H be an axially symmetric domain. Then� is either a symmet-
ric slice domain or it is a product domain.

The following class of domains will play a key role in this paper.

Definition 2.6. A domain� of H is called a basic domain if it is axially symmetric and if,
for (one and hence for) all I 2 S, the single connected component or both the connected
components of �I are simply connected. A basic domain is also a basic neighbourhood
of any of its points.

The following examples show that being a simply connected domain and being a basic
domain are distinct notions in general.

Example 2.7. For any given pair of positive real numbers 0 < r < R, the axially sym-
metric domain Ar;R D ¹q 2 H W r < jqj < Rº is simply connected but the domain of the
slice CI obtained as Ar;R \CI is not simply connected for any I 2 S. Hence Ar;R is not
a basic domain.

Example 2.8. The axially symmetric domain H n R is not simply connected, but the
intersection of H n R with any slice CI has two connected components, and each one is
simply connected. Hence H nR is a basic domain.

We will now recall a unified definition of the class of slice-regular functions on axially
symmetric domains, valid both for slice domains and for product domains (see, e.g., [9]).
If �2 D �1, consider the complexification HC D H C �H of the skew field H and set
z D x C �y 7! Nz D x � �y to be the natural involution of HC . For any J 2 S, let the map

�J WHC ! H

be defined by
�J .x C �y/ D x C Jy:

Notice that the map �J , when restricted to RC DRC �RŠC, is an isomorphism between
RC �R and RC JR D CJ .

If��H is an axially symmetric domain, then the intersection�i D�\ .RC iR/D
� \ Ci defines a domain of the complex plane that is invariant under standard complex
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conjugation. With respect to the established notations, the subset��D ¹xC �y 2HC �H W
xC iy 2�iº is called the image of�i in HC , and is invariant under the natural involution,
i.e., �� D ��. We are now in a position to recall the following definitions.

Definition 2.9. Let � � H be an axially symmetric open set, let �i D � \ .RC iR/
and let �� be the image of �i in HC .

A function F W�� ! HC is called a stem function if F. Nz/ D F.z/ for all z 2 ��. For
each stem function F W�� ! HC , there exists a unique f W�! H such that the diagram

�� HC

� H

�J

F

�J

f

commutes for all J 2 S. The function f is called the slice function induced by F and
denoted by J.F /.

Let f D J.F /, g D J.G/ be the slice functions induced by the stem functions F;G
respectively. The �-product of f and g is defined as the slice function f � g WD J.FG/.

We will use a definition of slice-regularity (and �-product) that involve stem functions,
and that is valid for any axially symmetric domain of H. When restricted to symmetric
slice domains, it coincides with the definition of slice-regularity initially presented in [7,
Definition 1.2].

Definition 2.10. Let��H be an axially symmetric open set. A slice function f W�!H,
induced by a stem function F W��!HC , is called slice-regular if F is holomorphic. The
set of all slice-regular functions on � is denoted by �R.�/.

A slice function f W�! H is said to be slice-preserving if and only if 8I 2 S;8z 2
�I WD � \ CI we have that f .z/ 2 CI . The set of all slice-regular functions, which are
slice-preserving in �, will be denoted as �RR.�/.

The next proposition recalls two well-known technical results that will be extensively
used in the sequel (see, e.g., [9]).

Proposition 2.11. Let� �H be an axially symmetric open set, and let f; g 2 �R.�/ be
two slice-regular functions. Then

(a) the �-product f � g is a slice-regular function on �;

(b) if f is slice-preserving, then f � g D fg D g � f , i.e., the �-product coincides
with the pointwise product.

Let us now define the imaginary unit function

	WH nR! S

by setting 	.q/ D I if q 2 CI . The function 	 is slice-regular and slice-preserving, but it
is not an open mapping and it is not defined on any slice domain.
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Consider now an axially symmetric open set � and f 2 �R.�/. We have already
defined the splitting f D f0 C fv , where the scalar part f0 of f is a slice-preserving
function.

Definition 2.12. The function f 2 �R.�/ is a vectorial function if f D fv . The set of
vectorial functions on � will be denoted by �Rv.�/. We have

�R.�/ D �RR.�/˚ �Rv.�/:

Given a standard basis of H, the vectorial part can be decomposed further ([8], [3,
Proposition 3.12], compare [1, Proposition 2.1]), as we see in the following proposition.

Proposition 2.13. Let ¹1; i; j; kº be the standard basis of H and assume � is an axially
symmetric domain of H. Then the map

.�RR.�//
4
3 .f0; f1; f2; f3/ 7! f0 C f1i C f2j C f3k 2 �R.�/

is bijective.

In the sequel, all bases of H Š R4 will be orthonormal (and positively oriented) with
respect to the standard scalar product of R4. Proposition 2.13 implies that, given any
f; g 2 �R.�/, there exist and are unique f0; f1; f2; f3; g0; g1; g2; g3 2 �RR.�/ such
that

f D f0 C f1i C f2j C f3k D f0 C fv;

g D g0 C g1i C g2j C g3k D g0 C gv:

With the above given notation, if we call regular conjugate of f the function

f c D f0 � fv;

then we have

f0 D
f C f c

2
:

Furthermore, using Definition 2.9 and Proposition 2.11, we obtain the following expres-
sion for the �-product of f and g:

f � g WD f0g0 � f1g1 � f2g2 � f3g3 C f0gv C g0fv C
fv � gv � gv � fv

2
: (2.7)

We now set
f s WD f 20 C f

2
1 C f

2
2 C f

2
3 D f � f

c
D f c � f

and call f s the symmetrization of f .
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3. Basic properties of the exponential

If exp q is the (quaternionic) exponential mapping defined in (1.1), then for every k 2 Z,
we define its restriction to the cylinder ¹q W Im.q/ 2 S.k�; .k C 1/�/º to be

expk W ¹q W Im.q/ 2 S.k�; .k C 1/�/º ! H nR:

For any k 2 Z the function expk is a bijective slice-regular slice-preserving function with
a slice-regular and slice-preserving inverse, namely

logk q D log jqj C 	.q/ arg	.q/;k.q/;

where arg	.q/;k 2 .k�; .k C 1/�/ denotes the argument of q in the complex plane C	.q/.
The mapping log0 is called the principal branch of the logarithm and can be extended to

log0WH n .�1; 0�! ¹q W Im.q/ 2 SŒ0; �/º

as the inverse of the extension of

exp0W ¹q W Im.q/ 2 SŒ0; �/º ! H n .�1; 0�:

Let us turn our attention to the problem of computing the logarithm of a function g,
defined on a domain � of H. For any continuous function gW�! H n .�1; 0�, one can
define

f WD log0 ı g;

so that the diagram

R � SŒ0; �/
exp

''

�
g

//

f
::

H n .�1; 0�

commutes. In these hypotheses, for any z 2�, we have the equality exp.f .z//D g.z/ by
definition, but even if g is slice-regular, no regularity on the function f can be argued. If, in
addition �, is axially symmetric and g 2 �RR.�/ is a slice-regular and slice-preserving
function, then f is a well-defined slice-regular and slice-preserving function too. Indeed,
(see Proposition 2.11) the equality exp� f D expf D g holds on� for f D log0 ı g and
we say that the function f is a logarithmic function of g (in �).

We have thus shown that the following proposition holds.

Proposition 3.1. Let � � H be a symmetric slice domain. If g 2 �RR.�/ is such that

g.�/ � H n .�1; 0�;

then the function
f D log0 ı g

is the (slice-regular and slice-preserving) principal logarithm of g.
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Let us point out that if f 2 �RR.�/, with � � H any symmetric slice domain, then
.exp� f /.x0/ D .expf /.x0/ > 0 for any x0 2 � \R. Hence the condition

g.� \R/ � .0;C1/ (3.8)

is a necessary condition for a slice-preserving function g 2 �RR.�/ to have a slice-
preserving logarithm (see also [1]).

4. The �-exponential of a quaternionic function

In this section, we shortly recall some results from [1], which are necessary to explain our
definition of �-logarithm.

The �-exponential map of a slice-regular function f 2 �R.�/, with � an axially
symmetric domain, is defined for any z 2 � as in (1.2) by

exp� f .z/ D
X
k�0

f �k.z/

kŠ

in such a way that exp� f 2 �R.�/. The equality exp�.f C g/ D exp� f � exp� g does
not hold in general as stated in Theorem 4.3 (see also [1, Theorem 4.14]), which we
premise a crucial definition to.

Definition 4.1. Let fv 2 �Rv.V / and gv 2 �Rv.V /, where V �H is an axially symmet-
ric domain in H. We say that fv and gv are linearly dependent over �RR.V / if and only if
there exist a; b 2 �RR.V /, with a or b not identically zero in V , such that afv C bgv D 0
in V . If V � H is an axially symmetric open set in H, then fv and gv are linearly
dependent over �RR.V / if and only if they are linearly dependent over �RR.V�/ for
each connected component V� of V .

Remark 4.2. Real isolated zeroes and isolated spherical zeroes can be factored out of
a slice-regular function (see, e.g., [6, 9]). As a consequence for any vectorial function
fv 2 �Rv.�/ on an axially symmetric open set � and for every axially symmetric open
set V b �, there exists a nonidentically zero, slice-regular and slice-preserving function
a 2 �RR.�/ such that

fv D a zfv

with zfv 2 �Rv.�/ having neither real nor spherical zeroes on V . Of course fv and zfv
are linearly dependent over �RR.�/.

Theorem 4.3 ([1]). Assume that the axially symmetric domain � intersects the real axis
(i.e., it is a symmetric slice domain). Take f; g 2 �R.�/. If

exp�.f C g/ D exp� f � exp� g (4.9)

then either
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(i) fv and gv are linearly dependent over �RR.�/, or

(ii) there exist n;m;p 2Z n ¹0º such that f s D n2�2, gs Dm2�2, 2.f1g1C f2g2C
f3g3/ D .p

2 � n2 �m2/� and nCm Š p mod 2.

Vice versa, if either (i) or (ii) are satisfied, then (4.9) holds.

Hence equality (4.9) holds if there exist a; b 2 �RR.�/ such that afv C bgv D 0 with
a ¥ 0 or b 6� 0. In particular, this implies

exp� 0 D exp� f � exp��f � 1

so that, for every f 2 �R.�/, the slice-regular function exp� f is a nonvanishing function
in �. If f D f0 C fv , then

exp� f D expf0 exp� fv: (4.10)

Moreover,
exp� f

c
D .exp� f /

c

whence

.exp� f /
s
D exp� f � .exp� f /

c

D exp� f � exp� f
c
D exp�.f C f

c/

D exp.2f0/

and, from (4.10),

exp� f D expf0

� X
m2N0

.�1/m.f sv /
m

.2m/Š
C

X
m2N0

.�1/m.f sv /
m

.2mC 1/Š
fv

�
:

Following [1, Remark 4.8] we will use the notations

�.z/ WD
X
m2N0

.�1/mzm

.2m/Š
; �.z/ WD

X
m2N0

.�1/mzm

.2mC 1/Š
: (4.11)

Both functions � and � are entire slice-regular and slice-preserving functions in H, in
symbols �; � 2 �RR.H/. Furthermore,

�.z2/ D cos z and �.z2/ D
sin z
z
; (4.12)

where, in general,

cos� f D
X
m2N0

.�1/mf �.2m/

.2m/Š
and sin� f D

X
m2N0

.�1/mf �.2mC1/

.2mC 1/Š

for f 2 �R.�/. Notice that also cos� and sin� are entire slice-regular and slice-preserving
functions in H. More in detail (see again [1, Corollary 4.7]), given a basic domain � and
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a slice-regular function f W�! H, such that f sv is not identically zero and fv has only
real or spherical zeroes, then, in �,

exp� f D expf0

�
cos.

p
f sv /C sin.

p
f sv /

fvp
f sv

�
; (4.13)

where
p
f sv is defined in the obvious way, being f sv a slice-preserving function. Indeed,

we will refer to (4.13) as the polar representation for exp� f . The reader can find more
details about the definition of square roots in [1, Proposition 3.1 and Corollary 3.2] (see
also [5]).

4.1. Properties of the function �

Let us first list some properties of the function �, defined by (4.11), which are essential
to define the logarithm of a slice-regular function. Since we have the identity �.q2/ D
cos.q/, for any q 2 H, we first define the branches �k of � using the branches of the
inverse of the function cos, i.e., the inverses of

cosk W ¹q W Re.q/ 2 .k�; .k C 1/�/º ! H..�1;�1� [ Œ1;C1//;

denoted by arccosk . To this end consider first the domains

• D0 WD ¹q W Re.q/ 2 Œ0; �/º, D�1 WD ¹q W Re.q/ 2 .��; 0�º,

• Dk WD ¹q W Re.q/ 2 .k�; .k C 1/�/º for k 2 Z n ¹0;�1º.

Notice that the domains Dk , k ¤ 0;�1, lie entirely either in the right half-space ¹q W
Re.q/ > 0º or in the left half-space ¹q W Re.q/ < 0º, so the squaring map p2, p2.q/D q2,
is injective on each Dk and hence bijective onto p2.Dk/ with an inverse

p
.

For all k 2 Z define the domains Mk ; �Mk to be

Mk WD p2.Dk/; �Mk WD �.Mk/ D cos.Dk/; �k WD �jMk

and observe that

• 0 2M0 DM�1,

• �M0 D �M�1 D H n .�1;�1�,

• �Mk D H n ..�1;�1� [ Œ1;C1//, k ¤ 0;�1.

By definition, for each k 2 Z, the diagram

Dk
p2

~~

cos

!!

Mk

�k // �Mk

commutes. The choice of domains Dk , k ¤ 0;�1, is such that both cos and p2 are biject-
ive, hence so is �k . To see that also �0 and ��1 are bijective it remains to show that they
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are bijective when restricted to the imaginary axis. In this case, since both cos and p2 are
even, we have for q 2 Im.H/

cos.q/ D cos.�q/ and p2.q/ D p2.�q/:

Moreover, for each I 2 S, k D 0;�1, the restrictions

cosW I Œ0;C1/! Œ1;C1/

and
p2W I Œ0;C1/! .�1; 0�

are injective, which implies that the induced maps �0; ��1 are bijective.
The points k� , k 2 Z, are branching points for the complex cosine, which implies that

the points k2�2 are branching points for �, except the point 0, which is contained in M0

and where �00.0/ D �1=2 ¤ 0.
We can summarize these considerations in the following proposition.

Proposition 4.4. For each k the function �k WMk!
�Mk is bijective with the inverse ��1

k
.

In particular, �0.0/ D 1 and the function �0 maps a neighbourhood of 0 bijectively to a
neighbourhood of 1. The mapping

�WH n ¹k2�2 W k 2 N [ ¹0ºº ! H n ¹˙1º

is a slice-covering map, i.e.,

�I WCI n ¹k
2�2 W k 2 N [ ¹0ºº ! CI n ¹˙1º

is a covering map for every I 2 S. Furthermore, any map �I extends to a local diffeo-
morphism across the point 0.

It turns out that for k ¤ 0;�1 we have

arccosk WD
p
ı ��1k W

�Mk ! Dk ;

and, for k D 0;�1, we have

arccosk WD
p
ı ��1k W

�Mk n Œ1;C1/! Dk n ¹q W Re.q/ D 0º:

5. Globally defined vectorial class

Formula (4.9) shows how crucial it is for two slice-regular functions to have linearly
dependent vectorial parts. This motivates the following.

Definition 5.1. Let fv 2 �Rv.U / and gv 2 �Rv.U 0/, where U;U 0 �H are axially sym-
metric domains in H such that U \U 0 ¤ ¿. Take p 2 U \U 0; we say that fv and gv are
equivalent at p, in symbols fv �p gv , if there exists an axially symmetric neighbourhood
of p, Vp � U \ U 0, such that fv and gv are linearly dependent over �RR.Vp/ in Vp . We
will denote by Œfv�p the �p equivalence class whose representative is fv .
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It is easy to verify that the relation �p is an equivalence relation at each point p;
The definition above immediately implies that if fv �p gv then fv �q gv for every q 2
Sp DW Sp . Moreover, we get the following remark.

Remark 5.2. For each equivalence class Œfv�p we can choose a local representative zfv
having neither real nor spherical zeroes (see Remark 4.2).

Definition 5.3. By Vp we denote the set of all �p equivalence classes of vectorial func-
tions at p, namely

Vp WD
®
Œfv�p W fv 2 �Rv.U /; U axially symmetric neighbourhood of p

¯
:

Definition 5.4. Let U be an axially symmetric open set and

VU WD ¹Vp W p 2 U º

be the set of all equivalence classes of vectorial functions with respect to equivalence
relations �p , with p 2 U . A vectorial class !U on U is defined to be any function

!U WU ! VU

such that

• for all p 2 U , it holds !U .p/ 2 Vp;

• if p; q 2 U , if !U .p/ D Œfv�p with fv 2 �Rv.Vp/ for an axially symmetric domain
Vp � U containing p, if !U .q/D Œgv�q with gv 2 �Rv.Vq/ for an axially symmetric
domain Vq � U containing q, then Œfv� zp D Œgv� zp for all zp 2 Vp \ Vq .

We denote by V.U / the set of all vectorial classes over U .
If fv 2 �Rv.U / then it obviously defines the vectorial class on U

p 7! Œfv�p; p 2 U

which we denote by Œfv�U and call principal vectorial class (associated to fv) on U .

Notice that V.U / is not a ring over �RR.U / (it is not possible to define the sum
of two classes); furthermore, if Œfv�U D Œgv�U and zfv and zgv are representatives on U
without real or spherical zeroes, then zf sv identically zero in U implies zgsv identically zero
in U .

Definition 5.5. Let U;U 0 �H be two axially symmetric open sets such that U \U 0 ¤¿.
If fv 2 �Rv.U / and gv 2 �Rv.U 0/ are linearly dependent over �RR.U \U

0/ inU \U 0,
then they define a vectorial class Œfv _ gv�U[U 0 2 V.U [ U 0/ by8̂̂<̂

:̂
Œfv� in U n U 0;

Œfv� D Œgv� in U \ U 0;

Œgv� in U 0 n U:
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Definition 5.6. Let V � U � H be axially symmetric open sets and let !U 2 V.U / be a
vectorial class on U . The restriction morphism

resV;U WV.U /! V.V /

is defined by
resV;U .!U / WD !U jU\V DW !V :

Proposition 5.7. The collection ¹U;V.U /º of vectorial classes over all axially symmetric
domains U � H together with the families of restriction morphisms resV;U W V.U / !
V.V /; V � U , is a presheaf.

Proof. It is immediate that resU;U D idV.U /. It is also immediate that resW;V ı resV;U D
resW;U holds for axially symmetric domains W � V � U , since vectorial classes are
functions.

Proposition 5.8. The presheaf from Proposition 5.7 is a sheaf and will be denoted by V .

Proof. Let U be an axially symmetric domain and $U ; !U 2 V.U /. Let ¹U˛º˛2ƒ be an
open covering of U with axially symmetric open sets.

(i) Locality. If we have $U˛ D !U˛ for all ˛ 2 ƒ, then by definition $U D !U .

(ii) Gluing. Let the vectorial classes !˛;U˛ , ˛ 2 ƒ be such that

!˛;U˛ jU˛\Uˇ D !ˇ;Uˇ jUˇ\U˛ ; ˛; ˇ 2 ƒ:

The function defined by

.!U /jU˛ WD !˛;U˛ ; ˛ 2 ƒ;

is a vectorial class on U .

Remark 5.9. Vectorial classes V.U / are sections of the sheaf VU .

Let � be an axially symmetric domain and fv a vectorial function on �. Then, being
slice-regular, its symmetrization f sv is either identically2 0 or has isolated real or spherical
zeroes.

Proposition 5.10. Let � be an axially symmetric domain, fv D f1i C f2j C f3k a vec-
torial function on� and assume that f sv is not identically zero on�. Let z0 be a real zero
of f sv . Then it is a real zero of fv and there exists k > 0 such that

.q � z0/
�kfv DW gv;

2This does not imply that fv is identically zero. Consider for example fv 2 �R.H nR/ defined as
fv.x C Iy/ D I i C j I then f sv D I

2 C 1 � 0, fv 6� 0 (and fv has a zero on every sphere).
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gv 2 �RŒfv �.�/ and gv.z0/ ¤ 0. Similarly, if fv has a spherical zero Sz0 D ¹a C Ib W
I 2 Sº of multiplicity k > 0, then

.q2 � 2q Re.z0/C jz0j2/�kfv DW gv;

gv 2 �RŒfv �.�/ and gv.q/ ¤ 0 for all q 2 Sz0 , except maybe at one point.

Proof. First notice that z0 is a real zero of fv 6� 0 if and only if it is a common zero
of fl ; l D 1; 2; 3. If z0 is a real zero of f sv ¤ 0 then f 21 .z0/ C f

2
2 .z0/ C f

2
3 .z0/ D 0

which implies that z0 is a common zero of all the components of fv of multiplicity k for
some k 2N, since fl .z0/ 2 R, l D 1; 2; 3. Therefore we may factor out a slice-preserving
factor .q � z0/k from f1; f2; f3 and hence the function .q � z0/�kfv is nonvanishing on
a neighbourhood of z0. In other words, one can locally write fv D �w, where w does
not have real zeroes and � 6� 0 is a slice-preserving function. If fv has a spherical zero
Sz0 D ¹a C Ib W I 2 Sº, then fl .a C Ib/ D al C Ibl , l D 1; 2; 3 for any I 2 S. For
i D I we have that f2.z0/j C f3.z0/k D x1j C x2k and f1.z0/i D a1i � b1, hence
the condition f1.z0/i C f2.z0/j C f3.z0/k D 0 implies a1 D b1 D 0 and, analogously,
al D bl D 0 for l D 2; 3, hence f1; f2; f3 all have Sz0 as a spherical zero. If the spherical
zero is of multiplicity k, then we can factor out a term .q2 � 2q Re.z0/C jz0j2/k from
fl , with l D 1; 2; 3.

Definition 5.11. Let ! be a vectorial class on an axially symmetric domain �. Define

�R!.�/ D
®
g 2 �R.�/ W Œgv�p 2 !.p/;8p 2 �

¯
:

For the case ! D Œ0�, notice that by definition �RŒ0�.�/ D �RR.�/.

If f; g 2 �R!.�/ then also f � g D g � f 2 �R!.�/, because the last term in for-
mula (2.7) vanishes. In particular, since �RR.�/ � �R!.�/ for any !, if f 2 �R!.�/

and g 2 �RR.�/, then f � g 2 �R!.�/.
Remark 5.2 suggests now the following.

Definition 5.12. Let� be an axially symmetric domain and let ! 2 V.�/. Let U �� be
an axially symmetric open set and let w 2 �R!.�/ be the vectorial part of a slice-regular
function. Then w is called minimal on U if it has neither real nor spherical zeroes on U .

We have shown that in the case f sv 6� 0, spherical and real zeroes of the vectorial
part are precisely the common zeroes of the components of fv . The vectorial function
w.z/ D z2i C

p
2zj C k is an example of a minimal representative; it has an isol-

ated zero on the unitary sphere S, namely z0 D k�ip
2
j , and its symmetrization ws.z/ D

.z2 C 1/2 vanishes on S. Notice furthermore, that z2 C 1 is not a common factor of the
components of w.

For all fv 2 �Rv.�/, the factorization fv D �w with w 2 �RŒfv �.�/ minimal and
� 2 �RR.�/ is unique up to a multiplication by a slice-preserving nonvanishing function.
If w˛; wˇ are two minimal representatives of the same vectorial class on an axially sym-
metric subset U ��, then aw˛ D bwˇ for some a; b 2 �RR.U / and by minimality both
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a and b are nonvanishing on U Imoreover the zero sets of w˛ and wˇ coincide. Therefore,
given a vectorial class ! on an axially symmetric domain �, we can define the zero set
Z.!/ of !.

Definition 5.13. Let � be an axially symmetric domain and let ! 2 V.�/ be a vectorial
class. If ! ¤ 0, let w be a minimal representative of ! on an axially symmetric open
set U � �. Define Z.!/ \ U D w�1.0/. Then the zero set Z.!/ of ! is defined to be
the union of all zeroes w�1.0/ where w runs over minimal representatives of ! on open
axially symmetric subsets U of �.

If ! D Œ0�, then we define Z.Œ0�/ D ¿.

Proposition 5.14. Let� be an axially symmetric domain and let ! 2 V.�/ be a vectorial
class. If w is a local minimal representative of ! on an axially symmetric domain U ��,
then

(i) if ws 6� 0, then Z.!/ � � is a discrete set of nonreal quaternions;

(ii) if ws � 0 but w 6� 0, we have SZ.!/ D �, there is precisely one zero of Z.!/
on each sphere and, moreover, � � H nR.

Proof. Let w be a local minimal representative of ! ¤ Œ0� on a basic domain U � �.
Then ws is slice-preserving and hence it is either identically equal to 0 or has isolated real
or spherical zeroes (or no zeroes). If ws is not identically equal to 0, the same holds for
any other minimal representative by the identity principle and then obviously the setZ.!/
is either discrete or empty.

Assume that ws � 0 but w 6� 0. Recall that, for any other representative zw we have
zws � 0, by the identity principle. The identity principle implies that � � H n R is a
product domain. Indeed, if � is a slice domain, then on the real axis the symmetrization
ws is a sum of squares of real numbers and hence, if it is identically 0, then by the identity
principle also w � 0 in an axially symmetric domain containing � \R, and hence in the
entire slice domain �; contradiction.

Now, ws � 0 on the product domain � implies that w has a zero on each sphere, and
can have neither a sphere of zeroes nor a real zero, since it is a minimal representative
of !.

Since ws D w � wc and wc D �w, the equation ws.z0/ D 0 implies that either
w.z0/D 0 or if w.z0/¤ 0, wc.z/D �w.z/D 0 for z D w.z0/�1z0w.z0/ 2 Sz0 . If there
were two distinct zeroes on Sz0 then extension formula would imply that w.Sz0/ D 0,
which contradicts the assumption that w is minimal.

If fv D �w is the (local) decomposition of fv withw minimal and � a slice-preserving
function, then f sv D �

2ws . If ws is nonvanishing on a basic domain U � �, then one can
define square roots of f sv and ws (denoted as

p
f sv and

p
ws) (see [1, Proposition 3.1],

and next sections) and find that
p
f sv D ˙�

p
ws . Therefore we can state the following

proposition.
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Proposition 5.15. Let � be a basic domain, let ! ¤ Œ0� be a vectorial class on � with
Z.!/ D ¿ and let fv 2 �R!.�/. If w is a minimal representative of ! in �, then the
normalized vectorial function

fv=
p
f sv 2 ¹˙w=

p
wsº

is minimal and such that
.fv=

p
f sv /

s
D 1

in �.

Proof. After the premises to this statement, the proof is straightforward.

6. Local definition of log�

We now reach the heart of the problem: if � is an axially symmetric domain of H, given
g 2 �R.�/ not vanishing in � and z 2 � an arbitrary point, find an open axially sym-
metric neighbourhood U of z and a function f 2 �R.U / such that

exp� f D g on U:

The assumption that g 2 �R.�/ is a nonvanishing function in � is intrinsic with
the problem, since, where defined, the function exp� f is nonvanishing. We will find
necessary and sufficient conditions on g to define a local logarithmic function of g.

Let us assume henceforth that � is a basic domain in H. After writing g D g0 C gv
and f D f0 C fv as in the previous section, we will proceed by steps.

6.1. Case 0: g 2 �R.�/ is a constant function

To avoid confusion, the constant function q0 will be denoted by Cq0 .
Consider first the case q0 D 1. Then the principal branch of the logarithm can be

defined, because the function exp0 is a bijection between ¹q W Im.q/ 2 SŒ0; �/º and H n
.�1; 0� and so we can define

log�;0;0 WD log0 C1 D 0;

in the whole H. Choose a point z0 2H and let ! be any vectorial class with z0 … SZ.!/.
Let w be one of the two normalized minimal nonzero representatives of ! (see Proposi-
tion 5.15) defined on a basic neighbourhood Uz0 of z0. Then, for all n 2 Z, the function

log�;0;2nw C1 WD 2�nw (6.14)

also satisfies exp�.log�;0;2nw C1/ D 1 (see formula (4.13)). If, moreover, Uz0 � H n R
is a product domain then the imaginary unit function 	 is a well-defined slice-preserving
function and hence we have the possibilities

log�;m;nw C1 WD m�	 C n�w;



On a definition of logarithm of quaternionic functions 1117

on Uz0 , wherem;n 2 Z are such thatmC n� 0 mod 2. Notice that if Uz0 is a basic slice
domain, then the only possibilities are those appearing in formula (6.14).

For any constant function Cq0 , q0 2 H n .�1; 0�; the situation is completely analog-
ous, and we have

log�;0;2nw Cq0 WD log0 q0 C 2n�w:

(for any n 2Z) on a basic slice neighbourhood Uz0 of z0, and on a product neighbourhood
Uz0 we have

log�;m;nw Cq0 WD log0 q0 Cm�	 C n�w;

where m; n 2 Z are such that mC n � 0 mod 2.
Consider now the constant function C�1. Define, for n 2 Z,

log�;0;2nw C�1 WD .2nC 1/�w:

This function satisfies exp�.log�;0;2nw C�1/ D �1 and on a basic product neighbourhood
Uz0 of a point z0 2 H nR we also have

log�;m;nw C�1 WD �w C .m�	 C n�w/ D �w C log�;m;nw C1;

for nCm� 0 mod 2. With the notation of the previous section, for any constant function
Cq0 , q0 2 H n ¹0º; we have

log�;m;nw Cq0 2 �R!.U /:

Remark 6.1. Once a slice-regular logarithm of two slice-regular functions g;h 2 �R.U /

is defined in a basic domain U , one can always add to each logarithm a vectorial function
2n�w (with w any normalized minimal representative of a vectorial class ! in the basic
domain U with Z.!/ \ U D ¿), but for the price of losing the property exp�.log� g C
log� h/ D g � h. Indeed, notice that, for example, the equality

exp�.log�;2m1;2n1w1 C1 C log�;2m2;2n2w2 C1/ D 1

is not necessarily valid, if w2 … Œw1� (compare [1, Theorem 4.14 (ii)]). The property
exp�.log� g C log� h/ D g � h is still valid for functions g; h 2 exp�1� .�RR.U // \

.�R!.U //.

Remark 6.1 suggests restricting our considerations to the sets exp�1� .�R!.U // \

.�R!.U //. According to Proposition 5.14 and Definition 5.13 we have the following
four different possibilities with respect to the vectorial classes and the structure of their
zero sets.

6.2. Case 1: g 2 �RR.�/ is slice-preserving, i.e., gv � 0

Let us now consider the general case of a nonvanishing slice-regular and slice-preserving
function g D g0. In this case, the involved regular functions behave like holomorphic
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functions on each slice, but at the same time topological obstructions near the real axis
complicate the problem of finding a logarithmic function.

We assume that the necessary condition expressed by formula (3.8), i.e., g0.�\R/�
.0;C1/, holds. Then, since g ¤ 0, one can locally define a logarithmic function of g in
the following way. Consider a point z0 2 �.

If z0 … R, then we have the following possibilities:

• g.z0/ 2 H n .�1; 0�, then a logarithmic function of g can be defined in a neighbour-
hood of z0 since the function exp0 is a bijection between R�SŒ0;�/ and H n .�1;0�;
indeed, locally, for all m 2 Z, we can define

log�;2m;0 g WD exp�10 ı g C 2m�	:

• g.z0/ 2 .�1; 0/. In this case, a logarithmic function can be locally defined for �g as
in the previous point. And then we can exploit the equality

log�;2m;0 g D log�;2m;0.�g/C �	 D exp�10 ı .�g/C .2mC 1/�	:

If z0 2 R, then by hypothesis g.z0/ > 0 and we have the only possibility

log�;0;0 g WD exp�10 ı g

since the function 	 cannot be defined on the real axis.

Remark 6.2. Condition (3.8) is necessary if we want the logarithm of a slice-preserving
function to be slice-preserving. If not, then this condition is no longer needed. Indeed,
consider any normalized minimal representative w of any vectorial class defined on an
axially symmetric neighbourhood U of z0 which is nonvanishing on U and assume that
g.z0/ < 0 for some z0 2 R. Then log�;0;0.�g/ is defined and

f D log�;0;.2nC1/w.�g/ D log�;0;0.�g/C .2nC 1/�w

satisfies

exp� f D �g.�1/
0.�..2nC 1/2�2/C �..2nC 1/2�2/.2nC 1/�w/

D �g.�1/2nC1 D g:

Remark 6.3. The above considerations imply that given a nonvanishing slice-regular
and slice-preserving function g 2 �RR.�/ (not necessarily satisfying condition (3.8),
that g.� \R/ � .0;C1/), one can always locally define a slice-preserving logarithmic
function of at least one of the two functions g;�g or both, depending on the domain of
definition.

6.3. Case 2: g 2 �R.�/ with gv 6� 0, gs
v � 0

Consider now g D g0 C gv such that g is nonvanishing and gv is not identically 0 but
gsv is (which implies g0 is nonvanishing). Then � is a product domain since otherwise
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gv would be identically 0 because of the identity principle (Proposition 5.14). Therefore
log�;2m;0 g0 can be locally defined on a basic neighbourhood U of any point of �, for all
m 2 Z. The class Œgv� D ! does not have a normalized minimal representative, therefore
in this case we use the notation log�;m;0�Œgv � to indicate that the resulting function is in the
class �R!.�/ but there are no periods in any minimal representative of Œgv�.

In general, whenever g D gv with gsv � 0, the equality

exp� g D exp� gv D 1C gv

holds, since g�2v D �.gv/
s D 0 and then g�kv vanishes for all k � 2. In these cases we put

log�.1C g/ D log�;0;0�Œgv �.1C gv/ WD gv D g:

Assume now g D g0 C gv with g0 nonvanishing and gsv � 0 in �. Then one can write
g D g0.1C

gv
g0
/; hence, from exp�.log�;0;�Œgv � g/ D g, one concludes that

log�;0;�Œgv � g D log�;0;0 g0 C log�;0;�Œgv �.1C gv=g0/ D log�;0;�Œgv � g0 C
gv

g0
I

more generally, on a product domain U � �,

log�;m;0 g WD log�;m;0 g0 C
gv

g0
; m 2 Z;

which completely describes all possible solutions for exp� f D g with the given assump-
tions for g, namely g not vanishing, gv 6� 0 and gsv � 0 in �.

Example 6.4. Consider the function

z D x C Iy 7! ‰.x C Iy/ WD I i C j I

clearly ‰ D ‰0 C ‰1i C ‰2j C ‰3k is well defined, slice-regular in � D H n R and
constant on any slice and ‰j��k � 0. Moreover, since ‰0 D 0, ‰1 D 	, ‰2 D 1 and
‰3 D 0, then ‰sv D 0. Hence

exp�‰ D 1C‰:

Notice that ‰1 D 	 2 �RR.H nR/ and cannot be extended continuously to H. Consider
now the function g.z/ D z C ‰.z/; clearly g is a nonvanishing slice-regular and slice-
preserving function in � D H n R. Furthermore, g0 D Id and gv D ‰ and so, for any
z 2 H nR, we have

.log�;k g/.z/ D Œlog�;k.IdC‰/�.z/ D Œlog�;k.g0 C gv/�.z/

D log�;k z C
‰.z/

z

D log.jzj/C Œarg	.z/.z/C 2k��	.z/C
‰.z/

z
;

where log represents the usual real natural logarithm.
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6.4. Case 3: g 2 �R.�/ and z0 2 � such that Z.Œgv�/ \ ¹Sz0
º D ¿

The conditionZ.Œgv�/\ ¹Sz0º D¿ implies the following: either gv ¤ 0 on Sz0 or there is
a factorization gv D � zw with zw ¤ 0 on Sz0 . Hence the function h WD

p
zws is locally well

defined on a basic open neighbourhoodU of z0 and satisfies h2D zws . Put
p
gsv WD �

p
zws .

The normalized vectorial function

gvp
gsv
D
zw
p
zws
DW w

is thus well defined in U . Similarly, the function ˙
p
gs is well defined in U . If U inter-

sects the real axis, we choose the sign so that
p
gs.U \ R/ � .0;C1/. Then f0 WD

log�;0;0.
p
gs/ is well defined. If U does not intersect the real axis then we define f0 in

accordance to the next formula,

f0 WD log�;2m;0.
p
gs/; if

p
gs.Sz0/ � H n .�1; 0/;

f0 WD log�;2mC1;0.�
p
gs/; if

p
gs.Sz0/ � .�1; 0/;

(6.15)

with m 2 Z. Notice also that the image of a sphere Sz by a slice-preserving function is
always a sphere centred on the real axis.

For f D f0 C fv D log� g following formula (4.13), we want the following listed
equalities to hold:

fvp
f sv
D

gvp
gsv
;

cos�
p
f sv D

g0
p
gs
;

sin�
p
f sv D

p
gsv
p
gs
:

For each I 2 S define the complex manifold †I to be the regular set s�1.1/ for
sWC2

I ! CI , s.u; v/ D u2 C v2. It is not difficult to show that the mapping

T WCI ! †I ; T .q/ D .cos q; sin q/

is a covering map and by construction we have

G WD

�
g0
p
gs
;

p
gsv
p
gs

�
WUI ! †I :

There exists a lift zG such that the diagram

CI
T

!!

UI
G //

zG

>>

†I

commutes, i.e., T ı zG D G.
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If UI is simply connected, U \ R is an open interval and G.U \ R/ � S1 � R2 �
.CI /2, since all the functions are slice-preserving. The only possibility that both sin.z/
and cos.z/ are real, is, that z is real. Therefore, for any lift zG, the restriction zGjU\R is
real-valued and hence satisfies the reflection property zG.z/ D zG. Nz/. If UI has connected
components UI;n, n D 1; 2, then first define the function zG on UI;1 to be an arbitrary lift
of GjUI;1 and extend the definition to UI;2 by reflection property. Definep

f sv WD
zG

on UI . The reflection property guarantees that
p
f sv has a slice-preserving extension to U .

In the case U \R ¤ ¿, the final formula is

log�;0;2nw g D log�;0;0.
p
gs/C .

p
f sv C 2n�/

gvp
gsv
: (6.16)

If U \R D ¿ we also have periodicity in the scalar part and the formula is

log�;m;nw g D log�;0;0.
p
gs/Cm�	 C .

p
f sv C n�/

gvp
gsv
; (6.17)

where m; n 2 Z are such that mC n � 0 mod 2 and the logarithm f0 WD log�;0;0.
p
gs/

is chosen in accordance with (6.15).
Notice that, contrary to the previous cases 1 and 2 (and the next case, case 4), in

case 3 one cannot specify the “principal branch”, unless one chooses a specific point in
the domain and specific normalized minimal representative.

6.5. Case 4: g 2 �R.�/ and z0 2 � are such that z0 2 SZ.Œgv�/

Without loss of generality we assume that z0 2 Z.Œgv�/, since the logarithmic function is
to be defined on a basic neighbourhood of z0. We have the following two possibilities:

(i) z0 is a nonreal isolated zero of gv ,

(ii) z0 is a nonreal isolated zero and Sz0 is a spherical zero of gv .

Let us first consider case (i). Since gs.z0/ D g20.z0/ ¤ 0, we define

p
gs WD g0

s
1C

gsv

g20

with
p

defined using the principal branch of the logarithm (see formula (1.4)). The
function

p
gs is a slice-preserving and slice-regular function with g0.z0/ D

p
gs.z0/.

This function is well defined in a neighbourhood of Sz0 . Define

f sv WD �
�1

 �s
1C

gsv

g20

��1!
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where ��1 D ��10 is the inverse function of � from a neighbourhood of 1 to a neighbour-
hood of 0, so that f sv .z0/ D 0 (see Section 4.1). This is equivalent to the choice of the
principal branch of arccos denoted by arccos0 indeed

f sv D

�
arccos0

g0
p
gs

�2
:

Recall that the function � is locally invertible near 0 because �0.0/ D .�1=2/�.0/ D

�1=2. If the function �
p
gs is chosen instead, f sv cannot be defined since the function �

has branching points at

��1.�1/ D ¹.2k C 1/2�2 W k 2 Nº:

Remark 6.5. The isolated nonreal zeroes of the vectorial part force the choice of the
function

p
gs to be such that g0.z/=

p
gs.z/ D 1 for every zero z of gsv .

For the definition of f0 we have to calculate a logarithm of
p
gs depending on the two

cases as in (6.15),

f0 WD log�;2m;0.
p
gs/; if

p
gs.Sz0/ � H n .�1; 0/;

f0 WD log�;2mC1;0.�
p
gs/; if

p
gs.Sz0/ � .�1; 0/;

with m 2 Z. Since f sv .z0/ D 0 in both cases, we have �.f sv /.z0/ D �.f
s
v /.z0/ D 1.

Define the vectorial function fv to be

fv D exp�.�f0/
gv

�.f sv /
:

Then f D f0 C fv solves exp� f D g. The complete formula is

log�;m;0�Œgv � g D log�;m;0..�1/
m
p
gs/C

gv

�
�
��1

�
1=
q
1C gsv

g20

��
p
gs
; (6.18)

where m depends on the values of
p
gs as in (6.15) and � is defined in formulae (4.11)

and (4.12). Notice that the period in the imaginary directions appears from the definition
of the branches of logarithm for the slice-preserving part.

If, in addition, Sz0 is also a spherical zero of gv , the necessary condition, namely that
g0.z/D

p
gs.z/ for every zero of gsv , is fulfilled on the whole sphere Sz0 , hence the same

formula applies to case (ii).

Remark 6.6. In the case where the zero z0 has even multiplicity, the square root
p
gsv

is well defined and we could follow the construction for case 3 and get formulae (6.16)
or (6.17); instead the vectorial part

.
p
f sv C 2k�/

gvp
gsv
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has a pole unless we choose k D 0. In addition, we must also have
p
f sv .Sz0/ D 0 and

this implies that
arccos

g0
p
gs
.z0/ D 0;

which at the end gives formula (6.18).

Remark 6.7. Let f; g; w 2 �R!.U / for U a basic domain in H and let w be a normal-
ized representative of ! on U . Assume that 8 m; n 2 Z, log�;m;nw fg, log�;m;nw f and
log�;m;nw g, all exist. Since there is no “principal branch” in w, there is no reason that the
equality

log�;m;nw fg D log�;m0;n0w f C log�;m�m0;.n�n0/w g

should hold; in general we have

log�;m;nw fg D log�;m0;n0w f C log�;m�m0;.n�n0/w g C 2k�w:

7. Global definition of log� and proof of Theorem 1.1

In this section, we prove Theorem 1.1, namely we consider the global problem of determ-
ining the logarithmic function of a given slice-regular function, with the requirement that
the logarithmic function defines the same vectorial class as the original function: if � is a
basic domain of H, given g 2 �R.�/ not vanishing in �, find f 2 �RŒgv �.�/ such that

exp� f D g on �:

A classical result in complex analysis states that it is not possible to define log z2 on
C n ¹0º and hence it is also not possible to define a logarithmic function of p2.q/ D q2

on H n ¹0º, although the function p2 satisfies the necessary condition (3.8).

7.1. Proof of Theorem 1.1

The proof of Theorem 1.1 is presented according to the four cases as in Section 6. Here
we recall the statement, before proving it.

Theorem 1.1. Let � � H be a basic domain and let g 2 �R!.�/ be a nonvanishing
function. Then the following holds:

(a) if ! D Œ0�, a necessary and sufficient condition for the existence of a �-logarithm
of g on �, log� g 2 �RŒ0�.�/ D �RR.�/, is

g.� \R/ � .0;C1/I

(b) if ! ¤ Œ0�, then if Z.!/ D ¿ or if SZ.!/ D � there are no conditions, and a
�-logarithm of g on �, log� g 2 �R!.�/, always exists;
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(c) if ! ¤ Œ0� and Z.!/ is discrete, a sufficient condition for the existence of a �-
logarithm of g on �, log� g 2 �R!.�/, is the validity of both inclusionsp

gs.� \R/ � .0;C1/ (1.5)

and
g0
p
gs
.�/ � H n .�1;�1�; (1.6)

where gs D g20 C g
s
v denotes the symmetrization of g.

7.1.1. Proof of Theorem 1.1 (a). The conditions in (a) correspond to case 1 presented
in Section 6.2. Assume that � is a basic product domain. This implies that the imagin-
ary unit function 	 is well defined. In each leaf CCI the set �CI WD CCI \ � is simply
connected. Assume that g 2 �RR.�/ is a nonzero function. Then gCI WD gj�CI ! CI is
holomorphic and therefore it has a holomorphic logarithm f CI WD log gCI . Because g is

also slice-preserving, we can define log�I g
C

�I .z/ D logI .g
C

I .z// and extend the logar-
ithm to�. Denote this extension by f D log�g. Similarly, the whole family of logarithmic
functions fk D log�..�1/

kg/C k�	 is also well defined. Notice that it is essential for
this construction that the imaginary unit function 	 exists.

Next, assume that � is a basic slice domain. Then in each leaf CCI the set �CI WD
CCI \ � is simply connected and the intersection �R WD � \ R is connected. Assume
that g 2 �RR.�/ is a nonzero function satisfying g.� \ R/ � .0;1/. Let �0 be a
connected component of g�1.g.�/ \ .H n .�1; 0�// which contains the set �R. Since
the image g.�0/ does not intersect the negative real axis, the function f0 D log�;0;0 g is
well defined on �0 and it is the unique logarithm as explained in Section 6.

If � D �0 the problem is solved so assume that � ¤ �0. Then �0 is an open neigh-
bourhood of an interval �R. The set �1 WD � n �R is also connected and basic, but
�1;I WD �1 \CI has two connected components,�1;I˙. Choose the component�1;IC.
Since it is simply connected, the function g has a complex logarithm fC on �1;IC. On
the intersection of their domains of definition (which is an open connected set), the func-
tions f0 and fC differ by 2�kI , f0 D fC C 2k�I . Redefine fC to be fC C 2k�I and
define f� to be the Schwarz reflection of the function of fC. Since f0 is slice-preserving,
f0.z/ D f0.z/, the reflected function coincides with f0 on the intersection of domains
of definition and hence defines a function f on �I , which satisfies f .z/ D f .z/. By the
extension formula, the function f can be extended to a slice-preserving function on�.

7.1.2. Proof of Theorem 1.1 (b). The first condition in (b), ! ¤ 0, Z.!/ D ¿, corres-
ponds to case 3 presented in Section 6.4. The function gs is nonvanishing, the function
gsv has isolated real or spherical zeroes with even multiplicities and � is a basic domain,
which are precisely the conditions of [1, Proposition 1.6], which states, that under these
conditions, the square roots

p
gs and

p
gsv can be globally defined on �. Moreover, the

normalized vectorial class
gvp
gsv
DW w



On a definition of logarithm of quaternionic functions 1125

is globally well defined and nonzero on �. Therefore, formulae (6.16) and (6.17) are
globally valid and the logarithm exists.

The second condition in (b), ! ¤ 0, SZ.!/ D � and hence � � H nR, corresponds
to case 2 presented in subsection 6.3. As already mentioned, when in case 2, the basic
domain � does not intersect the real axis and g0 is not vanishing in �. Then, for m 2 Z,
one can define

log�;2m;0�Œgv � g WD log�;2m;0 g0 C
gv

g0

since from the previous considerations log�;2m;0 g0 is well defined on �.

7.1.3. Proof of Theorem 1.1 (c). The condition in (c), ! 6� 0, Z.!/ is discrete, corres-
ponds to case 4 presented in Section 6.5. The logarithm log�

p
gs exists by case 1. The

assumptions imply that ��10 .g0=
p
gs/ is well defined on � and that g0.z/ D

p
gs.z/ for

every zero z of gsv , because �1 is not in the image of g0=
p
gs . Hence the logarithm is

given by formula (6.18).

Remark 7.2. Notice that in the hypotheses of case (c) of Theorem 1.1, the stated sufficient
conditions are always fulfilled on “small” basic product domains that are neighbourhoods
of a (nonreal) z0 2 Z.!/ (for instance on any set SB4.z0; r/ with small enough r > 0).

As, by definition, every set �R!.�/ contains also the set �RR.�/, Theorem 1.1 (b)
yields the following.

Corollary 7.3. Let� be a basic domain, g 2 �RR.�/ and let ! be a vectorial class in�
with Z.!/ \� D ¿. Then there exists a logarithmic function of g in the class �R!.�/,
denoted by log� g.

7.2. The case of one isolated nonreal zero

For the case of a slice-regular function defined on a basic product domain, and whose
vectorial part has only an isolated zero, we can – as announced – produce a formula for
the �-logarithms.

Theorem 7.4. Let g 2 �R!.�/ be a nonvanishing function and � be a basic product
domain. Let Z.gv/ \� D ¹z0º and let

p
gs be such that

p
gs.z0/ D g0.z0/. Then there

exists a logarithmic function f of g, f 2 �R!.�/, given by the formula

f D log�;m;0�Œgv � g D log�;m;0..�1/
m
p
gs/C

gv

�.��1.g0=
p
gs//
p
gs
;

where log�;m;0 D log�;0;0 Cm�	 for m 2 Z and

(a) m is even if
p
gs.Sz0/ � H n .�1; 0/ or odd if

p
gs.Sz0/ � .�1; 0/,

(b) the function
��1.g0=

p
gs/

is the lift of the function g0=
p
gs with respect to the mapping � such that

��1.g0=
p
gs/.z0/ D 0:
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Proof. The logarithm of
p
gs exists by Theorem 1.1 (a), because��H nR. The function

p
gs is such that not only

p
gs.z0/ D g0.z0/ but also

p
gs.z/ D g0.z/ for every z 2 Sz0 .

Indeed, on Sz0 we have p
gs.z/ D

q
g20.z/

and since
q
g20.z0/ D g0.z0/, the same holds on the whole sphere Sz0 . We have to

show that the lift of the function g0=
p
gs via � can be defined on �. First observe that

.g0=
p
gs/�1.1/ \� D Sz0 . Let I be such that z0 2CI;C and choose an arc lI;C connect-

ing z0 to the boundary of �I;C WD � \ CI;C. Let lI;� be the reflected arc. The domain
�I;C n lI;C is simply connected and

.g0=
p
gs/.�I;C n lI;C/ � CI n ¹˙1º:

Since the map � is a slice-covering map from H n ¹k2�2 W k 2 Nº to H n ¹˙1º, the lift
G of g0=

p
gs exists,

CI n ¹k2�2 W k 2 Nº
�

((

�I;C

G

77

g0=
p
gs

// CI n ¹˙1º

and can be chosen in such a way that limz!z0 G.z/ D 0. Cover the arc lI;C with a (pos-
sibly infinite) chain of discs Di such that z0 2 D0 and each Di intersects only Di�1 and
DiC1 and intersections are connected. Let G0 WD ��10 .g0=

p
gs/ near z0. The lifts G and

G0 coincide on D0 n lI;C and hence define a lift on the union D0 [ .�I;C n lI;C/ which
we also denote by G. Since z0 is the only point with value g0=

p
gs.z/ D 1 in �I;C, we

can choose a lift G1 on D1 so that it matches G0 on D0 \D1. Since D1 \ .D0 [�I;C/
is connected, by the lifting property, the lift G1 also matches the lift G on D1 n lI;C.
Repeating this procedure extends the lift G to �I;C. Notice that G.z/ ¤ k2�2, k 2 N
and so �.G/ ¤ 0. Extend the definition of G to �I;� by Schwarz reflection and then use
the extension formula to get a slice-preserving function, which we denote – with a slight
abuse of notation – by ��1.g0=

p
gs/. The logarithm is now given by formula (6.18).

Example 7.5. Consider the function

g.z/ D �1C z2i C
p
2zj C k

defined on H. Because gs D 1C .z2 C 1/2, the zeroes of gs on CI are z1;2 D
p
˙I � 1

and z3;4 D �
p
˙I � 1. Hence these zeroes lie on the sphere with radius r D 21=4 > 1:1,

so g is nonvanishing in the ball�D B4.0; 1:1/. A simple calculation shows that gs maps
�I to a cardioid-shaped domain in the right half-plane of H, so the image misses the
negative real axis, hence there exists a unique logarithmic function of gs , namely log0 g

s .
Since the domain � intersects the real axis, the necessary condition for logarithm of

p
gs
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to exist is (3.8),
p
gs.� \R/ � .0;C1/, therefore the only possibility for the definition

of f0 is to take the principal branch of the square root and set

f0 WD log�;0;0
p
gs D

1

2
log�;0;0 g

s :

The vectorial function gv has only z0 D
k�ip
2
j as the unique (double) zero and the

symmetrization of gv is gsv D .z2 C 1/2 on �. Unfortunately, g.z0/ D g0.z0/ D �1

and
p
gs.z0/D 1 and hence condition (1.6) no longer holds, which makes it impossible to

define the functions fv and f sv near the point z0, because �1 is a branching point for ��1.
Notice that the function g meets the hypotheses of Theorem 1.1 (c), but does not fulfil one
of the stated sufficient conditions, namely condition (1.6).
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