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The Calabi–Yau problem for minimal surfaces
with Cantor ends

Franc Forstnerič

Abstract. We show that every connected compact or bordered Riemann surface
contains a Cantor set whose complement admits a complete conformal minimal
immersion in R3 with bounded image. The analogous result holds for holomorphic
immersions into any complex manifold of dimension at least 2, for holomorphic null
immersions into Cn with n � 3, for holomorphic Legendrian immersions into an
arbitrary complex contact manifold, and for superminimal immersions into any self-
dual or anti-self-dual Einstein four-manifold.

1. Introduction

Let M be an open Riemann surface. It is classical [9, 20] that an immersion M ! Rn

for n � 3 which is conformal (angle preserving) and harmonic parameterizes a minimal
surface in Rn; conversely, every immersed minimal surface in Rn arises in this way.

Let ds2 denote the Euclidean metric on Rn. An immersion f WM ! Rn is said to be
complete if the Riemannian metric f �ds2 on M induces a complete distance function;
equivalently, if the image of any divergent path in M by the map f is a path in Rn with
infinite Euclidean length.

The Calabi–Yau problem for minimal surfaces (see [18], p. 170, and [21], p. 360)
asks about the existence, conformal and asymptotic properties of complete immersed or
embedded minimal surfaces with bounded images in Rn for n � 3. Pioneering construc-
tions were given by Jorge and Xavier [17] in 1980 and Nadirashvili [19] in 1996. There
were substantial developments since then, and a survey can be found in [9], Chapter 7.

In this paper we construct the first known examples of complete bounded minimal
surfaces whose end is a Cantor set, that is, a compact, perfect, totally disconnected set.
The following is a special case of our main result, Theorem 3.1. See also Theorem 4.1 for
a generalization to a number of other geometries.

Theorem 1.1. In every compact connected Riemann surface M , there is a Cantor set C
whose complement admits a complete conformal minimal immersion M n C ! R3 with
bounded image. There also exist a Cantor set C in M and a complete conformal minimal
embedding M n C ,! R5 with bounded image.
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Cantor sets, being of fractal nature, often serve as a challenging test case in geometric
problems. Theorem 1.1 gives an affirmative answer to Problem 7.4.8 (B) in [9]. Note that
the problem was posed incorrectly: whether there is a Cantor set C � C such that C n C
satisfies the conclusion of the theorem. This is impossible since a bounded harmonic map
C n C ! Rn extends harmonically across the puncture at infinity. The correct question is
answered affirmatively by Theorem 1.1 with M D CP1.

Remark 1.2. Theorem 1.1 also holds if M is a bordered Riemann surface of the form

(1.1) M D R n
S
iDi ;

where R is a compact connected Riemann surface and ¹Diºi is a finite or countable col-
lection of pairwise disjoint, smoothly bounded closed discs, diffeomorphic images of the
unit disc D D ¹z 2C W jzj � 1º. (The discsDi may cluster on one another, butM must be
an open domain in R.) It was shown by Alarcón and the author [5] in 2021 that such M
admits a bounded complete conformal minimal immersion in R3 and embedding in R5

extending continuously to M such that the image of the boundary bM D
S
i bDi is a

union of pairwise disjoint Jordan curves, the images of bDi . (For finitely many discs Di ,
this was proved beforehand in [1].) Together with our proof of Theorem 1.1 (see Sec-
tion 3), this gives a Cantor set C � M and a bounded complete conformal minimal
immersion M n C ! R3 (and an embedding into R5) which extends continuously to
bM D

S
i bDi and maps the curves bDi to pairwise disjoint Jordan curves. (However,

our proof does not give a continuous extension of the map to the Cantor set C .) The
point is that we can simultaneously increase the intrinsic boundary distances at bM and
at C . We also provide a precise control of the location of the image surface in Rn; see
Theorem 3.1.

Cantor sets which arise in the proof Theorem 1.1 are small modifications of the stand-
ard Cantor sets in the plane, and they have almost full measure in a surrounding rectangle.
One may ask which Cantor sets in compact Riemann surfaces satisfy the conclusion of
Theorem 1.1. In my opinion, this question is likely very difficult or even impossible to
answer. Instead, I propose the following more reasonable problem.

Problem 1.3. Is there a Cantor set C in CP1 of zero area such that CP1 n C satisfies the
conclusion of Theorem 1.1?

The first test case is to find a Cantor set with zero area whose complement CP1 n C
admits a nonconstant bounded harmonic function.

2. Tools used in the proof

In this section we recall the prerequisites and tools which will be used in the proof. They
are described in detail in the monograph [9], and we provide precise references.

The following quadric complex hypersurface in Cn for n� 3 is called the null quadric:

(2.1) A D ¹z D .z1; z2; : : : ; zn/ 2 Cn
W z21 C z

2
2 C � � � C z

2
n D 0º:

Let M be an open Riemann surface. Fix a nowhere vanishing holomorphic 1-form �

on M ; such exists by the Oka–Grauert principle (see Theorem 5.3.1 in [13]). An immer-
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sion f D .f1; : : : ; fn/WM ! Rn is conformal and minimal (equivalently, conformal and
harmonic) if and only if the .1; 0/-differential @f D .@f1; : : : ; @fn/ (the C-linear part of
the differential df ) is holomorphic and satisfies the nullity condition

Pn
iD1.@fi /

2 D 0;
equivalently, if and only if the map

h D 2 @f=� WM ! Cn
n ¹0º

is holomorphic and assume values in the punctured null quadric A� D A n ¹0º.
The most important point in the development of the theory of minimal surfaces in

Euclidean spaces, as presented in the monograph [9], is the fact that A� is a complex
homogeneous manifold for the complex orthogonal group On.C/, hence an Oka manifold;
see Chapter 5 of [13] for the latter. Thus, there is an abundance of holomorphic maps
hWM!A� from any open Riemann surface and, more generally, from any Stein manifold.
Together with tools from convex integration theory and the method of dominating sprays,
one can control the periods of the 1-form h� over closed curves in a given open Riemann
surfaceM . This yields many holomorphic maps hWM !A� which integrate to conformal
minimal immersions f WM ! Rn by the Enneper–Weierstrass formula

f .p/ D f .p0/C

Z p

p0

2<.h�/ for p 2M;

where p0 2M is a fixed reference point. Note that the integral is well-defined if and only
if the 1-form <.h�/ has vanishing periods. See Theorem 2.3.4 in [9] for further details.

Similarly, a holomorphic immersion f WM !Cn for n� 3 is a holomorphic null curve
if and only if df D h� , where hWM ! A� is a holomorphic map. IfM is simply connec-
ted, then every conformal minimal immersion M ! Rn is the real part of a holomorphic
null curve M ! Cn, and vice versa. We can recover f from h� by the formula

f .p/ D f .p0/C

Z p

p0

h� for p 2M;

subject to the condition that the holomorphic 1-form h� has vanishing periods.

Definition 2.1 (Definition 1.12.9 in [9]). Let M be a smooth surface. An admissible set
inM is a compact set of the form S DK [E, whereK ⊊M is a finite union of pairwise
disjoint compact domains in M with piecewise C 1 boundaries and E D S nK is a union
of finitely many pairwise disjoint smooth Jordan arcs and closed Jordan curves meetingK
only at their endpoints (if at all) and such that their intersections with bK are transverse.

We recall the notion of a generalized conformal minimal immersion and generalized
holomorphic null curve. Denote by A r .S;Cn/ the space of maps S ! Cn of class C r

which are holomorphic in the interior of an admissible set S in a Riemann surface.

Definition 2.2 (Definition 3.1.2 in [9]). Let S DK [E be an admissible set in a Riemann
surfaceM (see Definition 2.1), and let � be a nowhere vanishing holomorphic 1-form on a
neighbourhood of S inM . A generalized conformal minimal immersion S ! Rn .n � 3/
of class C r .r 2 N/ is a pair .f; h�/, where f W S ! Rn is a C r map whose restriction
to the interior VS D VK is a conformal minimal immersion, and the map h 2 A r�1.S;A�/
satisfies the following two conditions:
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(a) h� D 2@f holds on K, and
(b) for every smooth path ˛ inM parameterizing a connected component ofE D S nK

we have that <.˛�.h�// D ˛�.df / D d.f ı ˛/.

Note that the complex 1-form h� in the above definition determines the 1-jet along S
of a conformal harmonic extension of f . With an abuse of language, we shall sometimes
call the map f itself a generalized conformal minimal immersion. The following is an
analogue of this notion for holomorphic null curves.

Definition 2.3 (Definition 3.1.3 in [9]). Let S D K [ E and � be as in Definition 2.2.
A generalized holomorphic null curve f WS ! Cn .n � 3/ of class C r .r 2 N/ is a pair
.f; h�/ where f 2 A r .S;Cn/, h 2 A r�1.S;A�/, and the following conditions hold:

(a) h� D df D @f holds on K (hence f W VK ! Cn is a holomorphic null curve), and
(b) for any smooth path ˛ in M parameterizing a connected component of E we have

that ˛�.h�/ D ˛�.df / D d.f ı ˛/.

The next result follows immediately from Lemma 3.5.4 in [9] and the proof of The-
orem 3.6.1 in [9]; see equations (3.38) and (3.39) in [9]. The same argument applies to null
curves in part (b). The last part of the proposition is very important in our construction.

Proposition 2.4. Let S D K [ E be an admissible set in a Riemann surface M , and
let � be a nowhere vanishing holomorphic 1-form on a neighbourhood of S . Then, the
following assertions hold for every pair of integers n � 3 and r � 1.

(a) Every conformal minimal immersion f WK ! Rn of class C r extends to a general-
ized conformal minimal immersion .f; h�/ of class C r on S .

(b) Every C r map f WK ! Cn such that f W VK ! Cn is a holomorphic null curve
extends to a generalized holomorphic null curve .f; h�/ of class C r on S .

If f .K/ is contained in a connected open set � in Rn or Cn, respectively, then the
extension can be chosen such that f .S/ � �. More precisely, if E is an arc in M with
the endpoints E \K D ¹p; qº 2 bK and L is an arc in Rn or Cn connecting the points
f .p/ and f .q/, then the extension of f from K to K [ E can be chosen such that f .E/
is contained in any given neighbourhood of L.

Recall that a compact set S in an open Riemann surfaceM is said to be Runge inM if
every holomorphic function on a neighbourhood of S can be approximated uniformly on S
by holomorphic functions on M . By Runge’s theorem for Riemann surfaces, this holds if
and only ifM nK has no relatively compact connected components, [12], Theorem 4. The
following is a simplified version of the Mergelyan approximation theorem for conformal
minimal surfaces and holomorphic null curves, given by Theorems 3.6.1 and 3.6.2 in [9].

Theorem 2.5. Assume that M is an open Riemann surface, S is an admissible Runge
set in M , n � 3 and r � 1 are integers, and f W S ! Rn is a generalized conformal
minimal immersion of class C r .S/. Given " > 0, there is a conformal minimal immersion
Qf WM ! Rn satisfying k Qf � f kC r .S/ < ". If n � 5, then Qf can be chosen to be an

injective immersion, and if n D 4, then Qf can be chosen to be an immersion with simple
double points.
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Likewise, a generalized holomorphic null curve f WS!Cn of class C r .S/ with r � 1
can be approximated in C r .S/ by holomorphic null embeddings M ,! Cn.

Remark 2.6. Since an admissible set S is Runge in an open neighbourhood of itself in the
ambient Riemann surface, Theorem 2.5 gives approximation of a generalized conformal
minimal immersion on S by a conformal minimal immersion on a neighbourhood of S .

Given a compact, connected, smooth bordered surfaceM , an immersion f WM !Rn,
and a point p 2 VM , we denote by distf .p;bM/ the infimum of the lengths of piecewise C 1

paths in M connecting p to bM in the Riemannian metric f �ds2. This number is called
the intrinsic radius of M with respect to f .

Our last main tool is the following lemma, which says that the intrinsic radius a
compact bordered Riemann surface can be arbitrarily large with respect to a conformal
minimal immersion (or a holomorphic null curve) which is arbitrarily uniformly close to
a given one. This lemma is at the core of the new construction methods in the Calabi–
Yau problem for minimal surfaces, presented in Chapter 7 of [9]. The main ingredient
in its proof is the Riemann–Hilbert problem for conformal minimal surfaces, which was
first introduced in this subject in the paper [3] and was developed further in [1, 8] and in
Chapter 6 of [9].

Lemma 2.7. Assume that M is a compact bordered Riemann surface with piecewise
smooth boundary and f WM ! Rn for n � 3 is a conformal minimal immersion of class
C 1.M/. Given a point p0 2 VM and numbers " > 0 (small) and � > 0 (big), there is a
conformal minimal immersion Qf WM ! Rn of class C 1.M/ such that

j Qf .p/ � f .p/j < " for all p 2M and dist Qf .p0; bM/ > �:

The analogous result holds for holomorphic null immersions M ! Cn.

Remark 2.8. Lemma 2.7 is a simplified version of Lemma 4.1 in [1]; a more precise ver-
sion with interpolation is Lemma 7.3.1 in [9]. Although the boundary bM is assumed to
be smooth in both results, piecewise smooth boundary of class C k;˛ for some k 2 N and
0 < ˛ < 1 suffices for the arguments (see Remark 7.4.2 in [9]). The intrinsic boundary dis-
tance at the finitely many corner points of bM can be enlarged by the method of exposing
points (see Theorem 6.7.1 in [9]), which is an integral part of the proof of Lemma 7.3.1
in [9].

3. Proof of Theorem 1.1

We begin by recalling the standard construction of a Cantor set in the plane C D R2.
Let P D P0 � C be a closed rectangle. In the first step we remove from P an open

horizontal strip of positive width around the straight line segment dividing P in two
halves, top and bottom. This gives two smaller disjoint rectangles Q1 and Q2. Next, we
remove from each of them an open vertical strip around the straight line segments divid-
ingQ1 andQ2, respectively, in two halves, left and right. This gives four pairwise disjoint
closed rectangles P j1 .j D 1; : : : ; 4/ of the same size, and we set P1 D

S4
jD1 P

j
1 . Thus,

the passage from P D P0 to P1 amounts to removing a central cross from P .
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We now repeat the same procedure for each of the rectangles P j1 , removing a central
cross in order to obtain four smaller pairwise disjoint rectangles. This gives rectangles P j2
for j D 1; 2; : : : ; 16 of the second generation, and we set P2 D

S16
jD1 P

j
2 . Continuing

inductively, we find a decreasing sequence of compacts

(3.1) P D P0 � P1 � P2 � � � � �

1\
iD0

Pi D C

whose intersection C is a Cantor set. The set Pi is the union of 4i pairwise disjoint closed
rectangles, obtained by removing a central cross from each of the rectangles in Pi�1.

In our proof of Theorem 1.1, the crosses removed at every step must be chosen fairly
narrow. Furthermore, after removing the central cross from a given rectangle, we will
slightly shrink each of the new rectangles towards its centre in order to ensure that the
sequence of compacts in (3.1) is such that PiC1 is contained in the interior of Pi for every
i D 0; 1; 2; : : :. By choosing the width of the crosses and the amount of shrinking small
enough at every step, we obtain a Cantor set C whose area is arbitrarily close to the area
of the initial rectangle P . The first generation of this process is shown on Figure 1.

Figure 1. A central cross removed from a rectangle P .

Theorem 1.1 is a special case of the following result, which we shall now prove.

Theorem 3.1. Assume that M is a compact connected Riemann surface, P is a compact
rectangle in a holomorphic coordinate chart on M , and f WM n VP ! Rn for n � 3 is
a conformal minimal immersion of class C 1.M n VP /. Given an open set � � Rn con-
taining f .M n VP /, there are a Cantor set C � P and a complete conformal minimal
immersion Qf WM n C ! � (embedding if n � 5/ approximating f as closely as desired
in C 1.M n VP /.

The analogous conclusion holds ifM D R n
S
i Di is an open Riemann surface of the

form (1.1), P �M is a rectangle as above, and f WR n .
Sm
jD1
VDj [ VP /! Rn for n � 3

and m 2 N is a conformal minimal immersion of class C 1 taking values in an open set
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��Rn. In this case, there exist a Cantor setC �P and a continuous map Qf WM nC!�

such that Qf WM n C ! � � Rn is a complete conformal minimal immersion (embedding
if n � 5/ which approximates f as closely as desired uniformly on M n VP and such that
Qf .bM/ is a union of pairwise disjoint Jordan curves Qf .bDi /.

We emphasize that the Cantor set in our construction cannot be specified in advance.

Proof. For simplicity of exposition, we shall assume that M is a compact connected
Riemann surface without boundary. The case when M is a bordered Riemann surface
of the form (1.1) follows by combining the procedure explained below with the one in [5].

Write P D P0. Note that M0 WD M n VP0 is a compact domain in M with piecewise
smooth boundary bM0 D bP0. Fix a base point p0 2 VM0, which will be used to measure
the intrinsic boundary distances. Since f .M n VP0/ is connected, we may assume that the
neighbourhood � of f .M n VP0/ in the statement of the theorem is connected as well.

We now explain how to find the next compact domainM1 �M with piecewise smooth
boundary satisfyingM0 � VM1, and a conformal minimal immersion f1WM1! Rn which
approximates f0 D f in C 1.M0;Rn/ such that, for a given constant c1 > 0, we have that

(3.2) f1.M1/ � � and distf1.p0; bM1/ > c1:

Let E denote the horizontal straight line segment dividing the rectangle P0 in top and
bottom halves. Then, S DM0 [E is an admissible set in M (see Definition 2.1).

By Proposition 2.4, we can extend f from M0 across E to a generalized conformal
minimal immersion f WS ! Rn of class C 1 with f .S/ � �.

By the Mergelyan approximation theorem for conformal minimal immersions (see
Theorem 2.5 and Remark 2.6), we can approximate f as closely as desired in C 1.S;Rn/
by a conformal minimal immersion gW U ! Rn on an open connected neighbourhood
U �M of S . By shrinking U around S if necessary, we may assume that g.U / � �.

We now choose closed top and bottom rectangles Q1; Q2 � VP0 n E as described
above, first removing from P0 a narrow horizontal strip around E and then shrinking
each of the two rectangles by a small amount, so that P0 n . VQ1 [ VQ2/ � U . Hence, the
compact domainM 01 DM n . VQ1 [ VQ2/ inM with piecewise smooth boundary lies in the
domain U of the map g and it contains M0 DM n VP0 in its interior.

Next, we repeat the same procedure with each of the two rectangles Q1 and Q2,
splitting them in left and right parts by removing a narrow vertical band around their
central segments E1 and E2, respectively. Using Proposition 2.4, we extend g across the
arcs E1 and E2 to a generalized conformal minimal immersion on the admissible set
S 0 D M 01 [ E1 [ E2, with range in �. By Theorem 2.5, we approximate g as closely as
desired in C 1.S 0;Rn/ by a conformal minimal immersion QgW V ! � � Rn on a neigh-
bourhood V of S 0. Shrinking V around S 0, we may assume that Qg.V / � �. Finally, pick
closed rectangles P j1 for j D 1; : : : ; 4 such that, setting

P1 D

4[
jD1

P
j
1 and M1 DM n VP1;

we have that M0 � VM1 and M1 is contained in V (the domain of Qg).
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By Lemma 2.7, we can approximate Qg as closely as desired in C 1.M0;Rn/ by a
conformal minimal immersion f1WM1 ! � � Rn satisfying condition (3.2).

This concludes the initial step. All subsequent steps are of the same kind. They follow
the inductive construction of a Cantor set C , explained at the beginning of the section, the
only difference being a small shrinking of rectangles in the next generation obtained by
removing central crosses from the rectangles of the given generation. This shrinking was
explained above when describing the initial step of the induction.

We now conclude the proof. Pick sequences ci > 0 and "i > 0 such that limi!1 ci D

C1 and limi!1 "i D 0. By using the above procedure, we inductively construct
• a decreasing sequence of compact sets (3.1) such that PiC1 is contained in the interior

of Pi for every i D 0; 1; 2; : : : and C D
T1
iD0 Pi is a Cantor set, and

• a sequence of conformal minimal immersions fi WMi DM n Pi ! � � Rn,
such that the following conditions hold for every i D 0; 1; 2; : : ::

(3.3) (a) kfiC1 � fikC 1.Mi / < "i and (b) distfi .p0; bMi / > ci :

Note thatM i �MiC1 for every i and
S1
iD0Mi DM n C . Assuming that the numbers "i

converge to zero fast enough, condition (a) ensures that the sequence fi converges to a
conformal minimal immersion

Qf D lim
i!1

fi WM n C ! Rn

whose image is contained in the given neighbourhood � of f .M n P0/. Furthermore, if
n � 5 then we may ensure that each fi and their limit Qf are injective. This is standard,
see for example the proof of Theorem 3.6.1 in [9].

Conditions (a) and (b) in (3.3) together clearly imply that

dist Qf .p0; bMi / > ci=2 for every i 2 N

provided that the sequence "i goes to zero fast enough. Since the increasing sequence
of domains Mi forms a normal exhaustion of M n C , every divergent path in M n C
emanating from p0 must cross bMi for every i , and hence it has infinite length with
respect to the metric Qf �ds2 in M n C . In other words, the immersion Qf is complete.

4. Generalization to other geometries

As mentioned in the introduction, the construction in the proof of Theorem 3.1 generalizes
to several other geometries listed in the following theorem.

Theorem 4.1. The analogue of Theorem 3.1 holds for the following classes of maps:
(a) Conformal harmonic immersions of nonorientable conformal surfaces into Rn for

n � 3.

(b) Holomorphic immersions into an arbitrary complex manifold of dimension � 2.

(c) Holomorphic null immersions into Cn with n � 3.
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(d) Holomorphic Legendrian immersions into any complex contact manifold.

(e) Immersed oriented superminimal surfaces in any self-dual or anti-self-dual Einstein
four-manifold.

Remark 4.2. The statement of the theorem refers to completeness of immersed surfaces
with respect to a Riemannian metric on the ambient manifold Y . Since the said surfaces
are contained in a relatively compact subset of Y (indeed, in a small neighbourhood of the
image of the original given compact surface), completeness does not depend on the choice
of the metric on Y since any two metrics are comparable on a relatively compact domain.

Proof. The three crucial ingredients in the proof of Theorem 3.1 are the following:
(i) existence of a suitable extension of an immersion in the given class from K to

S D K [E, where S is an admissible set (cf. Proposition 2.4),
(ii) the Mergelyan approximation theorem on admissible sets for immersions in the

given class (see Theorem 2.5 for conformal minimal surfaces), and
(iii) the lemma on increasing the intrinsic radius (see Lemma 2.7).

These tools are available in all geometries listed in the theorem. Let us go case by case.
Case (a). Nonorientable minimal surfaces. The existence of an extension from K to

S D K [ E is seen as in the orientable case, the Mergelyan approximation theorem is
given by Theorem 4.4 in [8], and the analogue of Lemma 2.7 is given by Theorem 6.6
in [8].

Case (b). Holomorphic immersions. A holomorphic immersion f WK ! Y clearly
extends to a smooth immersion f WS DK [E! Y with range in a given neighbourhood
of f .K/. The Mergelyan approximation theorem for manifold-valued maps on admissible
sets holds by Corollary 9, p. 178, in [12] and Theorem 1.13.1 (b) in [9]. The lemma on
increasing the intrinsic radius was shown in [2] for immersions into Cn with n � 2, which
complete the proof for the case Y D Cn with n � 2. Combining these methods with the
gluing techniques for holomorphic maps explained in [11] and [13], Chapter 5, implies
the same result for immersions into any complex manifold of complex dimension at least
two.

Case (c). Holomorphic null immersions. This case was developed in [1, 3] and is
covered by Theorem 7.4.12 in [9]. The proof is almost the same as the proof of The-
orem 3.1.

Case (d). Holomorphic Legendrian immersions. The case of immersions to Euclidean
spaces C2nC1 with the standard contact form is developed in Section 6 of [7]. The gen-
eralization to Legendrian immersions into an arbitrary complex contact manifold follows
by combining Theorem 1.3 in [4] with the Mergelyan approximation theorem in [15].

Case (e). Superminimal surfaces in (anti-) self-dual Einstein four-manifolds. This fol-
lows from case (d) by using the Bryant correspondence for Penrose twistor spaces over
such manifolds; see [6, 14]. Given a self-dual or anti-self-dual Einstein four-manifold Y
with nonzero scalar curvature, the total space X of the Penrose twistor bundle � WX ! Y

is a complex contact three-manifold, and the Bryant correspondence (see [10,16]) provides
a bijective correspondence between holomorphic and antiholomorphic immersed Legen-
drian curves in X and oriented immersed superminimal surfaces in Y . In case that the
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Einstein metric on Y has vanishing scalar curvature, the natural horizontal holomorphic
distribution onX orthogonal to the fibres of � WX! Y is integrable (a holomorphic hyper-
surface foliation), so the result reduces to that in case (b); see [14] for the details.

In this connection, we point out that Section 6 in the paper [6] describes an axiomatic
approach to the Calabi–Yau property for a given class of immersions from compact man-
ifolds with boundary. If the source manifolds are surfaces and we add to those axioms the
content of Proposition 2.4 (i.e., the existence of a suitable extension of an immersion in
the given class from K to S D K [ E, where S is an admissible set) and the Mergelyan
approximation theorem on admissible sets for maps in the given class, then the analogue
of Theorem 3.1 holds for this class of immersions.
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