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Abstract: This paper aims to systematically assess the local radial basis function collocation method, 
structured with multiquadrics (MQs) and polyharmonic splines (PHSs), for solving steady and tran-
sient diffusion problems. The boundary value test involves a rectangle with Dirichlet, Neuman, and 
Robin boundary conditions, and the initial value test is associated with the Dirichlet jump problem 
on a square. The spectra of the free parameters of the method, i.e., node density, timestep, shape 
parameter, etc., are analyzed in terms of the average error. It is found that the use of MQs is less 
stable compared to PHSs for irregular node arrangements. For MQs, the most suitable shape pa-
rameter is determined for multiple cases. The relationship of the shape parameter with the total 
number of nodes, average error, node scattering factor, and the number of nodes in the local subdo-
main is also provided. For regular node arrangements, MQs produce slightly more accurate results, 
while for irregular node arrangements, PHSs provide higher accuracy than MQs. PHSs are recom-
mended for use in diffusion problems that require irregular node spacing. 

Keywords: meshless method; polyharmonic splines; multiquadrics; augmentation; heat diffusion 
equation 
 

1. Introduction 
The numerical solution of partial differential equations (PDEs), such as the heat dif-

fusion equation (HDE), is extensively used in science and engineering. The phenomenon 
of heat diffusion is essential in solids for understanding various material processing and 
engineering problems such as phase transformations, corrosion, creep, annealing, etc. [1–
3]. The development of the finite element method (FEM) in the 1950s was a significant 
breakthrough in numerical analysis. Many developed FEM packages are commercially 
available to solve complicated engineering problems [4] and are widely used. However, 
FEM involves certain limitations/difficulties, for example, the challenges during mesh cre-
ation [4] such as time-consuming (re)meshing to create a polygonization on the boundary 
and/or its domain [5] and the shortcomings in the evaluation of some problems like the 
connectivity of the mesh, which is very complex in the case of large deformations. That is 
why the idea of replacing the mesh with nodes only came into being to resolve this type 
of complication. The methods, defined on the nodes only, without geometric elements 
between them, are nowadays known as meshfree or meshless methods [4], depending on 
the level of the mesh reduction. “A meshfree/meshless method is a technique used to es-
tablish a system of algebraic equations for the whole problem domain without using the 
predefined mesh for the domain discretization” [4]. Meshless methods have proven 
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highly effective in solving numerical problems and have experienced rapid growth and 
advancement in recent years [4,6–10]. 

The radial basis function collocation method (RBFCM) was first proposed by Kansa 
[11,12]; that is why it is also known as Kansa�s method [5,11]. The Kansa method presented 
a novel approach to solving partial differential equations using scattered data points ra-
ther than regular grids. Kansa, in [11], utilized the well-known MQ as a radial basis func-
tion to solve parabolic, hyperbolic, and elliptic partial differential equations, and it was 
proven that the MQ is not only highly accurate but also more efficient than the finite dif-
ference scheme. This method has been used to solve successfully different problems using 
MQs as RBFs. For example, some of the notable publications concern diffusion problems 
[5], H-adaptive LRBFCM [13], LRBFCM for linear thermo-elasticity in two dimensions 
[14], an equivalent PDE-based stabilization of strong-form meshless methods applied to 
advection-dominated problems [15], the simulation of laminar backwards-facing step 
flow under a magnetic field with explicit LRBFCM [16], and multi-pass hot-rolling simu-
lation [17]. The MQ produces good results compared to the FDM [5], but the method is 
sensitive to the selection of the shape parameter [5]. Several methods have been intro-
duced to select a suitable shape parameter [18,19]. However, this selection increases com-
putational time because the process must be performed depending on the considered case. 
In this research, a more comprehensive study, compared to [5], is carried out for the se-
lection of shape parameters for various node densities. 

Orthogonal decomposition–radial basis function-generated finite difference (POD-
RBF-FD) is used in solving three nonlinear partial differential equations in biology [20], 
demonstrating phenomena like blowing-up, pattern formation, and bacterial aggrega-
tions on surfaces. RBF-FD is used in study [21] to solve the time-dependent partial differ-
ential equations describing prostate tumor growth, demonstrating its effectiveness with-
out requiring adaptivity. The localized singular boundary method (LSBM) for solving La-
place and Helmholtz equations in 2D arbitrary domains demonstrates improved efficiency 
and accuracy compared to traditional methods through various numerical examples [22]. 
A comprehensive overview of localized collocation schemes and their engineering appli-
cations is discussed in [23], showcasing their versatility in solving complex problems such 
as wave propagation analysis, phononic crystals, and heat conduction issues. 

In recent years, the PHS kernel [24] has become popular because it does not require 
the time-consuming search for an optimal shape parameter, unlike the MQs. In RBF ap-
proaches, this feature of PHSs plays an essential role in more simple studies of conver-
gence, stability, and accuracy [25,26]. According to [24], the convergence rate of the 
method using PHSs can be controlled with the highest order of augmentation monomials, 
meaning the higher the polynomial degree, the better the convergence rate, but it will also 
require larger subdomains and, as a result, more computation time. Many tests and ex-
periments have recently been performed using PHS, such as the solidification of pure ma-
terials, solidification of binary alloys, phase-field modelling of solidification [27], an im-
proved local radial basis function method for solving small-strain elasto-plasticity [28], a 
hybrid radial basis function finite difference method for modeling two-dimensional 
thermo-elasto-plasticity [29], and its application to the metallurgical cooling bed problem 
[30]. An application of PHSs to a real-world problem can be seen in the study of the re-
duction in discretization-induced anisotropy in the phase-field modeling of dendritic 
growth via the meshless approach [31]. One of the critical features of the PHS is that it can 
produce a highly accurate solution without spending time on choosing an optimal shape 
parameter and dealing with the numerical issues related to poor conditioning [32]. Some 
significant developments of PHS can be seen in [25] where they overcome the drawbacks 
of stability and accuracy due to Runge�s phenomenon by increasing the nodes in the local 
subdomain two times the number of augmentation [25]. Furthermore, adding polynomi-
als to PHS can achieve high convergence [24]. 

In this paper, we have investigated two cases, namely Case 1: the boundary value 
problem and Case 2: the initial value problem structured with MQs and polyharmonic 
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splines (PHSs) shape functions for solving the HDE. Previously, in [5], the same case stud-
ies were published using less dense nodes utilizing MQs as RBFs and comparing the re-
sults with the finite difference method (FDM). In [5], a convergence study was conducted 
for different node densities and arrangements. The method was shown to have higher 
accuracy than the traditional FDM and was performed through a straightforward, explicit 
process. In addition to this, it can easily cope with complicated geometry [5] and is scala-
ble to handle large problems [33] efficiently. The method is also easy to understand and 
implement and can be extended to tackle other partial differential equations. 

This study extends the findings in [5] by applying PHS and MQ radial basis functions 
to diffusion problems for different node arrangements and node densities, respectively. 
The novelty of this paper is that we have additionally evaluated the effects of the shape 
parameter, scaling factor in MQ, augmentation, scattering of the nodes, and number of 
nodes in the local subdomain, which were not discussed in the previous study [5]. 

The rest of the paper is structured as follows: Section 2 explains the materials and 
methods used in this article, representing the governing equation, solution procedure, 
definition of the shape functions, implementation of the boundary conditions, stability 
criterion of the explicit Euler method, and a brief introduction to the numerical examples, 
with the respective analytical solutions, namely, Case 1: the boundary value problem and 
Case 2: the initial value problem. Section 3 presents the results of the numerical examples 
with different parametric studies, and lastly, Section 4 presents a discussion of the results 
and the conclusions of this research study. 

2. Materials and Methods 
2.1. Governing Equation 

We consider the solution of the diffusion equation in a two-dimensional (2D) domain 
Ω  with a boundary Γ  

2c T k T
t

ρ ∂ = ∇
∂

, (1)

where T  is the temperature, t  is the time, ρ  is the density, c  is the specific heat, and 
k  is the thermal conductivity. All material properties are considered constant. We seek 
the solution to the problem for ( )0,T t t+ Δp , where x x y yp p= +p i i  are the position vec-
tor, ,x yi i the base vectors, and ,x yp p  the coordinates of the 2D Cartesian coordinate sys-
tems. 0t  represents the initial time and tΔ  a positive time increment. Equation (1) is sub-
ject to the following initial condition: 

( ) ( )0 0, ;T t T= ∈ Ω + Γp p p , (2)

where 0T   is the initial temperature, and the Neumann-, Dirichlet-, and Robin-type 
boundary conditions at the not necessarily connected boundary segments are DΓ , NΓ , 
and RΓ . These boundary conditions are defined at D N R∈Γ = Γ ∪ Γ ∪Γp  with outward 
normal Γn , heat transfer coefficient h  and reference temperature refT  as 

;D DT = Γ ∈ Γp , (3)

;N NTk
Γ

∂− = Γ ∈ Γ
∂

p
n

, (4)

( ); R
ref

Tk h T T
Γ

∂− = − ∈ Γ
∂

p
n

. (5)
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2.2. Solution Procedure 
The solution to the heat diffusion problem with different types of boundary condi-

tions is based on the strong-form local collocation meshless method with subdomains 
shown schematically in Figure 1.  

 
Figure 1. Scheme of the domain Ω with boundary conditions weighted at ΓD, ΓR, and ΓN. The solid 
and empty circles show the interior and boundary nodes, respectively. The solid circular line shows 
the limits of the local sub-domain lΩ containing nine interior nodes. In contrast, a dashed circular 
line represents another local sub-domain, containing a boundary node and eight interior nodes, 
whereas the solid triangle shows the central node. maxl r  and minl r  are the maximum and mini-
mum distance between any node in the subdomain l , respectively. 

The forward Euler explicit formula is used to approximate the time derivative of tem-
perature. 

0T T
T
t t

−∂ ≈
∂ Δ

, (6)

And, Equation (1) becomes 

0
2

0
kT T t T
cρ

= + Δ ∇ . (7)

The system of equations for determining the unknown coefficients of collocation with 
the RBFs of an assumed function T  with known values in the subdomain l  with nodes 

; 1, 2,...,l n ln N=p  at the respective subdomain lΩ , along with the polynomial augmen-
tation, can be written as 

( ) ( ) ( ) ( )
1 1 1

l aug l l augl

l

N N NN

l n l k l n l k l k l n l N k l k l n l k
k k k

T pω α α ψ α
+

+
= = =

= + =  p p p p , (8)

with l kω  standing for the shape functions, and ψ  consists of the shape functions ( ω ) 
and polynomials ( p ), while l kα  represents the coefficients of the shape function with 
polynomials. The total number of nodes is N N NΩ Γ= + , where NΩ  represents the num-
ber of nodes in the domain, and NΓ  represents the nodes positioned at the boundaries, 
whereas l N  is the number of nodes in the subdomain l . In Equation (8), the augmented 
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polynomials are defined by l kp , and lp  stands for the central node of the subdomain. 
The number of augmentation monomials is defined as [28] 

( )dim

dim

!
! !aug

P N
N

P N
+

= , (9)

where P  is the order of the augmentation monomials, and dimN  is the number of dimen-
sions. In this study, we are using 0P =   for MQs and 2P =   for PHSs, with dim 2N =  
which yields 1,6augN =  , respectively. The polynomials for 1augN =   are defined as 

1 1l p = , and 6augN =  is defined as 2 2
1 2 3 4 5 61, , , , ,l l l l l lp p x p y p x p xy p y= = = = = = . 

The collocation matrix should be non-singular to solve a square system of linear 
equations for the coefficients l nα . We can rewrite Equation (8) in a vector–matrix form as 
follows: 

( ) ( ); ,l l l l kn l k l n l n l nT Tψ= = =Ψα T p pΨ , (10)

Together with the augmentation, according to Equation (8), our system is 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1 1 1 1

1 2 1 2 2 1 2 2

1 2 1

11 1 1 2

1 2

0 0

0 0

aug

aug

aug

augaug aug

l l l l l N l l l l N l

l l l l l N l l l l N l

l l N l l N l N l N l l N l N l N

l l Nl l l l

l N l Nl N l l N l

l

l

l l l l l

l

l

r r r p r p r

r r r p r p r

r r r p r p r

p rp r p r

p rp r p r

ω ω ω

ω ω ω

ω ω ω

 
 
 
 
 
 




 

 

 

      

 

 

      

  

1

2

1

1

2

0

0
aug

l

l

l

l N

l N

l N N

l

l

l
l

l l

l

l

l N

T

T

T

α

α

α

α

α

+

+

=

 
  
  
  
  
  
                  









 T
αΨ

. 
(11)

In Equation (11), the unknown coefficients lα  can be computed by solving the sys-
tem of Equation (10). 

1
l l l

−=α TΨ , (12)

By plugging the calculated coefficients lα , i.e., Equation (12), into the collocation equa-
tion, i.e., Equation (8), for each subdomain, we can express the temperature and its first 
and second derivatives as 

( ) ( ) 0
1 1

l aug lN N N
-1

l k l kn l n
k n

T Tψ
+

= =

=  p p ψ , (13)

( ) ( ) 0
1 1

; ,
l aug lN N N

-1
l k l kn l n

k n
T T x y

p pς ς

ψ ς
+

= =

∂ ∂= =
∂ ∂ p p ψ , (14)

( ) ( )
2 2

02 2
1 1

; ,
l aug lN N N

-1
l k l kn l n

k n
T T x y

p pς ς

ψ ς
+

= =

∂ ∂= =
∂ ∂ p p ψ . (15)

The explicit discretization of Equation (7) is 

( ) ( )
2 2

0 0 02 2
1 1 1 1

l aug l augl lN N N NN N
-1 -1

l l l k l l kn l n l k l l kn l n
k n k nx y

tkT T T T
c p p

ψ ψ
ρ

+ +

= = = =

 Δ ∂ ∂= + + 
∂ ∂  

   p ψ p ψ . (16)

This study uses 5l N =  , 9l N =  , 13l N =  , and 25l N =   nodes in the local subdo-
main, as shown in Figure 2. However, this article does not discuss using PHS with five 
nodes in the local subdomain because it does not produce any results since the number of 
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polynomials is more than that of the number of nodes in the local subdomain, which will 
result in a singular matrix. 

The schematic representation of the local subdomains for regular node distribution 
(RND) is shown in Figure 2. Conversely, for quasi-uniform node distribution (QUND), 
the subdomain is defined by searching for the nearest neighbors until the required num-
ber at the nodes is set. 

 
Figure 2. Local sub-domain scheme for RND with 5 9 13 25l l l lN , N , N , N= = = = . Solid and 
empty circles denote the inner and boundary nodes, respectively. 

2.3. Definition of the Shape Functions 
In this article, we have compared the scaled and unscaled MQs; the general equation 

for the scaled MQ used in this study is [5] 

( ) ( ) ( ) ( )1/ 22 2 2 2
max ;l k l k l l k l k l kr c r rω  = + = − ⋅ − p p p p p p , (17)

where c  represents the dimensionless shape parameter. The scaling parameter 2
maxl r  is 

used for scaling the shape parameter and is set to the maximum nodal distance in the local 
subdomain. 

( )2 2
max max ; , 1,2,...,l l m l n lr r m n N= =p . (18)

In Section 3.1.6, a comparison of scaled and unscaled MQs is presented, where the 
unscaled MQ can be achieved by putting maxl r  equal to 1. 

The involved first- and second-order derivatives of the scaled MQ for Equation (17) 
are given in Equations (19)–(22). 

( )
( ) 1

2 2 2 2
max

x l kx
l k

x
l k l

p p
p r c r

ω −∂ =
∂ +

p , (19)
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( )
( ) 1

2 2 2 2
max

y l ky
l k

y
l k l

p p
p r c r

ω
−∂ =

∂ +
p , (20)

( ) ( )
( )

2 2 22
max

2 3
2 2 2 2

max

y l ky l
l k

x
l k l

p p c r

p r c r
ω

− +∂ =
∂ +

p , (21)

( ) ( )
( )

2 2 22
max

2 3
2 2 2 2

max

x l kx l
l k

y
l k l

p p c r
p r c r

ω
− +∂ =

∂ +
p , (22)

while the derivatives of the unscaled MQ can be achieved by putting maxl r  equal to 1. 
The general equation for the PHS is 

( ) ( ) ( )
0

, 1,3,5.....,,
n

l k
l k l k l k

l

r
r n

r
ω

 
= = − = 
 

p
p p p  (23)

where 0l r  is the scaling parameter, and the first- and second-order derivatives of the PHS 
are given in Equations (24)–(27). 

( )
( )( )

2
2

2
0

n

l k x l kx
l k n

x l

n r p p
p r

ω

− 
− ∂  =

∂

p
p , (24)

( )
( )( )

2
2

2
0

n

l k y l ky

l k n
y l

n r p p

p r
ω

− 
− ∂  =

∂

p
p , (25)

( )
( )( ) ( ) ( )

1 2
22 2 2

2 2
0

2
n

x l kx l k l k
l k n

x l

n n p p r n r
p r

ω

−

− − +∂ =
∂

p p
p , (26)

( )
( )( ) ( ) ( )

1 2
2 2 22

2 2
0

2
n

y l ky l k l k
l k n

y l

n n p p r n r

p r
ω

−

− − +∂ =
∂

p p
p , (27)

where n  is the (odd) power of the PHS, and in this study, we have used 5n = . It has 
been shown in [24] that the polynomial degree controls the convergence rate under high 
node refinement, not the PHS. Still, the solvency of the interpolation for 5n =  is ensured 
with the augmentation of the second-order monomials. 

The scaling parameter 0l r  represents the average distance and is calculated in the 
following way: 

( ) ( )
2

2
0

2 1

l N
l k

l l k l l k l l k
k l

r
r , r

N=

= = − ⋅ −
− p p p p , (28)

where the nodes other than the central node lp  in the subdomain l  is denoted as l kp . 

2.4. Implementation of the Boundary Conditions 
The solution to both problems follows the following four steps. 
In the first step, the derivatives at the initial temperature are calculated from the 

known values of the nodes in the domain by setting the initial conditions in the domain 
and boundary nodes. 
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In the second step, the new values for l nT  are calculated at 0t t+ Δ  in the domain 
nodes using Equation (16). 

In the third step, the discretization of the involved three types of boundary conditions 
is 

( )
1

l augN N
D

l k l n l k l
k

ψ α
+

=

= Γ p , (29)

( )
1

l augN N
N

l k l n l k l
k

k ψ α
+

= Γ

∂− = Γ
∂ p
n

, (30)

( ) ( ) ( ) ( )
1 1

l aug l augN N N N

l k l n l k l n l k l n l k ref l n
k k

k h Tψ α ψ α
+ +

= =Γ

 ∂− = −  ∂  
 p p p p

n
. (31)

The boundary conditions can be applied by replacing a row of the neighboring 
boundary node in Equation (11) with the respective boundary conditions prescribed in 
Equations (29)–(31). The unknown values are calculated using Equation (16) with the help 
of the specified boundary conditions. 

Finally, the calculated l kα  from Equation (12) are then plugged into Equation (11) 
to find the unknown values of l nT  at the boundary where the Neuman or Robin boundary 
conditions are defined. 

2.5. The Stability Criterion of the Explicit Euler Method 
For the explicit Euler method, it is necessary to limit the timestep size. The maximum 

value for the timestep can be calculated as [34] 
2

min
2

min

;t
t

m r tD kt m D
D cr ρ

Δ
Δ

ΔΔ =  = = , (32)

where tmΔ  is the mesh Fourier number based on the timestep used in our simulations, 

minr  is the minimum node distance, and D  denotes thermal diffusivity. The stability of 
the explicit Euler method is assured for min 0.25tmΔ ≤  [34] in the case of the finite differ-
ence method. 

2.6. Numerical Implementation 
The code is written in Fortran 2008 and compiled into a 64-bit executable with Intel 

Visual Fortran compiler (XE 19). The simulations are carried out using an Intel(R) 
Core(TM) i7-7700HQ processor. The same code elements have also been used in 
[14,15,19,35,36]. 

2.7. Numerical Examples 
We are extending the previously published findings [5] by investigating the compar-

ison of MQs with PHSs as RBFs. This research extensively explains the effects of a rela-
tively large range of node densities, timestep, shape parameter, scaling of the MQ, number 
of the nodes in the subdomain, the effects of augmentation, and the irregularity of node 
arrangements in terms of the average error for a boundary value and initial value test 
cases. In addition, this research also demonstrates the selection of an optimal shape pa-
rameter for MQs to compare the best results of MQs with PHSs. 

2.7.1. Case 1: Boundary Value Problem 
The Case 1 problem is posed on a two-dimensional rectangular domain, as shown in 

Figure 3; the boundary conditions and material properties are the same as in [5] and are 
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given in Figure 3 and Table 1 below, whereas the respective node distributions are shown 
in Figure 4. 

 

Figure 3. Scheme of Case 1 with geometry ( 0 m  0 6 m, 1 mx y x yp p , p . p− − + += = = = ) and boundary 
conditions. 

 
Figure 4. Case 1, RND and QUND with 13 21N = ×  nodes. In regular node distribution, the minl r  
is 0.05 m and maxl r  is 0.1802 m, while for QUND, minl r  is 0.0994 m, and the maxl r  is 0.1839 m. 

Table 1. Material properties, boundary, and initial conditions used in Case 1 studies. 

Material Property Value 
Density (ρ) [kg/m3] 7850 

Specific heat I [J/(kg K)] 460 
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Thermal conductivity (k) [W/(mK)] 52 
Heat transfer coefficient (h) [W/(m2K)] 750 

Reference temperature (
refT ) [°C] 0 

Dirichlet boundary temperature ( DΓ ) [°C] 100 
Neuman boundary condition ( NΓ ) [W/m2] 0 

Analytical Solution 
The steady-state analytical solution anaT  of Case 1 [5] is 

( ) ( ) ( )
( ) ( )0 2 2

1

cos cosh sinh
2

cos cosh sinh
i i i y y i y y

ana x y
i i x i x i i y i y

x p p h p p
T p , p hT

p h p h p h p

β β β β

β β β β β

+ +
∞

+ + + +
=

 − + − =
   + + +   

 , (33)

where iβ  represents the positive roots of the equation 

( )tan x xp p hβ β + − − =  , (34)

where the results of i , for boundary nodes (0.6 m, 0.1 m), (0.5 m, 1 m), (0.3 m, 0.5 m), and 
(0 m, 0.9 m) are shown in Figure 5, which shows that as we approach the south from the 
north, the number of terms required for a stable solution increases. Based on the results, 
it is concluded that 20i ≥  and, in this study, we have used 100i = . 

  

Figure 5. Case 1, convergence analysis of analytical solution as a function of the terms i  used in 
the evaluation of Equation (33) for four different nodes, i.e., (0.6 m, 0.1 m), (0.5 m, 1 m), (0.3 m, 0.5 
m), and (0 m, 0.9 m) of the rectangular geometry. 

In order to compare the results, the analytical solution has been calculated for each 
node to find the absolute temperature error maxε  and average error avgε  of the numeri-
cal solution at time t  as follows [5]: 

( ) ( ) ( ) ; 1 2max n ana nt max T ,t T n , ,....,Nε = − =  p p , (35)

( ) ( ) ( )
1

1 ; 1 2
N

avg n ana n
n

t T ,t T n , ,....,N
N

ε
=

= − = p p , (36)

where T   and anaT   define the numerical and the analytical solution, and ( ),nT tp  
stands for the steady-state solution. 
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The simulations are stopped when the steady state is achieved by satisfying the cri-
terion 

0 stemax n nT T T− ≤ . (37)

In all computational nodes, ; 1, 2,...,n n N=p  . The parameter steT   represents the 
steady-state convergence margin, which is chosen to be less than or equal to 10−6 °C in all 
the calculations in this paper. The analysis is stopped if the steady-state criterion is 
achieved or the calculation time exceeds the foreseen time of interest. 

Some fixed values used throughout the simulations are given in Table 2, while the 
position of local nodes is shown in Figure 2. 

Table 2. Fixed parameters used in the simulations of Case 1 studies. 

RBF PHS MQ 
Δt [s] 0.005 0.005 

l N  
9 9 

13 13 
25 25 

c 

- 1 
- 8 
- 16 
- 32 
- 64 

augN  6 1 
Scattering factor ( δ ) 0.10 0.10 

steT  [°C] 10−6 10−6 
Initial temperature ( 0T ) [°C] 100 100 

Computational Parameters 
In this study, the used node densities and their respective boundary and inner 

boundary nodes are given in Table 3. The simulations have been carried out for 9, 13, and 
25 nodes in a subdomain. 

Table 3. Node densities with boundary and domain nodes used in Case 1 studies. 

Node’s Arrange-
ment 

Total Number of 
Nodes ( N ) 

Number of Boundary 
Nodes ( NΓ ) 

Number of Domain 
Nodes ( NΩ ) 

13 × 21 269 60 209 
31 × 51 1577 156 1421 
61 × 101 6157 316 5841 

121 × 201 24,321 636 23,685 
241 × 401 96,641 1276 95,365 

It is well known that as the node density increases, the timestep should decrease for 
a stable solution, and according to Equation (32), for the most dense node arrangement (

241x401N = ), we should choose a timestep below 21.08 10t −Δ ≤ ×  s. In order to be on the 
safe side, we have used a timestep of 35 10t −Δ = ×  s in all cases. 

The minimum and used mesh Fourier numbers for Case 1 are presented in Table 4 
below. 

Table 4. Minimum and used mesh Fourier number for the stable solution of Case 1. 
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N  mintmΔ  tmΔ  minr  [m] 

241 × 401 0.25 0.116 0.002 
121 × 201 0.25 0.029 0.005 
61 × 101 0.25 0.00744 0.00984 
31 × 51 0.25 0.00180 0.02000 
13 × 21 0.25 0.00029 0.05000 

Table 4 shows the minimum Fourier number values ( mintmΔ ) for a stable solution and 
the values used for the Fourier number ( tmΔ ) based on the timestep tΔ  in our calcula-
tions. It is clear from Table 4 that we have used a permissive value for the Fourier number 
in our simulations. 

2.7.2. Case 2: Initial Value Problem 
The initial value problem is solved on a square geometry, with the boundary condi-

tions shown in Figure 6 and the material properties given in Table 5 below. The respective 
node distribution is shown in Figure 7.  

 
Figure 6. Scheme of Case 2 with geometry ( 0m 1mx y x yp p ? 爌 p ?− − + += = = = ) and boundary conditions. 
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Figure 7. Case 2, regular nodes distribution is shown for 21 21N = ×  and 13l N =  node arrange-
ment with minl r  is 0.05 m and maxl r  is 0.18027 m, solid and empty circles representing the inner 
and boundary nodes respectively. 

Table 5. Material properties used in Case 2 studies. 

Material Property Value 
Density (ρ) [kg/m3] 1 

Specific heat (c) [J/(kg K)] 1 
Thermal conductivity (k) [W/(mK)] 1 

Initial temperature ( 0T ) [°C] 1 

Analytical Solution 
The analytical solution to the problem is given as [5] 

( ) ( ) ( )ana ana ana, , , ,x y x yT p p t T p t T p t= , (38)

with 

( ) ( )
( )

( ) ( )
( )

2 2

ana 2
1

2 1 12 14 1, exp cos ; ,
2 1 24

i

i

i pk i t
T p t x y

i p pc p p
ς

ς
ς ςς ς

ππ
ς

π ρ

∞

+ −+ −=

   + −+−    = − =
 + − −   

 , (39)

where some values of i  for two different nodes at positions (0.5 m, 0.5 m) and (0.6 m, 0.9 
m) at time 0.001, 0.1, and 1 s are given in Figure 8, and based on this, it is concluded that 
if 30i ≥ , then the analytical solution will produce stable results, and in this study, we 
have used 50i = . 
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Figure 8. Case 2, convergence analysis of analytical solution as a function of the terms i  used in 
evaluating Equation (39) for two nodes, i.e., at (0.5 m, 0.5 m) and (0.6 m, 0.9 m), of the square geom-
etry for time t = 0.001 s, 0.1 s, and 1 s. 

Some fixed values we used throughout the simulations are given in Table 6. 

Table 6. Fixed parameters used for the simulations in Case 2 studies. 

RBF PHS MQ 
Δt [s] 10−6 10−6 

t [s] 

1 1 
0.1 0.1 

0.01 0.01 
0.001 0.001 

l N  

- 5 
9 9 

13 13 
25 25 

c 

- 8 
- 16 
- 32 
- 64 

augN  6 1 

Computational Parameters 
In this study, the used node densities and their respective boundary and inner 

boundary nodes for Case 2 studies are given in Table 7. The simulations have been carried 
out for 5, 9, 13, and 25 nodes in a subdomain. 

Table 7. Node densities with boundary and domain nodes used in Case 2 studies. 

Node’s Arrange-
ment 

Total Number of 
Nodes ( N ) 

Number of Boundary 
Nodes ( NΓ ) 

Number of Domain 
Nodes ( NΩ ) 

11 × 11 117 32 85 
21 × 21 437 72 365 
41 × 41 1677 152 1525 

101 × 101 10197 392 9805 
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For Case 2 studies with the densest nodes ( 101 101N = × ), the timestep should be cho-
sen below 32.5 10t −Δ ≤ × , and we have used 65 10t −Δ = ×  s. 

The minimum and used mesh Fourier numbers for Case 2 are presented in Table 8 
below. 

Table 8. Minimum and used mesh Fourier number for the stable solution of Case 2. 

N  mintmΔ  tmΔ  minr  [m] 

11 × 11 0.25 0.00121 0.09090 
21 × 21 0.25 0.00441 0.04761 
41 × 41 0.25 0.01681 0.02439 

101 × 101 0.25 0.102 0.00990 

It is clear from Table 8 that we have used a permissive value for the Fourier number 
in our simulations. 

3. Results 
3.1. Results and Discussion for Case 1 

In this section, we discuss the results of the simulations for different parameters and 
arrangements (RND and QUND) with MQs and PHSs. The simulations ran until the 
steady-state criterion of Tste = 10−6 °C was reached. 

3.1.1. Effects of Augmentation for MQ 
As we know, in the case of PHS, if we increase the degree of the polynomial, the error 

reduces [24], but in the case of MQs, this is not always true. To assess the effects of aug-
mentation on MQs, we ran test simulations by selecting different nodes in the local sub-
domain ( 5 9 & 13l N ,= ). The augmentation effects are presented in terms of the difference 
in the average error based on the number of nodes in the local subdomain, as shown in 
Figures 9–11. Note that due to a very small difference between the results (which was hard 
to see clearly in a graph), we have decided to show the difference between two average 
errors in terms of percentage on the vertical axis of each graph. 

The difference between the average errors and their percentage improvement is cal-
culated as 

0

0

100 1 3avg , avg ,aug
%

avg ,

%, aug ,
ε ε

Δε
ε
−

= =    . (40)

In Figure 9, it is shown that, for five nodes in the local subdomain, as we increase the 
number of augmentations from zero to one, it significantly affects denser node arrange-
ment (about 40% for 241 401N = × ). At the same time, it shows a relatively small effect on 
the less dense nodes, while it shows a very slight change in the results if we change the 
number of augmentations from 1 to 3. Another aspect we can see from Figures 9–11 is that 
as we increase the number of local nodes from 5 to 9 to 13, the percentage improvement 
in the average error drops. For 9 and 13 nodes in the local subdomain, increasing the aug-
mentation from 0 to 3 decreases the accuracy, as described in [37,38] as well. It is also 
observed that for denser nodes, augmentation always improves the accuracy; however, in 
some cases, augmentation 1 gives the best results. Therefore, this article will use augmen-
tation with a constant polynomial using MQs as RBFs for better accuracy and less compu-
tational time. 
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Figure 9. Case 1, the difference in % of the avgε  as a function of the node distance for MQ with and 

without augmentation (RND, c = 64, 5l N = ). 

  

Figure 10. Case 1, improvement in % of the avgε  as a function of the node distance for MQ with 

and without augmentation (RND, c = 64, 9l N = ). 

 

Figure 11. Case 1, improvement in % of the avgε  as a function of the node distance for MQ with 

and without augmentation (RND, c = 32, 13l N = ). 
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3.1.2. Selection of an Optimal Shape Parameter for MQs 
The PHS is a method free of shape parameters [24], while the MQ is a shape param-

eter-dependent method. In order to obtain a smaller average temperature error, we need 
to find an optimum shape parameter for MQs. 

The shape parameter plays a vital role in converging the absolute average tempera-
ture error. That is why a suitable shape parameter selection is mandatory for MQs. In this 
paper, we show the effects of different shape parameters on the results of the average 
temperature error for 9, 13, and 25 nodes in the local subdomain. 

Figure 12 shows the relation of the average error with different shape parameter val-
ues. For shape parameters 1 and 8, the convergence curve is not smooth when increasing 
the number of total nodes while keeping 9 nodes in the local subdomain. Figure 12 shows 
a smooth converging curve for shape parameters 16, 32, and 64. Some simulations for dif-
ferent shape parameters are shown in Figure 13. It is shown that the results will not change 
if we choose a shape parameter equal to or greater than 50 with nine nodes in the local 
subdomain for this specific case. We have used 64 as the optimal shape parameter with 
nine nodes in the local subdomain. We obtain a constant value of the absolute average 
temperature error with a shape parameter equal to 64, as shown in Figure 13. 

 

Figure 12. Case 1, MQ, avgε  as a function of node distance calculated for five different shape pa-

rameters (RND, 1augN = , 9l N = ). 

 

Figure 13. Case 1, MQ, avgε  as a function of shape parameter (RND, 1augN = , 9l N = ). 
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Increasing the number of nodes in the local subdomain requires a smaller shape pa-
rameter to obtain accurate results. Figure 14 shows a relation between the average error 
and shape parameter. It is demonstrated that by increasing the shape parameter, the error 
decreases, with an increase in the node density. In contrast, this direct relation between 
the shape parameter and the average error is valid up to a certain value of the shape pa-
rameter; when the shape parameter exceeds that particular value (32 in this case), then the 
change in the error is negligible by increasing the shape parameter. This can be seen 
clearly in Figure 15. In the case of 13 nodes in the local subdomain, if we choose a shape 
parameter equal to or greater than 32, we will reach the critical value of the shape param-
eter, after which the results no longer change. Detailed research has been conducted to 
find the most suitable shape parameter for more accurate results while using 13 nodes in 
the local subdomain, shown in Figures 14 and 15. It is clear from Figure 15 that with 13 
nodes in the local subdomain, if we choose a shape parameter equal to 32, then we will 
obtain the least absolute average temperature error. 

Increasing the number of nodes in the local subdomain makes the MQ more sensitive 
to selecting the optimal shape parameter. For example, we have carried out some test sim-
ulations and found that the MQ for 25 nodes in the local subdomain is much more sensi-
tive to the shape parameter. In our simulations, we could reach a maximum of c 2 43.=  
value for the shape parameter, above which the results diverge. At the same time, it shows 
the same trend in terms of accuracy, i.e., by increasing the shape parameter from 1 to 2.43, 
the average error decreases, which is similar in behavior to 9 and 13 nodes in the local 
subdomain. In contrast, we obtain diverging results if we use a value greater than 2.43 for 
the shape parameter in the case of 25 nodes in the local subdomain for the 241 × 401 node 
distribution. The discussion above shows that the critical point at which the shape param-
eter no longer affects the results is smaller for less dense nodes. 

 

Figure 14. Case 1, MQ, avgε   as a function of the node distance for different shape parameters 

(RND, 1augN = , 13l N = ). 
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Figure 15. Case 1, MQ, avgε  as a function of the shape parameter (RND, 1augN = , 13l N = ). 

3.1.3. Effects of the Number of Nodes in the Local Subdomain on the Absolute Average 
Error for PHS and MQ 

This section shows the effects of the number of nodes in the local subdomain for reg-
ular nodes of PHSs and MQs separately. 

Figure 16 shows the average error for PHSs using different numbers of nodes in the 
local subdomain. The absolute average error decreases as we increase the number of nodes 
in the local subdomain from 9 to 13. If we further increase the number of nodes in the local 
subdomain to 25, then an increase in the error can be seen, as shown in Figure 16. The 
average error for 13 nodes in the local subdomain is the smallest, and thus, it is recom-
mended that for RNDs, a selection of 13 nodes in the local subdomain would be a good 
choice when PHSs are used for solving complex problems. 

 

Figure 16. Case 1, PHS, avgε  as a function of node distance for a different number of nodes in the 

local subdomain (RND, 6augN = ). 

The selection of an optimum shape parameter is the most critical and challenging 
task for MQs, which is already discussed in Section 3.1.2. Figure 17 shows the average 
error for MQs using optimal shape parameters and different numbers of nodes in the local 
subdomain. This figure shows that we obtain more accurate results by increasing the 
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number of nodes in the local subdomain. Therefore, if we use a shape parameter equal to 
32 and 13 nodes in the local subdomain, then the value for the average error for the highest 
denser nodes will be the smallest, while for the case of 25 nodes in the local subdomain, 
selecting an optimum shape parameter is very limited. We could choose a maximum of 
2.43 as a shape parameter for 25 nodes in the local subdomain. Any value for a shape 
parameter greater than 2.43 for 25 nodes in the local subdomain will give diverging results 
using the same timestep. 

 

Figure 17. Case 1, MQ, avgε  as a function node distance with a different number of nodes in the 

local subdomain and optimum shape parameter (RND, 1augN = ). 

3.1.4. Comparison of MQs and PHSs Based on the Average Error 
In this section, we present the accuracy of PHSs and MQs based on the smallest av-

erage error, as shown in Figure 18. It has been shown in the text earlier that both PHSs 
and MQs produce more accurate results for high denser nodes while using 13l N = . We 
compare the best results for both PHSs and MQs (in terms of the number of nodes in the 
local subdomain), and it can be concluded that PHSs and MQs show the same accuracy 
for a small number of total nodes. In contrast, in the case of a larger number of total nodes, 
MQs with 13 nodes in the local subdomain would be a good choice for higher accuracy, 
considering that an optimal shape parameter should be selected for MQs. 

 

Figure 18. Case 1, avgε  as a function of node distance (RND, MQ with 1augN = , and PHS with 

6augN = ). 
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3.1.5. Effects of Non-Uniformity of the Nodes 
This section explores the maximum limit, up to which the results are converging, for 

the non-uniformity of the nodes based on the average error. Figure 4 shows the irregular 
node arrangements with 13 21N = ×  node density; the QUNDs are generated in the do-
main by transforming the regular nodes in the following manner: 

( )(nonuniform) (uniform) random (uniform)2 1 ; ,n n np p c p x yς ς ςδ ς= + − = , (41)

where randomc   represents a random number random1 1c− ≤ ≤ +  , δ   represents a scattering 
factor. Simulations with 9, 13, and 25 nodes in the local subdomain have been carried out 
to find a constant value of the scattering factor for all cases with different shape parame-
ters on which the convergence can be achieved for the given problem, as shown in Figure 
19. It has been shown that the range of selection for the scattering factor in the case of 
PHSs is longer than that of MQs. All values shown in Figure 19 are the possible range for 
the selection of the scattering factor for the present case; any value greater than those 
shown in Figure 19 will result in the divergence of the results. Figure 19 also shows that 
increasing the shape parameter for the MQ increases the accuracy but eventually de-
creases the range for selecting the scattering factor. Another aspect of Figure 19 is that 
increasing the number of nodes in the local subdomain also increases the range for select-
ing the scattering factor because of the wide range of subdomains. The PHS deals better 
with the scattering factor. 

 

Figure 19. Case 1, avgε  as a function of the scattering factor (δ ) (QUND, 241 401N = × ). 

In the rest of the simulations, we fixed the scattering factor equal to 0.10 for both PHSs 
and MQs because, with this value, all the present study cases converge and produce good 
results. As shown in Figure 19, we conducted multiple tests to find the optimal shape pa-
rameters for QUND using MQs with different nodes in the local subdomain. All the sim-
ulations in this section use the optimal shape parameters. A comparison of the average 
temperature error with a different number of nodes in the local subdomain for PHSs can 
be seen in Figure 20; it is clear that 13 nodes in the local subdomain should be selected for 
better accuracy and smooth convergence. 
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Figure 20. Case 1, PHS, avgε  error as a function of the node distance for different l N  (QUND, 

0 10.δ = , 6augN = ). 

The average temperature error for MQs is shown in Figure 21. From this figure, we 
can say that with a scattering factor of 0.10, we should select nine nodes in the local sub-
domain and seven as the shape parameter. It should also be noted here that as we increase 
the number of nodes in the local subdomain, the range for the selection of the shape pa-
rameter decreases, while the range for the selection of the scattering factor increases. 

 

Figure 21. Case 1, MQ, avgε   as a function of the node distance for different l N   (QUND, 

0 10.δ =  1augN = ). 

A comparison of the results for PHSs and MQs is shown in Figure 22; we can see that 
the MQ is a good choice for less dense nodes. However, as the total number of nodes 
increases, the PHS becomes an appropriate choice for calculating the average temperature 
error. The PHS has an advantage over the MQ by having an extensive range for selecting 
the scattering factor and no need for shape parameter selection. PHSs is a good choice for 
modeling a real-world problem with complex geometries. 
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Figure 22. Case 1, avgε  as a function of node distance (QUND, 0 10.δ = , MQ with 1augN = , PHS 

with 6augN = ). 

3.1.6. Effects of Scaling Factor on MQs 
So far, we have produced all the results using scaled MQ RBFs, as shown in Equation 

(17). To see the effects of the scaling factor, we have carried out some simulations without 
the scaling factor for 9 and 13 nodes in the local subdomain for regular node arrangements 
( 241 401N = × ), as shown in Figures 23 and 24. Figure 23 shows the effects of the shape 
parameter over the average error for scaled and unscaled MQs using the RND. The scaled 
MQ possesses a wide range for selecting shape parameters, and the average error de-
creases as we increase the shape parameter value, as explained earlier in Section 3.1.2. On 
the other hand, the unscaled MQ is sensitive to the shape parameter, and as we increase 
the shape parameter�s value, the average error rises abruptly. For local nodes 9l N = , a 
wide range is available for selecting the shape parameter, but the average error increases 
as we increase the shape parameter�s value, and the results diverge as we reach a value of 
40 for the shape parameter. If the local nodes are expanded to 13l N = , then the range for 
selecting the shape parameter gets limited to a maximum value of two, and the average 
error overshoots as we increase the shape parameter from one to two. 

 

Figure 23. Case 1, avgε  as a function of the shape parameter (c) for scaled and unscaled MQs (RND, 
241 401N = × ). 
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Figure 24 shows that the scattering factor impacts the unscaled MQ much more than 
the scaled MQ. For the unscaled MQ, a shape parameter equal to 1 leads to a divergence 
of the results, even with a scattering factor as low as 0.001. Based on the outcomes of Fig-
ure 23, we used the shape parameter equal to 0.08 in the simulations for the unscaled MQ 
with QUNDs in Figure 24. It is evident from Figure 24 that the scaled MQ provides stable 
results for a much larger scattering factor than the unscaled MQ. In addition, we have 
used shape parameters 7 and 2 with local nodes 9 and 13, respectively, because from Fig-
ure 19, we know that the scaled MQ with 9 and 13 local nodes has the smallest range for 
selecting the scattering factor with shape parameters 7 and 2, respectively. 

 

Figure 24. Case 1, avgε   as a function of the scattering factor ( δ  ) for scaled and unscaled MQs 

(QUND, 241 401N = × ). 

3.2. Results and Discussion for Case 2 
3.2.1. Analysis of MQs for Different Parameters and Total Time [s] 

The detailed results of the average temperature error using MQs are shown graph-
ically in Figures 25–27. 

Figure 25 shows the average temperature error [°C] as a function of the node distance 
[m], demonstrating the impact of gradually increasing the total time. As the total time 
progresses from t = 0.001 [s], t = 0.01 [s], t = 0.1 [s], to t = 1 [s], it is evident that the average 
temperature error consistently decreases. This trend holds true while keeping the shape 
parameter and the number of nodes in the local subdomain constant. This behavior is due 
to the fact that, as the total time increases, the numerical simulation undergoes more 
timesteps, allowing for better stabilization and a reduction in transient effects. Conse-
quently, the solution tends towards a steady state that is flat everywhere, resulting in in-
creasingly minor average temperature errors. 
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Figure 25. Case 2, MQ, avgε  as a function of node distance for four different times (RND, 1augN =
, 13l N = , c = 32). 

Figure 26 shows that the accuracy of the results improves by increasing the number 
of nodes in the local subdomain by keeping the same shape parameter and total time as 
long as the results converge. In the case of 25 nodes in the local subdomain, the results 
diverge if we use a large shape parameter (8, 16, 32). That is why the results are not shown 
in Figure 26 for the case with 25 nodes in the local subdomain. 

 

Figure 26. Case 2, MQ, avgε  as a function of node distance for three different l N  (RND, 1augN =
, c = 32, t = 1 s). 

While we have already carried out a detailed analysis for finding the optimal shape 
parameter with different nodes in the local subdomain in Section 3.1.2, to compare the 
results for the time-dependent case, we show the results for all the optimal shape param-
eters with the respective number of nodes in the local subdomain in Figure 27. From Fig-
ure 27, we can conclude that the accuracy of the results increases by increasing the number 
of nodes in the local subdomain and using the optimal shape parameter (c). 



Math. Comput. Appl. 2024, 29, 23 26 of 31 
 

 

 

Figure 27. Case 2, MQ, avgε  as a function of node distance for four different l N  with optimal 

shape parameters (RND, 1augN = , t = 1 s). 

3.2.2. Analysis of PHSs for Different Parameters and Total Time [s] 
A similar trend to the MQs can be seen while using PHSs with different maximum 

times; if we increase the total time, then the accuracy of the results improves, provided 
the number of nodes in the local subdomain remains constant, as shown in Figure 28 (

9l N = ), Figure 29 ( 13l N = ), and Figure 30 ( 25l N = ) respectively. This improvement is a 
logical consequence of the fact that the analytical and numerical solutions tend to a flat 
constant value. 

The only exception in PHS simulations arises when employing five nodes in the local 
subdomain. In this case, a singular matrix is encountered, leading to the termination of 
the simulation. Also, according to [24], to obtain stable results, the number of nodes in the 
local subdomain should be at least double the number of augmentation, i.e., in our case, 
as we used aug 6N = , so if we use l N  greater than or equal to 12, then we will obtain 
stable and converging results. Therefore, PHSs will never work while using five nodes in 
the local subdomain with aug 6N =  because when augl N N≤ , then the matrix will become 
singular due to the appearance of one whole row equal to zero. 

 

Figure 28. Case 2, PHS, avgε  as a function of node distance for four different times (RND, 6augN =
, 9l N = ). 
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Figure 29. Case 2, PHS, avgε  as a function of node distance for four different times (RND, 6augN =
, 13l N = ). 

 

Figure 30. Case 2, PHS, avgε  as a function of node distance for four different times and three node 

arrangements (RND, 6augN = , 25l N = ). 

From Figure 31, it can be concluded again that the results are more accurate for PHSs 
if we increase the number of nodes in the local subdomain. 
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Figure 31. Case 2, PHS, avgε   as a function of node distance for three different l N   (RND, 

6augN = , t = 1 s,). 

Figure 32 compares MQs and PHSs based on the average temperature error as a func-
tion of node distance. We can see that using MQs produce more accurate results than 
PHSs. 

 

Figure 32. Case 2, comparison of MQ ( 1augN = ) and PHS ( 6augN = ) in terms of avgε  as a function 

of node distance (RND, 13l N = , t = 1 s). 

4. Discussion 
This paper compares LRBFCMs, structured with MQs and PHSs� shape functions, for 

solving the HDE. The present research represents a follow-up of our previous pioneering 
publication on LRBFCM [5], based only on MQs, by comparing MQs and PHSs with a 
detailed assessment of how the factors such as node density, timestep, shape parameter, 
scaling of the MQ, number of nodes in the local subdomain, augmentation, and irregular 
node arrangements affect the average error in the discussed boundary value and initial 
value test cases. 
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In Case 1 studies, we can see that using augmentation leads to improved accuracy, 
as shown in Figure 10. In addition, this study shows that using a constant or a linear pol-
ynomial as the augmentation for MQs produces the same average temperature error, as 
shown in Figure 11. In addition to this, a comprehensive investigation was carried out to 
determine the optimal shape parameter for the MQs using various numbers of nodes 
within the local subdomain (Figures 12 and 14) as well as various node densities (Figures 
13 and 15). We have conducted our simulations for a range of shape parameters (

1 8 16 32 64c , , , ,= ) and assessed the accuracy of the results based on the average tempera-
ture error. 

In Case 1 of this study, for the scaled MQ, we found that the number of nodes in the 
local subdomain affects the selection of the shape parameter (explained in 3.1.2). When 
fewer nodes are in the local subdomain, we have a wide range of choices for the shape 
parameter. In this situation, using a larger shape parameter can help to improve accuracy 
as long as the results stay stable. Conversely, with more nodes in the local subdomain, our 
range of choices for the shape parameter becomes smaller to ensure the stability of the 
simulation. Therefore, picking a suitable shape parameter for MQs is crucial. The sensi-
tivity analysis of MQs based on the scaling factor was also studied. It was shown that a 
MQ without scaling is extremely sensitive to the shape parameter (Figure 23) and scatter-
ing factor (Figure 24). Therefore, it is recommended to use a scaled MQ for better stability 
and accuracy. 

PHS and MQ exhibit converging behavior with increasing node density (as shown in 
Figure 16 and Figure 17, respectively). We conducted a comparative analysis to assess the 
accuracy of both MQs and PHSs using the RND (as depicted in Figure 18). The highest 
accuracy for both MQs and PHSs was achieved with 13 nodes in the local subdomain. The 
findings indicate that MQs and PHSss delivered similar accuracy at lower node densities. 
Nevertheless, MQs demonstrated superior accuracy at higher node densities compared to 
PHSs. 

In PHSs, node irregularity has a smaller impact on the results, enabling QUNDs more 
widely than MQs (as shown in Figure 19). For both PHSs and MQs, the selection of the 
number of nodes in the local subdomain is significantly affected by the scattering of the 
nodes. If the number of nodes in the local subdomain is small, then the maximum value 
for the scattering factor (δ ) should be small too for stable results. The available range for 
the possible values of the scattering factor is inversely related to the shape parameter. A 
small shape parameter provides a wide range for choosing the scattering factor and vice 
versa. The MQ shows higher accuracy for less dense QUNDs; however, PHSs produce 
more accurate results if the nodes are denser. A higher convergence rate is observed for 
PHSs than MQs with scattered node arrangements, as shown in Figure 22. For comparison 
with QUND, we selected the most accurate results (from Figures 20 and 21) for both MQs 
and PHSs based on the number of nodes in the local subdomain. The conclusion was that 
MQs performs better with a lower node density, while PHSs provide better accuracy when 
the node density is high (Figure 22). 

The results of Case 2 for both MQs and PHSs are studied based on the number of 
nodes in the local subdomain ( 5 9 13 25l N , , ,=  ), total computational time (

[ ]s 0 001 0 01 0 1 1t . , . , . ,= ), and different node densities with optimal shape parameters using 
RNDs. The comparative analysis of PHSs and MQs was repeated using a different number 
of nodes in the local subdomain as the basis (Figure 32). The results reconfirmed that the 
MQ demonstrates higher accuracy than PHSs, as previously observed in the Case 1 study. 
MQs and PHSs individually produce more accurate results with the increasing number of 
nodes in the local subdomain. It is also observed that for PHSs, the number of nodes in 
the local subdomain should be at least greater than or equal to twice the number of the 
augmentation. Meanwhile, the MQ does not require any such conditions. The simulation 
results indicate that implementing an 11 × 11 node arrangement and 25 nodes in the local 
subdomain is unsuccessful due to the inadequate number of nodes (Figure 30). 
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In conclusion, the case study analysis indicates that the MQ exhibits slightly im-
proved accuracy for regular node arrangements compared to PHSs. On the other hand, 
when node arrangements are scattered, the PHS tends to produce more accurate results. 
PHS is more beneficial for problems that require non-uniform node arrangements. In Case 
1 of our study, we found that when comparing the best results achieved using QUND, 
with a scattering factor of 0.10 (as depicted in Figure 22) and RND (shown in Figure 18) 
for PHSs and MQs, the average accuracy difference (considering all the node arrange-
ments used in this study) for PHS is only 0.41%. However, for MQ, this difference is con-
siderably larger at 11.24%. Additionally, the PHS does not require finding an optimal 
shape parameter, making it more practical and efficient than MQ for solving real-world 
problems. In the future, we recommend using PHSs for practical purposes and longer 
robustness in QUND. 
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